1
|
Qarehdaghi H, Rad JA. EZ-CDM: Fast, simple, robust, and accurate estimation of circular diffusion model parameters. Psychon Bull Rev 2024; 31:2058-2091. [PMID: 38587755 DOI: 10.3758/s13423-024-02483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2024] [Indexed: 04/09/2024]
Abstract
The investigation of cognitive processes that form the basis of decision-making in paradigms involving continuous outcomes has gained the interest of modeling researchers who aim to develop a dynamic decision theory that accounts for both speed and accuracy. One of the most important of these continuous models is the circular diffusion model (CDM, Smith. Psychological Review, 123(4), 425. 2016), which posits a noisy accumulation process mathematically described as a stochastic two-dimensional Wiener process inside a disk. Despite the considerable benefits of this model, its mathematical intricacy has limited its utilization among scholars. Here, we propose a straightforward and user-friendly method for estimating the CDM parameters and fitting the model to continuous-scale data using simple formulas that can be readily computed and do not require theoretical knowledge of model fitting or extensive programming. Notwithstanding its simplicity, we demonstrate that the aforementioned method performs with a level of accuracy that is comparable to that of the maximum likelihood estimation method. Furthermore, a robust version of the method is presented, which maintains its simplicity while exhibiting a high degree of resistance to contaminant responses. Additionally, we show that the approach is capable of reliably measuring the key parameters of the CDM, even when these values are subject to across-trial variability. Finally, we demonstrate the practical application of the method on experimental data. Specifically, an illustrative example is presented wherein the method is employed along with estimating the probability of guessing. It is hoped that the straightforward methodology presented here will, on the one hand, help narrow the divide between theoretical constructs and empirical observations on continuous response tasks and, on the other hand, inspire cognitive psychology researchers to shift their laboratory investigations towards continuous response paradigms.
Collapse
Affiliation(s)
- Hasan Qarehdaghi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Jamal Amani Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Abstract
Flexible behavior requires guidance not only by sensations that are available immediately but also by relevant mental contents carried forward through working memory. Therefore, selective-attention functions that modulate the contents of working memory to guide behavior (inside-out) are just as important as those operating on sensory signals to generate internal contents (outside-in). We review the burgeoning literature on selective attention in the inside-out direction and underscore its functional, flexible, and future-focused nature. We discuss in turn the purpose (why), targets (what), sources (when), and mechanisms (how) of selective attention inside working memory, using visual working memory as a model. We show how the study of internal selective attention brings new insights concerning the core cognitive processes of attention and working memory and how considering selective attention and working memory together paves the way for a rich and integrated understanding of how mind serves behavior.
Collapse
Affiliation(s)
- Freek van Ede
- Institute for Brain and Behavior Amsterdam, and Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands;
| | - Anna C Nobre
- Departments of Experimental Psychology and Psychiatry, Oxford Centre for Human Brain Activity, and Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
3
|
Internal attention is the only retroactive mechanism for controlling precision in working memory. Atten Percept Psychophys 2022:10.3758/s13414-022-02628-7. [PMID: 36536206 PMCID: PMC10371937 DOI: 10.3758/s13414-022-02628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/23/2022]
Abstract
AbstractRecent research has suggested that humans can assert control over the precision of working memory (WM) items. However, the mechanisms that enable this control are unclear. While some studies suggest that internal attention improves precision, it may not be the only factor, as previous work also demonstrated that WM storage is disentangled from attention. To test whether there is a precision control mechanism beyond internal attention, we contrasted internal attention and precision requirements within the same trial in three experiments. In every trial, participants memorized two items briefly. Before the test, a retro-cue indicated which item would be tested first, thus should be attended. Importantly, we encouraged participants to store the unattended item with higher precision by testing it using more similar lure colors at the probe display. Accuracy was analyzed on a small proportion of trials where the target-lure similarity, hence the task difficulty, was equal for attended and unattended items. Experiments 2 and 3 controlled for output interference by the first test and involuntary precision boost by the retro-cue, respectively. In all experiments, the unattended item had lower accuracy than the attended item, suggesting that individuals were not able to remember it more precisely than the attended item. Thus, we conclude that there is no precision control mechanism beyond internal attention, highlighting the close relationship between attentional and qualitative prioritization within WM. We discuss the important implications of these findings for our understanding of the fundamentals of WM and WM-driven behaviors.
Collapse
|
4
|
Abstract
The current studies examined the relative contribution of shape and colour in object representations in memory. A great deal of evidence points to the significance of shape in object recognition, with the role of colour being instrumental under certain circumstances. A key but yet unanswered question concerns the contribution of colour relative to shape in mediating retrieval of object representations from memory. Two experiments (N=80) used a new method to probe episodic memory for objects and revealed the relative contribution of colour and shape in recognition memory. Participants viewed pictures of objects from different categories, presented one at a time. During a practice phase, participants performed yes/no recognition with some of the studied objects and their distractors. Unpractised objects shared shape only (Rp–Shape), colour only (Rp–Colour), shape and colour (Rp–Both), or neither shape nor colour (Rp–Neither), with the practised objects. Interference effects in memory between practised and unpractised items were revealed in the forgetting of related unpractised items – retrieval-induced forgetting. Retrieval-induced forgetting was consistently significant for Rp–Shape and Rp–Colour objects. These findings provide converging evidence that colour is an automatically encoded object property, and present new evidence that both shape and colour act simultaneously and effectively to drive retrieval of objects from long-term memory.
Collapse
|
5
|
Jeye BM, McCarthy CR, Slotnick SD. Long-term memory specificity depends on inhibition of related items. Memory 2020; 28:261-269. [PMID: 31914856 DOI: 10.1080/09658211.2019.1711129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Long-term memory relies on both accurately retrieving specific details and inhibiting competing information. In the current investigation, we evaluated the specificity of long-term memory representations for faces. During each study phase, participants were presented with neutral Caucasian male and female faces. During the corresponding test phase, old faces, related faces, and new faces were presented and participants made "old"-"new" recognition judgments. Related faces were created by morphing along a continuum in steps of 20% (i.e., 20%, 40%, 60% and 80% morphs) between old faces and new faces (independent ratings indicated that the pairs of to-be-morphed old faces and new faces were perceptually dissimilar). In two experiments, memory representations were very specific as the "old" response rate for old faces was significantly higher than closely related faces (i.e., 20% morphs). Furthermore, there was evidence of memory inhibition, as the "old" response rate for 20% morphs was significantly lower than 40% morphs (the identical pattern of results was observed with a d' analysis). These findings may reflect an evolutionary advantage for recognising specific faces, which may require inhibition of closely related faces.
Collapse
Affiliation(s)
- Brittany M Jeye
- Department of Psychology, Worcester State University, Worcester, MA, USA
| | | | - Scott D Slotnick
- Department of Psychology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
6
|
Relating Visual Production and Recognition of Objects in Human Visual Cortex. J Neurosci 2019; 40:1710-1721. [PMID: 31871278 DOI: 10.1523/jneurosci.1843-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022] Open
Abstract
Drawing is a powerful tool that can be used to convey rich perceptual information about objects in the world. What are the neural mechanisms that enable us to produce a recognizable drawing of an object, and how does this visual production experience influence how this object is represented in the brain? Here we evaluate the hypothesis that producing and recognizing an object recruit a shared neural representation, such that repeatedly drawing the object can enhance its perceptual discriminability in the brain. We scanned human participants (N = 31; 11 male) using fMRI across three phases of a training study: during training, participants repeatedly drew two objects in an alternating sequence on an MR-compatible tablet; before and after training, they viewed these and two other control objects, allowing us to measure the neural representation of each object in visual cortex. We found that: (1) stimulus-evoked representations of objects in visual cortex are recruited during visually cued production of drawings of these objects, even throughout the period when the object cue is no longer present; (2) the object currently being drawn is prioritized in visual cortex during drawing production, while other repeatedly drawn objects are suppressed; and (3) patterns of connectivity between regions in occipital and parietal cortex supported enhanced decoding of the currently drawn object across the training phase, suggesting a potential neural substrate for learning how to transform perceptual representations into representational actions. Together, our study provides novel insight into the functional relationship between visual production and recognition in the brain.SIGNIFICANCE STATEMENT Humans can produce simple line drawings that capture rich information about their perceptual experiences. However, the mechanisms that support this behavior are not well understood. Here we investigate how regions in visual cortex participate in the recognition of an object and the production of a drawing of it. We find that these regions carry diagnostic information about an object in a similar format both during recognition and production, and that practice drawing an object enhances transmission of information about it to downstream regions. Together, our study provides novel insight into the functional relationship between visual production and recognition in the brain.
Collapse
|
7
|
Sutterer DW, Foster JJ, Serences JT, Vogel EK, Awh E. Alpha-band oscillations track the retrieval of precise spatial representations from long-term memory. J Neurophysiol 2019; 122:539-551. [PMID: 31188708 DOI: 10.1152/jn.00268.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A hallmark of episodic memory is the phenomenon of mentally reexperiencing the details of past events, and a well-established concept is that the neuronal activity that mediates encoding is reinstated at retrieval. Evidence for reinstatement has come from multiple modalities, including functional magnetic resonance imaging and electroencephalography (EEG). These EEG studies have shed light on the time course of reinstatement but have been limited to distinguishing between a few categories. The goal of this work was to use recently developed experimental and technical approaches, namely continuous report tasks and inverted encoding models, to determine which frequencies of oscillatory brain activity support the retrieval of precise spatial memories. In experiment 1, we establish that an inverted encoding model applied to multivariate alpha topography tracks the retrieval of precise spatial memories. In experiment 2, we demonstrate that the frequencies and patterns of multivariate activity at study are similar to the frequencies and patterns observed during retrieval. These findings highlight the broad potential for using encoding models to characterize long-term memory retrieval.NEW & NOTEWORTHY Previous EEG work has shown that category-level information observed during encoding is recapitulated during memory retrieval, but studies with this time-resolved method have not demonstrated the reinstatement of feature-specific patterns of neural activity during retrieval. Here we show that EEG alpha-band activity tracks the retrieval of spatial representations from long-term memory. Moreover, we find considerable overlap between the frequencies and patterns of activity that track spatial memories during initial study and at retrieval.
Collapse
Affiliation(s)
- David W Sutterer
- Department of Psychology, University of Chicago, Chicago, Illinois.,Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| | - Joshua J Foster
- Department of Psychology, University of Chicago, Chicago, Illinois.,Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| | - John T Serences
- Department of Psychology, University of California San Diego, La Jolla, California.,Neuroscience Graduate Program, University of California San Diego, La Jolla, California
| | - Edward K Vogel
- Department of Psychology, University of Chicago, Chicago, Illinois.,Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| | - Edward Awh
- Department of Psychology, University of Chicago, Chicago, Illinois.,Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Meditation focused on self-observation of the body impairs metacognitive efficiency. Conscious Cogn 2019; 70:116-125. [DOI: 10.1016/j.concog.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/09/2023]
|
9
|
Dowd EW, Nag S, Golomb JD. Working memory-driven attention towards a distractor does not interfere with target feature perception. VISUAL COGNITION 2019; 27:714-731. [PMID: 33013176 DOI: 10.1080/13506285.2019.1659895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The contents of working memory (WM) can influence where we attend-but can it also interfere with what we see? Active maintenance of visual items in WM biases attention towards WM-matching objects, and also enhances early perceptual processing of WM-matching items (e.g., more accurate perceptual discrimination). Here, we asked whether a WM-matching distractor interferes with perceptual processing of a target's features. In a dual-task paradigm, participants maintained a shape in WM across an intervening visual search task, during which they had to reproduce the colour of a designated target item using a continuous-report technique. Importantly, the WM shape could match the target item, a distractor item, or no item in the search array. When the WM shape matched a distractor, we found no evidence of systematic perceptual interference (i.e., swapping or mixing with the distractor colour), but observed only general disruptions in target processing (i.e., decreased target accuracy). These results suggest that when visual attention is inadvertently drawn to a WM-matching distractor, any resultant automatic perceptual processing may be too transient or weak to significantly interfere with perceptual processing of the target's features.
Collapse
Affiliation(s)
- Emma Wu Dowd
- Department of Psychology, The Ohio State University
| | - Samoni Nag
- Department of Psychology, The Ohio State University
| | | |
Collapse
|
10
|
Fan JE, Yamins DLK, Turk-Browne NB. Common Object Representations for Visual Production and Recognition. Cogn Sci 2018; 42:2670-2698. [PMID: 30125986 DOI: 10.1111/cogs.12676] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 11/26/2022]
Abstract
Production and comprehension have long been viewed as inseparable components of language. The study of vision, by contrast, has centered almost exclusively on comprehension. Here we investigate drawing-the most basic form of visual production. How do we convey concepts in visual form, and how does refining this skill, in turn, affect recognition? We developed an online platform for collecting large amounts of drawing and recognition data, and applied a deep convolutional neural network model of visual cortex trained only on natural images to explore the hypothesis that drawing recruits the same abstract feature representations that support natural visual object recognition. Consistent with this hypothesis, higher layers of this model captured the abstract features of both drawings and natural images most important for recognition, and people learning to produce more recognizable drawings of objects exhibited enhanced recognition of those objects. These findings could explain why drawing is so effective for communicating visual concepts, they suggest novel approaches for evaluating and refining conceptual knowledge, and they highlight the potential of deep networks for understanding human learning.
Collapse
Affiliation(s)
- Judith E Fan
- Department of Psychology, Stanford University.,Department of Psychology, Princeton University
| | - Daniel L K Yamins
- Department of Psychology, Stanford University.,McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | - Nicholas B Turk-Browne
- Department of Psychology, Princeton University.,Department of Psychology, Yale University
| |
Collapse
|
11
|
Hopman EWM, MacDonald MC. Production Practice During Language Learning Improves Comprehension. Psychol Sci 2018; 29:961-971. [PMID: 29638188 DOI: 10.1177/0956797618754486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Language learners often spend more time comprehending than producing a new language. However, memory research suggests reasons to suspect that production practice might provide a stronger learning experience than comprehension practice. We tested the benefits of production during language learning and the degree to which this learning transfers to comprehension skill. We taught participants an artificial language containing multiple linguistic dependencies. Participants were randomly assigned to either a production- or a comprehension-learning condition, with conditions designed to balance attention demands and other known production-comprehension differences. After training, production-learning participants outperformed comprehension-learning participants on vocabulary comprehension and on comprehension tests of grammatical dependencies, even when we controlled for individual differences in vocabulary learning. This result shows that producing a language during learning can improve subsequent comprehension, which has implications for theories of memory and learning, language representations, and educational practices.
Collapse
|
12
|
Yu RQ, Zhao J. Object representations are biased toward each other through statistical learning. VISUAL COGNITION 2018. [DOI: 10.1080/13506285.2018.1435596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ru Qi Yu
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Jiaying Zhao
- Department of Psychology, University of British Columbia, Vancouver, Canada
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Endress AD, Korjoukov I, Bonatti LL. Category-based grouping in working memory and multiple object tracking. VISUAL COGNITION 2017. [DOI: 10.1080/13506285.2017.1349229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Luca L. Bonatti
- Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
14
|
Fan JE, Hutchinson JB, Turk-Browne NB. When past is present: Substitutions of long-term memory for sensory evidence in perceptual judgments. J Vis 2017; 16:1. [PMID: 27248565 PMCID: PMC4898202 DOI: 10.1167/16.8.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
When perception is underdetermined by current sensory inputs, memories for related experiences in the past might fill in missing detail. To evaluate this possibility, we measured the likelihood of relying on long-term memory versus sensory evidence when judging the appearance of an object near the threshold of awareness. Specifically, we associated colors with shapes in long-term memory and then presented the shapes again later in unrelated colors and had observers judge the appearance of the new colors. We found that responses were well characterized as a bimodal mixture of original and current-color representations (vs. an integrated unimodal representation). That is, although irrelevant to judgments of the current color, observers occasionally anchored their responses on the original colors in memory. Moreover, the likelihood of such memory substitutions increased when sensory input was degraded. In fact, they occurred even in the absence of sensory input when observers falsely reported having seen something. Thus, although perceptual judgments intuitively seem to reflect the current state of the environment, they can also unknowingly be dictated by past experiences.
Collapse
|
15
|
Feature-based attentional weighting and spreading in visual working memory. Sci Rep 2017; 7:42384. [PMID: 28233830 PMCID: PMC5324041 DOI: 10.1038/srep42384] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/09/2017] [Indexed: 11/23/2022] Open
Abstract
Attention can be directed at features and feature dimensions to facilitate perception. Here, we investigated whether feature-based-attention (FBA) can also dynamically weight feature-specific representations within multi-feature objects held in visual working memory (VWM). Across three experiments, participants retained coloured arrows in working memory and, during the delay, were cued to either the colour or the orientation dimension. We show that directing attention towards a feature dimension (1) improves the performance in the cued feature dimension at the expense of the uncued dimension, (2) is more efficient if directed to the same rather than to different dimensions for different objects, and (3) at least for colour, automatically spreads to the colour representation of non-attended objects in VWM. We conclude that FBA also continues to operate on VWM representations (with similar principles that govern FBA in the perceptual domain) and challenge the classical view that VWM representations are stored solely as integrated objects.
Collapse
|
16
|
Richter FR, Cooper RA, Bays PM, Simons JS. Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory. eLife 2016; 5. [PMID: 27776631 PMCID: PMC5079745 DOI: 10.7554/elife.18260] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
A network of brain regions have been linked with episodic memory retrieval, but limited progress has been made in identifying the contributions of distinct parts of the network. Here, we utilized continuous measures of retrieval to dissociate three components of episodic memory: retrieval success, precision, and vividness. In the fMRI scanner, participants encoded objects that varied continuously on three features: color, orientation, and location. Participants’ memory was tested by having them recreate the appearance of the object features using a continuous dial, and continuous vividness judgments were recorded. Retrieval success, precision, and vividness were dissociable both behaviorally and neurally: successful versus unsuccessful retrieval was associated with hippocampal activity, retrieval precision scaled with activity in the angular gyrus, and vividness judgments tracked activity in the precuneus. The ability to dissociate these components of episodic memory reveals the benefit afforded by measuring memory on a continuous scale, allowing functional parcellation of the retrieval network. DOI:http://dx.doi.org/10.7554/eLife.18260.001 Remembering is something we do countless times each day. The detail and vividness with which we can remember is part of what makes memories so precious. Given the significance and complexity of memories, it is perhaps unsurprising that several parts of the brain are needed for us to experience them. Indeed, the brain regions involved in memory all work so closely together that it is a challenge to identify what role each region plays. Richter, Cooper et al. aimed to design a memory task that could separate key characteristics of remembering, which would allow them to study links between each aspect and the different brain regions involved in memory. The resulting test involved showing people images of different objects whilst they were in an MRI medical imaging scanner. The people taking the test were asked to remember several objects that could vary in color, position and orientation. Participants were asked to rate how vividly they remembered the objects and then tried to precisely recreate their color, orientation and position. The test allowed Richter, Cooper et al. to link specific parts of the brain to certain aspects of remembering. The hippocampus, an area known to be important in memory processing, indicated whether or not information had been remembered. More vivid memories were linked to greater activity in a region called the precuneus, which plays a role in imagination. Lastly, activity in a third region – the angular gyrus – indicated the precision of each memory. Being able to study different aspects of memory using tests like this that collect detailed measurements could be important in identifying memory problems, for example, in people with brain diseases or head injuries, or after a stroke. Specifically, the methods developed by Richter, Cooper et al. could provide sensitive tools for detecting memory difficulties at an early stage. This may help more people to get treated sooner, potentially minimizing lasting complications. DOI:http://dx.doi.org/10.7554/eLife.18260.002
Collapse
Affiliation(s)
- Franziska R Richter
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Rose A Cooper
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Paul M Bays
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Ramon M, Miellet S, Dzieciol AM, Konrad BN, Dresler M, Caldara R. Super-Memorizers Are Not Super-Recognizers. PLoS One 2016; 11:e0150972. [PMID: 27008627 PMCID: PMC4805230 DOI: 10.1371/journal.pone.0150972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/22/2016] [Indexed: 11/18/2022] Open
Abstract
Humans have a natural expertise in recognizing faces. However, the nature of the interaction between this critical visual biological skill and memory is yet unclear. Here, we had the unique opportunity to test two individuals who have had exceptional success in the World Memory Championships, including several world records in face-name association memory. We designed a range of face processing tasks to determine whether superior/expert face memory skills are associated with distinctive perceptual strategies for processing faces. Superior memorizers excelled at tasks involving associative face-name learning. Nevertheless, they were as impaired as controls in tasks probing the efficiency of the face system: face inversion and the other-race effect. Super memorizers did not show increased hippocampal volumes, and exhibited optimal generic eye movement strategies when they performed complex multi-item face-name associations. Our data show that the visual computations of the face system are not malleable and are robust to acquired expertise involving extensive training of associative memory.
Collapse
Affiliation(s)
- Meike Ramon
- University of Fribourg, Department of Psychology, Rue P.A. de Faucigny 2, 1700 Fribourg, Switzerland
- * E-mail:
| | - Sebastien Miellet
- Bournemouth University, Department of Psychology, Talbot Campus, BH12 5BB, Poole, United Kingdom
| | - Anna M. Dzieciol
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Institute of Child Health, 30 Guilford Street, WC1N 1EH, London, United Kingdom
| | - Boris Nikolai Konrad
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
| | - Martin Dresler
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
- Max Planck Institute of Psychiatry, Kraepelinstr. 2–10, 80804 Munich, Germany
| | - Roberto Caldara
- University of Fribourg, Department of Psychology, Rue P.A. de Faucigny 2, 1700 Fribourg, Switzerland
| |
Collapse
|
18
|
Fan JE, Turk-Browne NB. Incidental biasing of attention from visual long-term memory. J Exp Psychol Learn Mem Cogn 2015; 42:970-7. [PMID: 26618914 DOI: 10.1037/xlm0000209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Holding recently experienced information in mind can help us achieve our current goals. However, such immediate and direct forms of guidance from working memory are less helpful over extended delays or when other related information in long-term memory is useful for reaching these goals. Here we show that information that was encoded in the past but is no longer present or relevant to the task also guides attention. We examined this by associating multiple unique features with novel shapes in visual long-term memory (VLTM), and subsequently testing how memories for these objects biased the deployment of attention. In Experiment 1, VLTM for associated features guided visual search for the shapes, even when these features had never been task-relevant. In Experiment 2, associated features captured attention when presented in isolation during a secondary task that was completely unrelated to the shapes. These findings suggest that long-term memory enables a durable and automatic type of memory-based attentional control. (PsycINFO Database Record
Collapse
|
19
|
|
20
|
Dowd EW, Kiyonaga A, Beck JM, Egner T. Quality and accessibility of visual working memory during cognitive control of attentional guidance: A Bayesian model comparison approach. VISUAL COGNITION 2015. [DOI: 10.1080/13506285.2014.1003631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Abstract
Retrieval-induced forgetting is a phenomenon in which groups of stimuli are initially learned, but then a subset of those stimuli are subsequently remembered via retrieval practice, causing the forgetting of the other initially learned items. This phenomenon has almost exclusively been studied using linguistic stimuli. The goal of the present study was to determine whether our memory for simultaneously learned visual stimuli was subject to a similar type of memory impairment. Participants were shown real-world objects, then they practiced recognizing a subset of these remembered objects, and finally their memory was tested for all learned objects. We found that practicing recognition of a subset of items resulted in forgetting of other objects in the group. However, impaired recognition did not spread to new objects belonging to the same category. Our findings have important implications for how our memories operate in real-world tasks, where remembering one object or aspect of a visual scene can cause us to forget other information encoded at the same time.
Collapse
Affiliation(s)
| | - Geoffrey F Woodman
- Department of Psychology, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University
| |
Collapse
|