1
|
Keane BP, Krekelberg B, Mill RD, Silverstein SM, Thompson JL, Serody MR, Barch DM, Cole MW. Dorsal attention network activity during perceptual organization is distinct in schizophrenia and predictive of cognitive disorganization. Eur J Neurosci 2023; 57:458-478. [PMID: 36504464 DOI: 10.1111/ejn.15889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Visual shape completion is a canonical perceptual organization process that integrates spatially distributed edge information into unified representations of objects. People with schizophrenia show difficulty in discriminating completed shapes, but the brain networks and functional connections underlying this perceptual difference remain poorly understood. Also unclear is whether brain network differences in schizophrenia occur in related illnesses or vary with illness features transdiagnostically. To address these topics, we scanned (functional magnetic resonance imaging, fMRI) people with schizophrenia, bipolar disorder, or no psychiatric illness during rest and during a task in which they discriminated configurations that formed or failed to form completed shapes (illusory and fragmented condition, respectively). Multivariate pattern differences were identified on the cortical surface using 360 predefined parcels and 12 functional networks composed of such parcels. Brain activity flow mapping was used to evaluate the likely involvement of resting-state connections for shape completion. Illusory/fragmented task activation differences ('modulations') in the dorsal attention network (DAN) could distinguish people with schizophrenia from the other groups (AUCs > .85) and could transdiagnostically predict cognitive disorganization severity. Activity flow over functional connections from the DAN could predict secondary visual network modulations in each group, except in schizophrenia. The secondary visual network was strongly and similarly modulated in each group. Task modulations were dispersed over more networks in patients compared to controls. In summary, DAN activity during visual perceptual organization is distinct in schizophrenia, symptomatically relevant, and potentially related to improper attention-related feedback into secondary visual areas.
Collapse
Affiliation(s)
- Brian P Keane
- University Behavioral Health Care, Department of Psychiatry, and Center for Cognitive Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ravi D Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Steven M Silverstein
- University Behavioral Health Care, Department of Psychiatry, and Center for Cognitive Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, USA
| | - Judy L Thompson
- Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
- Department of Psychiatric Rehabilitation and Counseling Professions, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Megan R Serody
- University Behavioral Health Care, Department of Psychiatry, and Center for Cognitive Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| | - Deanna M Barch
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
2
|
Keane BP, Barch DM, Mill RD, Silverstein SM, Krekelberg B, Cole MW. Brain network mechanisms of visual shape completion. Neuroimage 2021; 236:118069. [PMID: 33878383 PMCID: PMC8456451 DOI: 10.1016/j.neuroimage.2021.118069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/06/2022] Open
Abstract
Visual shape completion recovers object shape, size, and number from spatially segregated edges. Despite being extensively investigated, the process’s underlying brain regions, networks, and functional connections are still not well understood. To shed light on the topic, we scanned (fMRI) healthy adults during rest and during a task in which they discriminated pac-man configurations that formed or failed to form completed shapes (illusory and fragmented condition, respectively). Task activation differences (illusory-fragmented), resting-state functional connectivity, and multivariate patterns were identified on the cortical surface using 360 predefined parcels and 12 functional networks composed of such parcels. Brain activity flow mapping (ActFlow) was used to evaluate the likely involvement of resting-state connections for shape completion. We identified 36 differentially-active parcels including a posterior temporal region, PH, whose activity was consistent across 95% of observers. Significant task regions primarily occupied the secondary visual network but also incorporated the frontoparietal dorsal attention, default mode, and cingulo-opercular networks. Each parcel’s task activation difference could be modeled via its resting-state connections with the remaining parcels (r=.62, p<10−9), suggesting that such connections undergird shape completion. Functional connections from the dorsal attention network were key in modelling task activation differences in the secondary visual network. Dorsal attention and frontoparietal connections could also model activations in the remaining networks. Taken together, these results suggest that shape completion relies upon a sparsely distributed but densely interconnected network coalition that is centered in the secondary visual network, coordinated by the dorsal attention network, and inclusive of at least three other networks.
Collapse
Affiliation(s)
- Brian P Keane
- University Behavioral Health Care, Department of Psychiatry, and Center for Cognitive Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA.
| | - Deanna M Barch
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Ravi D Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Ave 07102, USA
| | - Steven M Silverstein
- University Behavioral Health Care, Department of Psychiatry, and Center for Cognitive Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA; Department of Ophthalmology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Ave 07102, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Ave 07102, USA
| |
Collapse
|
3
|
Erle TM, Zürn MK. Illusory trust: Kanizsa shapes incidentally increase trust and willingness to invest. JOURNAL OF BEHAVIORAL DECISION MAKING 2020. [DOI: 10.1002/bdm.2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thorsten M. Erle
- Department of Social Psychology Tilburg University Tilburg Netherlands
| | - Michael K. Zürn
- Department of Psychology University of Cologne Cologne Germany
| |
Collapse
|
4
|
Keane BP, Paterno D, Kastner S, Krekelberg B, Silverstein SM. Intact illusory contour formation but equivalently impaired visual shape completion in first- and later-episode schizophrenia. JOURNAL OF ABNORMAL PSYCHOLOGY 2018; 128:57-68. [PMID: 30346202 DOI: 10.1037/abn0000384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visual shape completion is a fundamental process that constructs contours and shapes on the basis of the geometric relations between spatially separated edge elements. People with schizophrenia are impaired at distinguishing visually completed shapes, but when does the impairment emerge and how does it evolve with illness duration? The question bears on the debate as to whether cognition declines after illness onset. To address the issue, we tested healthy controls (n = 48), first-episode psychosis patients (n = 23), and chronic schizophrenia patients (n = 49) on a classic psychophysical task in which subjects discriminated the relative orientations of four sectored circles that either formed or did not form visually completed shapes (illusory and fragmented conditions, respectively). Visual shape completion was quantified as the extent to which performance in the illusory condition exceeded that of the fragmented. Half of the trials incorporated wire edge elements, which augment contour salience and improve shape completion. Each patient group exhibited large visual shape completion deficits that could not be explained by differences in age, motivation, or orientation tuning. Patients responded normally to changes in illusory contour salience, indicating that they were forming but not adequately employing such contours for discriminating shapes. Shape completion deficits were most apparent for patients with cognitive disorganization, poor premorbid early adolescent functioning, and normal orientation discrimination. Visual shape completion deficits emerge maximally by the first psychotic episode and arise from higher-level disturbances that are related to premorbid functioning and disorganization. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Brian P Keane
- Department of Psychiatry, Robert Wood Johnson Medical School, University Behavioral Health Care, Rutgers Biomedical and Health Sciences, Rutgers University
| | | | | | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University
| | - Steven M Silverstein
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University
| |
Collapse
|
5
|
Contour interpolation: A case study in Modularity of Mind. Cognition 2018; 174:1-18. [PMID: 29407601 DOI: 10.1016/j.cognition.2018.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 01/29/2023]
Abstract
In his monograph Modularity of Mind (1983), philosopher Jerry Fodor argued that mental architecture can be partly decomposed into computational organs termed modules, which were characterized as having nine co-occurring features such as automaticity, domain specificity, and informational encapsulation. Do modules exist? Debates thus far have been framed very generally with few, if any, detailed case studies. The topic is important because it has direct implications on current debates in cognitive science and because it potentially provides a viable framework from which to further understand and make hypotheses about the mind's structure and function. Here, the case is made for the modularity of contour interpolation, which is a perceptual process that represents non-visible edges on the basis of how surrounding visible edges are spatiotemporally configured. There is substantial evidence that interpolation is domain specific, mandatory, fast, and developmentally well-sequenced; that it produces representationally impoverished outputs; that it relies upon a relatively fixed neural architecture that can be selectively impaired; that it is encapsulated from belief and expectation; and that its inner workings cannot be fathomed through conscious introspection. Upon differentiating contour interpolation from a higher-order contour representational ability ("contour abstraction") and upon accommodating seemingly inconsistent experimental results, it is argued that interpolation is modular to the extent that the initiating conditions for interpolation are strong. As interpolated contours become more salient, the modularity features emerge. The empirical data, taken as a whole, show that at least certain parts of the mind are modularly organized.
Collapse
|
6
|
Joseph J, Gara MA, Silverstein SM. Hierarchical Classes Analysis (HICLAS): A novel data reduction method to examine associations between biallelic SNPs and perceptual organization phenotypes in schizophrenia. Schizophr Res Cogn 2015; 2:56-63. [PMID: 26346124 PMCID: PMC4559868 DOI: 10.1016/j.scog.2015.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The power of SNP association studies to detect valid relationships with clinical phenotypes in schizophrenia is largely limited by the number of SNPs selected and non-specificity of phenotypes. To address this, we first assessed performance on two visual perceptual organization tasks designed to avoid many generalized deficit confounds, Kanizsa shape perception and contour integration, in a schizophrenia patient sample. Then, to reduce the total number of candidate SNPs analyzed in association with perceptual organization phenotypes, we employed a two-stage strategy: first a priori SNPs from three candidate genes were selected (GAD1, NRG1 and DTNBP1); then a Hierarchical Classes Analysis (HICLAS) was performed to reduce the total number of SNPs, based on statistically related SNP clusters. HICLAS reduced the total number of candidate SNPs for subsequent phenotype association analyses from 6 to 3. MANCOVAs indicated that rs10503929 and rs1978340 were associated with the Kanizsa shape perception filling in metric but not the global shape detection metric. rs10503929 was also associated with altered contour integration performance. SNPs not selected by the HICLAS model were unrelated to perceptual phenotype indices. While the contribution of candidate SNPs to perceptual impairments requires further clarification, this study reports the first application of HICLAS as a hypothesis-independent mathematical method for SNP data reduction. HICLAS may be useful for future larger scale genotype-phenotype association studies.
Collapse
Affiliation(s)
- Jamie Joseph
- Rutgers University Graduate School of Biomedical Sciences, 675 Hoes Lane, Piscataway, NJ 08854, USA
- Rutgers University Behavioral Health Care, 151 Centennial Ave, Piscataway, NJ 08854, USA
| | - Michael A. Gara
- Rutgers University Behavioral Health Care, 151 Centennial Ave, Piscataway, NJ 08854, USA
- Rutgers–Robert Wood Johnson Medical School, 671 Hoes Lane, Piscataway, NJ 08854, USA
| | - Steven M. Silverstein
- Rutgers University Behavioral Health Care, 151 Centennial Ave, Piscataway, NJ 08854, USA
- Rutgers–Robert Wood Johnson Medical School, 671 Hoes Lane, Piscataway, NJ 08854, USA
- Corresponding author at: Department of Psychiatry, Rutgers University Behavioral Health Care and Robert Wood Johnson Medical School, 671 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
Keane BP, Erlikhman G, Kastner S, Paterno D, Silverstein SM. Multiple forms of contour grouping deficits in schizophrenia: what is the role of spatial frequency? Neuropsychologia 2014; 65:221-33. [PMID: 25446968 PMCID: PMC4269227 DOI: 10.1016/j.neuropsychologia.2014.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/11/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
Schizophrenia patients poorly perceive Kanizsa figures and integrate co-aligned contour elements (Gabors). They also poorly process low spatial frequencies (SFs), which presumably reflects dysfunction along the dorsal pathway. Can contour grouping deficits be explained in terms of the spatial frequency content of the display elements? To address the question, we tested patients and matched controls on three contour grouping paradigms in which the SF composition was modulated. In the Kanizsa task, subjects discriminated quartets of sectored circles ("pac-men") that either formed or did not form Kanizsa shapes (illusory and fragmented conditions, respectively). In contour integration, subjects identified the screen quadrant thought to contain a closed chain of co-circular Gabors. In collinear facilitation, subjects attempted to detect a central low-contrast element flanked by collinear or orthogonal high-contrast elements, and facilitation corresponded to the amount by which collinear flankers reduced contrast thresholds. We varied SF by modifying the element features in the Kanizsa task and by scaling the entire stimulus display in the remaining tasks (SFs ranging from 4 to 12 cycles/deg). Irrespective of SF, patients were worse at discriminating illusory, but not fragmented shapes. Contrary to our hypothesis, collinear facilitation and contour integration were abnormal in the clinical group only for the higher SF (>=10 c/deg). Grouping performance correlated with clinical variables, such as conceptual disorganization, general symptoms, and levels of functioning. In schizophrenia, three forms of contour grouping impairments prominently arise and cannot be attributed to poor low SF processing. Neurobiological and clinical implications are discussed.
Collapse
Affiliation(s)
- Brian P Keane
- University Behavioral Health Care, Rutgers University, Piscataway, NJ 08854, USA; Center for Cognitive Science, Rutgers University, Piscataway, NJ 08854, USA.
| | - Gennady Erlikhman
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - Danielle Paterno
- University Behavioral Health Care, Rutgers University, Piscataway, NJ 08854, USA
| | - Steven M Silverstein
- University Behavioral Health Care, Rutgers University, Piscataway, NJ 08854, USA; Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Keane BP, Joseph J, Silverstein SM. Late, not early, stages of Kanizsa shape perception are compromised in schizophrenia. Neuropsychologia 2014; 56:302-11. [PMID: 24513023 DOI: 10.1016/j.neuropsychologia.2014.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/28/2014] [Accepted: 02/02/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Schizophrenia is a devastating psychiatric disorder characterized by symptoms including delusions, hallucinations, and disorganized thought. Kanizsa shape perception is a basic visual process that builds illusory contour and shape representations from spatially segregated edges. Recent studies have shown that schizophrenia patients exhibit abnormal electrophysiological signatures during Kanizsa shape perception tasks, but it remains unclear how these abnormalities are manifested behaviorally and whether they arise from early or late levels in visual processing. METHOD To address this issue, we had healthy controls and schizophrenia patients discriminate quartets of sectored circles that either formed or did not form illusory shapes (illusory and fragmented conditions, respectively). Half of the trials in each condition incorporated distractor lines, which are known to disrupt illusory contour formation and thereby worsen illusory shape discrimination. RESULTS Relative to their respective fragmented conditions, patients performed worse than controls in the illusory discrimination. Conceptually disorganized patients-characterized by their incoherent manner of speaking-were primarily driving the effect. Regardless of patient status or disorganization levels, distractor lines worsened discrimination more in the illusory than the fragmented condition, indicating that all groups could form illusory contours. CONCLUSION People with schizophrenia form illusory contours but are less able to utilize those contours to discern global shape. The impairment is especially related to the ability to think and speak coherently. These results suggest that Kanizsa shape perception incorporates an early illusory contour formation stage and a later, conceptually-mediated shape integration stage, with the latter being compromised in schizophrenia.
Collapse
Affiliation(s)
- Brian P Keane
- Rutgers - Robert Wood Johnson Medical School, 671 Hoes Lane, Piscataway, NJ 08854, USA; Rutgers University Behavioral Health Care, 151 Centennial Ave, Piscataway, NJ 08854, USA; Rutgers University Center for Cognitive Science, 152 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| | - Jamie Joseph
- Rutgers University Behavioral Health Care, 151 Centennial Ave, Piscataway, NJ 08854, USA; Rutgers University Graduate School of Biomedical Sciences, Piscataway, NJ 08854, USA
| | - Steven M Silverstein
- Rutgers - Robert Wood Johnson Medical School, 671 Hoes Lane, Piscataway, NJ 08854, USA; Rutgers University Behavioral Health Care, 151 Centennial Ave, Piscataway, NJ 08854, USA
| |
Collapse
|
9
|
Keane BP, Lu H, Papathomas TV, Silverstein SM, Kellman PJ. Reinterpreting behavioral receptive fields: lightness induction alters visually completed shape. PLoS One 2013; 8:e62505. [PMID: 23750200 PMCID: PMC3672097 DOI: 10.1371/journal.pone.0062505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 03/25/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A classification image (CI) technique has shown that static luminance noise near visually completed contours affects the discrimination of fat and thin Kanizsa shapes. These influential noise regions were proposed to reveal "behavioral receptive fields" of completed contours-the same regions to which early cortical cells respond in neurophysiological studies of contour completion. Here, we hypothesized that 1) influential noise regions correspond to the surfaces that distinguish fat and thin shapes (hereafter, key regions); and 2) key region noise biases a "fat" response to the extent that its contrast polarity (lighter or darker than background) matches the shape's filled-in surface color. RESULTS To test our hypothesis, we had observers discriminate fat and thin noise-embedded rectangles that were defined by either illusory or luminance-defined contours (Experiment 1). Surrounding elements ("inducers") caused the shapes to appear either lighter or darker than the background-a process sometimes referred to as lightness induction. For both illusory and luminance-defined rectangles, key region noise biased a fat response to the extent that its contrast polarity (light or dark) matched the induced surface color. When lightness induction was minimized, luminance noise had no consistent influence on shape discrimination. This pattern arose when pixels immediately adjacent to the discriminated boundaries were excluded from the analysis (Experiment 2) and also when the noise was restricted to the key regions so that the noise never overlapped with the physically visible edges (Experiment 3). The lightness effects did not occur in the absence of enclosing boundaries (Experiment 4). CONCLUSIONS Under noisy conditions, lightness induction alters visually completed shape. Moreover, behavioral receptive fields derived in CI studies do not correspond to contours per se but to filled-in surface regions contained by those contours. The relevance of lightness to two-dimensional shape completion supplies a new constraint for models of object perception.
Collapse
Affiliation(s)
- Brian P Keane
- Center for Cognitive Science, Rutgers University, New Brunswick, Piscataway, New Jersey, USA.
| | | | | | | | | |
Collapse
|
10
|
Kellman PJ, Massey CM. Perceptual Learning, Cognition, and Expertise. PSYCHOLOGY OF LEARNING AND MOTIVATION 2013. [DOI: 10.1016/b978-0-12-407237-4.00004-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Keane BP, Silverstein SM, Barch DM, Carter CS, Gold JM, Kovács I, MacDonald AW, Ragland JD, Strauss ME. The spatial range of contour integration deficits in schizophrenia. Exp Brain Res 2012; 220:251-9. [PMID: 22710617 PMCID: PMC3466169 DOI: 10.1007/s00221-012-3134-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 05/21/2012] [Indexed: 11/28/2022]
Abstract
Contour integration (CI) refers to the process that represents spatially separated elements as a unified edge or closed shape. Schizophrenia is a psychiatric disorder characterized by symptoms such as hallucinations, delusions, disorganized thinking, inappropriate affect, and social withdrawal. Persons with schizophrenia are impaired at CI, but the specific mechanisms underlying the deficit are still not clear. Here, we explored the hypothesis that poor patient performance owes to reduced feedback or impaired longer-range lateral connectivity within early visual cortex--functionally similar to that found in 5- to 6-year old children. This hypothesis predicts that as target element spacing increases from .7 to 1.4° of visual angle, patient impairments will become more pronounced. As a test of the prediction, 25 healthy controls and 36 clinically stable, asymptomatic persons with schizophrenia completed a CI task that involved determining whether a subset of Gabor elements formed a leftward or rightward pointing shape. Adjacent shape elements were spaced at either .7 or 1.4° of visual angle. Difficulty in each spacing condition depended on the number of noise elements present. Patients performed worse than controls overall, both groups performed worse with the larger spacing, and the magnitude of the between-group difference was not amplified at the larger spacing. These results show that CI deficits in schizophrenia cannot be explained in terms of a reduced spatial range of integration, at least not when the shape elements are spaced within 1.5°. Later-developing, low-level integrative mechanisms of lateral connectivity and feedback appear not to be differentially impaired in the illness.
Collapse
Affiliation(s)
- Brian P Keane
- Division of Schizophrenia Research, University Behavioral HealthCare, University of Medicine and Dentistry of New Jersey, 151 Centennial Ave, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|