1
|
Feng H, Jin Y, Wu B. Strategies for neoantigen screening and immunogenicity validation in cancer immunotherapy (Review). Int J Oncol 2025; 66:43. [PMID: 40342048 PMCID: PMC12101193 DOI: 10.3892/ijo.2025.5749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Cancer immunotherapy stimulates and enhances antitumor immune responses to eliminate cancer cells. Neoantigens, which originate from specific mutations within tumor cells, are key targets in cancer immunotherapy. Neoantigens manifest as abnormal peptide fragments or protein segments that are uniquely expressed in tumor cells, making them highly immunogenic. As a result, they activate the immune system, particularly T cell‑mediated immune responses, effectively identifying and eliminating tumor cells. Certain tumor‑associated antigens that are abnormally expressed in normal host proteins in cancer cells are promising targets for immunotherapy. Neoantigens derived from mutated proteins in cancer cells offer true cancer specificity and are often highly immunogenic. Furthermore, most neoantigens are unique to each patient, highlighting the need for personalized treatment strategies. The precise identification and screening of neoantigens are key for improving treatment efficacy and developing individualized therapeutic plans. The neoantigen prediction process involves somatic mutation identification, human leukocyte antigen (HLA) typing, peptide processing and peptide‑HLA binding prediction. The present review summarizes the major current methods used for neoantigen screening, available computational tools and the advantages and limitations of various techniques. Additionally, the present review aimed to summarize experimental strategies for validating the immunogenicity of the predicted neoantigens, which will determine whether these neoantigens can effectively trigger immune responses, as well as challenges encountered during neoantigen screening, providing relevant recommendations for the optimization of neoantigen‑based immunotherapy.
Collapse
Affiliation(s)
- Hua Feng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, P.R. China
| | - Bin Wu
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
2
|
Nian Q, Lin Y, Zeng J, Zhang Y, Liu R. Multifaceted functions of the Wilms tumor 1 protein: From its expression in various malignancies to targeted therapy. Transl Oncol 2025; 52:102237. [PMID: 39672002 PMCID: PMC11700300 DOI: 10.1016/j.tranon.2024.102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024] Open
Abstract
Wilms tumor 1 (WT1) is a multifaceted protein with dual functions, acting both as a tumor suppressor and as a transcriptional activator of oncogenes. WT1 is highly expressed in various types of solid tumors and leukemia, and its elevated expression is associated with a poor prognosis for patients. High WT1 expression also indicates a greater risk of refractory disease or relapse. Consequently, targeting WT1 is an effective strategy for disease prevention and relapse mitigation. Substantial information is available on the pathogenesis of WT1 in various diseases, and several WT1-targeted therapies, including chemical drugs, natural products, and targeted vaccines, are available. We provide a comprehensive review of the mechanisms by which WT1 influences malignancies and summarize the resulting therapeutic approaches thoroughly. This article provides information on the roles of WT1 in the pathogenesis of different cancers and provides insights into drugs and immunotherapies targeting WT1. The goal of this work is to provide a systematic understanding of the current research landscape and of future directions for WT1-related studies.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072.
| | - Yan Lin
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Yanna Zhang
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing, China, 400000.
| |
Collapse
|
3
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
4
|
Nordin ML, Azemi AK, Nordin AH, Nabgan W, Ng PY, Yusoff K, Abu N, Lim KP, Zakaria ZA, Ismail N, Azmi F. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals (Basel) 2023; 16:923. [PMID: 37513835 PMCID: PMC10386531 DOI: 10.3390/ph16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.
Collapse
Affiliation(s)
- Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khatijah Yusoff
- National Institutes of Biotechnology, Malaysia Genome and Vaccine Institute, Jalan Bangi, Kajang 43000, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kue Peng Lim
- Cancer Immunology & Immunotherapy Unit, Cancer Research Malaysia, No. 1 Jalan SS12/1A, Subang Jaya 47500, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
5
|
Therapeutic Vaccination in Head and Neck Squamous Cell Carcinoma—A Review. Vaccines (Basel) 2023; 11:vaccines11030634. [PMID: 36992219 DOI: 10.3390/vaccines11030634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Therapeutic vaccination is one of the most effective immunotherapeutic approaches, second only to immune checkpoint inhibitors (ICIs), which have already been approved for clinical use. Head and neck squamous cell carcinomas (HNSCCs) are heterogenous epithelial tumors of the upper aerodigestive tract, and a significant proportion of these tumors tend to exhibit unfavorable therapeutic responses to the existing treatment options. Comprehending the immunopathology of these tumors and choosing an appropriate immunotherapeutic maneuver seems to be a promising avenue for solving this problem. The current review provides a detailed overview of the strategies, targets, and candidates for therapeutic vaccination in HNSCC. The classical principle of inducing a potent, antigen-specific, cell-mediated cytotoxicity targeting a specific tumor antigen seems to be the most effective mechanism of therapeutic vaccination, particularly against the human papilloma virus positive subset of HNSCC. However, approaches such as countering the immunosuppressive tumor microenvironment of HNSCC and immune co-stimulatory mechanisms have also been explored recently, with encouraging results.
Collapse
|
6
|
Shimizu T, Matsuzaki T, Fukuda S, Yoshioka C, Shimazaki Y, Takese S, Yamanaka K, Nakae T, Ishibashi M, Hamamoto H, Ando H, Ishima Y, Ishida T. Ionic Liquid-Based Transcutaneous Peptide Antitumor Vaccine: Therapeutic Effect in a Mouse Tumor Model. AAPS J 2023; 25:27. [PMID: 36805860 DOI: 10.1208/s12248-023-00790-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Traditional vaccinations need to be injected with needles, and since some people have a strong aversion to needles, a needle-free alternative delivery system is important. In this study, we employed ionic liquids (ILs) for transcutaneous delivery of cancer antigen-derived peptides to obtain anticancer therapeutic effects in a needle-free manner. ILs successfully increased the in vitro skin permeability of a peptide from Wilms tumor 1 (WT1), one of the more promising cancer antigens, plus or minus an adjuvant, resiquimod (R848), a toll-like receptor 7 agonist. In vivo studies demonstrated that concomitant transcutaneous delivery of WT1 peptide and R848 by ILs induced WT1-specific cytotoxic T lymphocyte (CTL) in mice, resulting in tumor growth inhibition in Lewis lung carcinoma-bearing mice. Interestingly, administrating R848 in ILs before WT1 peptides in ILs increased tumor growth inhibition effects compared to co-administration of both. We found that the prior application of R848 increased the infiltration of leukocytes in the skin and that subsequent delivery of WT1 peptides was more likely to induce WT1-specific CTL. Furthermore, sequential immunization with IL-based formulations was applicable to different types of peptides and cancer models without induction of skin irritation. IL-based transcutaneous delivery of cancer antigen-derived peptides and adjuvants, either alone or together, could be a novel approach to needle-free cancer therapeutic vaccines.
Collapse
Affiliation(s)
- Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan.
| | - Takaaki Matsuzaki
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Shoichiro Fukuda
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Chihiro Yoshioka
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Yuna Shimazaki
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Shunsuke Takese
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Katsuhiro Yamanaka
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Takashi Nakae
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Masaki Ishibashi
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Hidetoshi Hamamoto
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan.
| |
Collapse
|
7
|
Oka Y. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732929220707160814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
9
|
Oka Y. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732912220324140726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Ueda Y, Usuki K, Fujita J, Matsumura I, Aotsuka N, Sekiguchi N, Nakazato T, Iwasaki H, Takahara‐Matsubara M, Sugimoto S, Goto M, Naoe T, Kizaki M, Miyazaki Y, Aakashi K. Phase 1/2 study evaluating the safety and efficacy of DSP-7888 dosing emulsion in myelodysplastic syndromes. Cancer Sci 2022; 113:1377-1392. [PMID: 34932235 PMCID: PMC8990724 DOI: 10.1111/cas.15245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022] Open
Abstract
DSP-7888 is an immunotherapeutic cancer vaccine derived from the Wilms' tumor gene 1 (WT1) protein. This phase 1/2 open-label study evaluated the safety and efficacy of DSP-7888 dosing emulsion in patients with myelodysplastic syndromes (MDS). DSP-7888 was administered intradermally (3.5 or 10.5 mg) every 2 weeks for 6 months and then every 2-4 weeks until lack of benefit. Twelve patients were treated in phase 1 (3.5 mg, n = 6; 10.5 mg, n = 6), with no dose-limiting toxicities reported. Thus, the 10.5 mg dose was selected as the recommended phase 2 dose, and 35 patients were treated in phase 2. Forty-seven patients received ≥1 dose of the study drug and comprised the safety analysis set. The most common adverse drug reaction (ADR) was injection site reactions (ISR; 91.5%). Grade 3 ISR were common (58.8%) in phase 1 but occurred less frequently in 2 (22.9%) following implementation of risk minimization strategies. Other common ADR were pyrexia (10.6%) and febrile neutropenia (8.5%). In the efficacy analysis set, comprising patients with higher-risk MDS after azacitidine failure in phases 1 and 2 (n = 42), the disease control rate was 19.0%, and the median overall survival (OS) was 8.6 (90% confidence interval [CI], 6.8-10.3) months. Median OS was 10.0 (90% CI, 7.6-11.4) months in patients with a WT1-specific immune response (IR; n = 33) versus 4.1 (90% CI, 2.3-8.1) months in those without a WT1-specific IR (n = 9; P = .0034). The acceptable safety and clinical activity findings observed support the continued development of DSP-7888 dosing emulsion.
Collapse
Affiliation(s)
- Yasunori Ueda
- Department of Hematology/OncologyKurashiki Central HospitalOkayamaJapan
| | - Kensuke Usuki
- Department of HematologyNTT Medical Center TokyoTokyoJapan
| | - Jiro Fujita
- Department of Hematology and OncologyOsaka University HospitalOsakaJapan
| | - Itaru Matsumura
- Department of Hematology and RheumatologyKindai University HospitalOsakaJapan
| | - Nobuyuki Aotsuka
- Department of Hematology OncologyJapanese Red Cross Narita HospitalChibaJapan
| | - Naohiro Sekiguchi
- Department of HematologyNational Hospital Organization Disaster Medical CenterTokyoJapan
| | - Tomonori Nakazato
- Department of HematologyYokohama Municipal Citizen’s HospitalKanagawaJapan
| | - Hiromi Iwasaki
- Department of HematologyNational Hospital Organization Kyushu Medical CenterFukuokaJapan
| | | | | | | | - Tomoki Naoe
- National Hospital Organization Nagoya Medical CenterAichiJapan
| | | | - Yasushi Miyazaki
- Department of HematologyAtomic Bomb Disease and Hibakusha Medicine UnitAtomic Bomb Disease InstituteNagasaki UniversityNagasakiJapan
| | - Koichi Aakashi
- Department of Medicine and Biosystemic Science Faculty of MedicineKyushu UniversityFukuokaJapan
| |
Collapse
|
11
|
Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. Int J Nanomedicine 2022; 17:869-900. [PMID: 35241913 PMCID: PMC8887913 DOI: 10.2147/ijn.s269986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs), such as HPV-16 and HPV-18, can induce cervical cancer in humans. The disease carries high morbidity and mortality among females worldwide. Inoculation with prophylactic HPV vaccines, such as Gardasil® or Cervarix®, is the predominant method of preventing cervical cancer in females 6 to 26 years of age. However, despite the availability of commercial prophylactic HPV vaccines, no therapeutic HPV vaccines to eliminate existing HPV infections have been approved. Peptide-based vaccines, which form one of the most potent vaccine platforms, have been broadly investigated to overcome this shortcoming. Peptide-based vaccines are especially effective in inducing cellular immune responses and eradicating tumor cells when combined with nanoscale adjuvant particles and delivery systems. This review summarizes progress in the development of peptide-based nanovaccines against HPV infection.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Correspondence: Waleed M Hussein, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia, Tel +61 7 3365 2782, Email
| |
Collapse
|
12
|
He X, Zhou S, Quinn B, Jahagirdar D, Ortega J, Long MD, Abrams SI, Lovell JF. An In Vivo Screen to Identify Short Peptide Mimotopes with Enhanced Antitumor Immunogenicity. Cancer Immunol Res 2022; 10:314-326. [PMID: 34992135 DOI: 10.1158/2326-6066.cir-21-0332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/23/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
Tumor-associated self-antigens are potential cancer vaccine targets but suffer from limited immunogenicity. There are examples of mutated, short self-peptides inducing epitope-specific CD8⁺ T cells more efficiently than the wild-type epitope, but current approaches cannot yet reliably identify such epitopes, which are referred to as enhanced mimotopes ("e-mimotopes"). Here, we present a generalized strategy to develop e-mimotopes, using the tyrosinase-related protein 2 (Trp2) peptide Trp2180-188, which is a murine major histocompatibility complex class I (MHC-I) epitope, as a test case. Using a vaccine adjuvant that induces peptide particle formation and strong cellular responses with nanogram antigen doses, a two-step method systematically identified e-mimotope candidates with murine immunization. First, position-scanning peptide micro libraries were generated in which each position of the wild-type epitope sequence was randomized. Randomization of only one specific residue of the Trp2 epitope increased antitumor immunogenicity. Second, all 20 amino acids were individually substituted and tested at that position, enabling the identification of two e-mimotopes with single amino-acid mutations. Despite similar MHC-I affinity compared to the wild-type epitope, e-mimotope immunization elicited improved Trp2-specific cytotoxic T-cell phenotypes and improved T-cell receptor affinity for both the e-mimotopes and the native epitope, resulting in better outcomes in multiple prophylactic and therapeutic tumor models. The screening method was also applied to other targets with other murine MHC-I restriction elements, including epitopes within glycoprotein 70 and Wilms' Tumor Gene 1, to identify additional e-mimotopes with enhanced potency.
Collapse
Affiliation(s)
- Xuedan He
- Biomedical Engineering, University at Buffalo, State University of New York
| | - Shiqi Zhou
- Biomedical Engineering, University at Buffalo, State University of New York
| | - Breandan Quinn
- Biomedical Engineering, University at Buffalo, State University of New York
| | | | | | - Mark D Long
- Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center
| | | | - Jonathan F Lovell
- Biomedical Engineering, University at Buffalo, State University of New York
| |
Collapse
|
13
|
Nishida S, Morimoto S, Oji Y, Morita S, Shirakata T, Enomoto T, Tsuboi A, Ueda Y, Yoshino K, Shouq A, Kanegae M, Ohno S, Fujiki F, Nakajima H, Nakae Y, Nakata J, Hosen N, Kumanogoh A, Oka Y, Kimura T, Sugiyama H. Cellular and Humoral Immune Responses Induced by an HLA Class I-restricted Peptide Cancer Vaccine Targeting WT1 Are Associated With Favorable Clinical Outcomes in Advanced Ovarian Cancer. J Immunother 2022; 45:56-66. [PMID: 34874330 PMCID: PMC8654282 DOI: 10.1097/cji.0000000000000405] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/22/2021] [Indexed: 11/25/2022]
Abstract
The HLA-A*24:02-restricted peptide vaccine targeting Wilms' tumor 1 (WT1) (WT1 vaccine) is a promising therapeutic strategy for ovarian cancer; however, its efficacy varies among patients. In this study, we analyzed WT1-specific immune responses in patients with advanced or recurrent ovarian cancer that was refractory to standard chemotherapies and their associations with clinical outcomes. In 25 patients, the WT1 vaccine was administered subcutaneously weekly for 3 months and biweekly thereafter until disease progression or severe adverse events. We assessed Wilms' tumor 1-specific cytotoxic T lymphocytes (WT1-CTLs) and Wilms' tumor 1 peptide-specific immunoglobulin G (WT1235-IgG). After vaccination, the percentage of tetramer high-avidity population of WT1-CTLs among CD8+ T lymphocytes (%tet-hi WT1-CTL) and the WT1235-IgG titer increased significantly, although the values were extremely low or below the limit of detection before vaccination (%tet-hi WT1-CTL: 0.003%-0.103%.; WT1235-IgG: <0.05-0.077 U/mL). Patients who had %tet-hi WT1-CTL of ≥0.25% (n=6) or WT1235-IgG of ≥0.10 U/mL (n=12) had a significantly longer progression-free survival than those of patients in the other groups. In addition, an increase in WT1235-IgG corresponded to a significantly longer progression-free survival (P=0.0496). In patients with systemic inflammation, as evidenced by elevated C-reactive protein levels, the induction of tet-hi WT1-CTL or WT1235-IgG was insufficient. Decreased serum albumin levels, multiple tumor lesions, poor performance status, and excess ascites negatively influenced the clinical effectiveness of the WT1 vaccine. In conclusion, the WT1 vaccine induced antigen-specific cellular and humoral immunity in patients with refractory ovarian cancer. Both %tet-hi WT1-CTL and WT1235-IgG levels are prognostic markers for the WT1 vaccine.
Collapse
Affiliation(s)
| | | | | | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto
| | | | - Takayuki Enomoto
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
- Department of Obstetrics and Gynecology, Niigata University Medical School, Niigata
| | | | - Yutaka Ueda
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
| | - Kiyoshi Yoshino
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, Kita-Kyushu, Fukuoka Prefecture
| | | | | | - Satoshi Ohno
- Cancer Immunotherapy
- Clinical Research Support Center, Shimane University Faculty of Medicine, Izumo, Shimane Prefecture, Japan
| | | | | | - Yoshiki Nakae
- Departments of Respiratory Medicine and Clinical Immunology
| | | | | | - Atsushi Kumanogoh
- Departments of Respiratory Medicine and Clinical Immunology
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka Prefecture
| | - Yoshihiro Oka
- Cancer Stem Cell Biology
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University
| | - Tadashi Kimura
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
| | | |
Collapse
|
14
|
Yokota C, Nakata J, Takano K, Nakajima H, Hayashibara H, Minagawa H, Chiba Y, Hirayama R, Kijima N, Kinoshita M, Hashii Y, Tsuboi A, Oka Y, Oji Y, Kumanogoh A, Sugiyama H, Kagawa N, Kishima H. Distinct difference in tumor-infiltrating immune cells between Wilms' tumor gene 1 peptide vaccine and anti-programmed cell death-1 antibody therapies. Neurooncol Adv 2021; 3:vdab091. [PMID: 34355173 PMCID: PMC8331049 DOI: 10.1093/noajnl/vdab091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Wilms’ tumor gene 1 (WT1) peptide vaccine and anti-programmed cell death-1 (anti-PD-1) antibody are expected as immunotherapies to improve the clinical outcome of glioblastoma. The aims of this study were to clarify how each immunotherapy affects tumor-infiltrating immune cells (TIIs) and to determine whether the combination of these two therapies could synergistically work. Methods Mice were transplanted with WT1 and programmed cell death-ligand 1 doubly expressing glioblastoma cells into brain followed by treatment with WT1 peptide vaccine, anti-PD-1 antibody, or the combination of the two, and survival of each therapy was compared. CD45+ cells were positively selected as TIIs from the brains with tumors, and TIIs were compared between WT1 peptide vaccine and anti-PD-1 antibody therapies. Results Most mice seemed to be cured by the combination therapy with WT1 peptide vaccine and anti-PD-1 antibody, which was much better survival than each monotherapy. A large number of CD4+ T cells, CD8+ T cells, and NK cells including WT1-specific CD8+ and CD4+ T cells infiltrated into the glioblastoma in WT1 peptide vaccine-treated mice. On the other hand, the number of TIIs did not increase, but instead PD-1 molecule expression was decreased on the majority of the tumor-infiltrating CD8+ T cells in the anti-PD-1 antibody-treated mice. Conclusion Our results clearly demonstrated that WT1 peptide vaccine and anti-PD-1 antibody therapies worked in the different steps of cancer-immunity cycle and that the combination of the two therapies could work synergistically against glioblastoma.
Collapse
Affiliation(s)
- Chisato Yokota
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Nakata
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koji Takano
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiromu Hayashibara
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hikaru Minagawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuyoshi Chiba
- Department of Neurosurgery, Osaka Women's and Children's Hospital, Osaka, Izumi, Japan
| | - Ryuichi Hirayama
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiko Hashii
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Immunopathology, WP1 Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Immunopathology, WP1 Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
15
|
Gibadullin R, Randall CJ, Sidney J, Sette A, Gellman SH. Backbone Modifications of HLA-A2-Restricted Antigens Induce Diverse Binding and T Cell Activation Outcomes. J Am Chem Soc 2021; 143:6470-6481. [PMID: 33881854 DOI: 10.1021/jacs.1c00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CD8+ T cells express T cell receptors (TCRs) that recognize short peptide antigens in the context of major histocompatibility class I (MHC I) molecules. This recognition process produces an array of cytokine-mediated signals that help to govern immunological responses. Design of biostable MHC I peptide vaccines containing unnatural subunits is desirable, and synthetic antigens in which a native α-amino acid residue is replaced by a homologous β-amino acid residue (native side chain but extended backbone) might be useful in this regard. We have evaluated the impact of α-to-β backbone modification at a single site on T cell-mediated recognition of six clinically important viral and tumor-associated antigens bound to an MHC I. Effects of this modification on MHC I affinity and T cell activation were measured. Many of these modifications diminish or prevent T cell response. However, a number of α/β-peptide antigens were found to mimic the activity of natural antigens or to enhance maximal T cell response, as measured by interferon-γ release. Results from this broad exploratory study advance our understanding of immunological responses to antigens bearing unnatural modifications and suggest that α/β-peptides could be a source of potent and proteolytically stable variants of native antigens.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Caleb J Randall
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States.,Department of Medicine, University of California, San Diego, California 92093, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Oka Y. Meet Our Editorial Board Member. Curr Med Chem 2021. [DOI: 10.2174/092986732812210419080443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Abstract
Dendritic cell (DC) vaccines are a safe and effective means of inducing tumor immune responses, however, a better understanding of DC biology is required in order to realize their full potential. Recent advances in DC biology have identified a crucial role for cDC1 in tumor immune responses, making this DC subset an attractive vaccine target. Human cDC1 exclusively express the C-type-lectin-like receptor, CLEC9A (DNGR-1) that plays an important role in cross-presentation, the process by which effective CD8+ T cell responses are generated. CLEC9A antibodies deliver antigen specifically to cDC1 for the induction of humoral, CD4+ and CD8+ T cell responses and are therefore promising candidates to develop as vaccines for infectious diseases and cancer. The development of human CLEC9A antibodies now facilitates their application as vaccines for cancer immunotherapy. Here we discuss the recent advances in CLEC9A targeting antibodies as vaccines for cancer and their translation to the clinic.
Collapse
Affiliation(s)
- M H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - K J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
18
|
Development of Therapeutic Vaccines for Ovarian Cancer. Vaccines (Basel) 2020; 8:vaccines8040657. [PMID: 33167428 PMCID: PMC7711901 DOI: 10.3390/vaccines8040657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer remains the deadliest of all gynecologic malignancies. Our expanding knowledge of ovarian cancer immunology has allowed the development of therapies that generate systemic anti-tumor immune responses. Current immunotherapeutic strategies include immune checkpoint blockade, cellular therapies, and cancer vaccines. Vaccine-based therapies are designed to induce both adaptive and innate immune responses directed against ovarian cancer associated antigens. Tumor-specific effector cells, in particular cytotoxic T cells, are activated to recognize and eliminate ovarian cancer cells. Vaccines for ovarian cancer have been studied in various clinical trials over the last three decades. Despite evidence of vaccine-induced humoral and cellular immune responses, the majority of vaccines have not shown significant anti-tumor efficacy. Recently, improved vaccine development using dendritic cells or synthetic platforms for antigen presentation have shown promising clinical benefits in patients with ovarian cancer. In this review, we provide an overview of therapeutic vaccine development in ovarian cancer, discuss proposed mechanisms of action, and summarize the current clinical experience.
Collapse
|
19
|
Hein KZ, Yao S, Fu S. Wilms' Tumor 1 (WT1): The Vaccine for Cancer. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:165-171. [PMID: 35665371 PMCID: PMC9165440 DOI: 10.36401/jipo-20-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/26/2020] [Indexed: 06/15/2023]
Abstract
Vaccines have been used to fight and protect against infectious diseases for centuries. With the emergence of immunotherapy in cancer treatment, researchers began investigating vaccines that could be used against cancer, especially against tumors that are resistant to conservative chemotherapy, surgery, and radiotherapy. The Wilms' tumor 1 (WT1) protein is immunogenic, has been detected in almost all types of malignancies, and has played a significant role in prognosis and disease monitoring. In this article, we review recent developments in the treatment of various types of cancers with the WT1 cancer vaccine; we also discuss theoretic considerations of various therapeutic approaches, which were based on preclinical and clinical data.
Collapse
Affiliation(s)
- Kyaw Zaw Hein
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuyang Yao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Ogasawara M, Miyashita M, Yamagishi Y, Ota S. Immunotherapy employing dendritic cell vaccination for patients with advanced or relapsed esophageal cancer. Ther Apher Dial 2020; 24:482-491. [PMID: 32524770 DOI: 10.1111/1744-9987.13542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The prognosis of patients with advanced esophageal cancer is poor despite the recent introduction of immune checkpoint inhibitors. In the present pilot study, we have evaluated the safety and the feasibility of Wilms' tumor 1 (WT1) peptide-pulsed dendritic cell (DC) vaccination in combination with OK-432 in patients with advanced or relapsed esophageal cancer. Fifteen eligible patients were enrolled. No severe adverse events related to the vaccinations were observed. Objective response rate and disease control rate were 20% and 40%, respectively. Median progression free survival and overall survival was 4.1 months and 7.0 months, respectively. WT1 peptide-pulsed DC vaccinations augmented WT1specific immunity, which might be related to clinical outcome. These results indicate that DC-based immunotherapy combined with a conventional chemotherapy is safe and feasible for patients in advanced stage of esophageal cancer.
Collapse
Affiliation(s)
- Masahiro Ogasawara
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan.,Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Mamiko Miyashita
- Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Yuka Yamagishi
- Cell Processing Center, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
21
|
Pearson FE, Tullett KM, Leal-Rojas IM, Haigh OL, Masterman KA, Walpole C, Bridgeman JS, McLaren JE, Ladell K, Miners K, Llewellyn-Lacey S, Price DA, Tunger A, Schmitz M, Miles JJ, Lahoud MH, Radford KJ. Human CLEC9A antibodies deliver Wilms' tumor 1 (WT1) antigen to CD141 + dendritic cells to activate naïve and memory WT1-specific CD8 + T cells. Clin Transl Immunology 2020; 9:e1141. [PMID: 32547743 PMCID: PMC7292901 DOI: 10.1002/cti2.1141] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Vaccines that prime Wilms' tumor 1 (WT1)‐specific CD8+ T cells are attractive cancer immunotherapies. However, immunogenicity and clinical response rates may be enhanced by delivering WT1 to CD141+ dendritic cells (DCs). The C‐type lectin‐like receptor CLEC9A is expressed exclusively by CD141+ DCs and regulates CD8+ T‐cell responses. We developed a new vaccine comprising a human anti‐CLEC9A antibody fused to WT1 and investigated its capacity to target human CD141+ DCs and activate naïve and memory WT1‐specific CD8+ T cells. Methods WT1 was genetically fused to antibodies specific for human CLEC9A, DEC‐205 or β‐galactosidase (untargeted control). Activation of WT1‐specific CD8+ T‐cell lines following cross‐presentation by CD141+ DCs was quantified by IFNγ ELISPOT. Humanised mice reconstituted with human immune cell subsets, including a repertoire of naïve WT1‐specific CD8+ T cells, were used to investigate naïve WT1‐specific CD8+ T‐cell priming. Results The CLEC9A‐WT1 vaccine promoted cross‐presentation of WT1 epitopes to CD8+ T cells and mediated priming of naïve CD8+ T cells more effectively than the DEC‐205‐WT1 and untargeted control‐WT1 vaccines. Conclusions Delivery of WT1 to CD141+ DCs via CLEC9A stimulates CD8+ T cells more potently than either untargeted delivery or widespread delivery to all Ag‐presenting cells via DEC‐205, suggesting that cross‐presentation by CD141+ DCs is sufficient for effective CD8+ T‐cell priming in humans. The CLEC9A‐WT1 vaccine is a promising candidate immunotherapy for malignancies that express WT1.
Collapse
Affiliation(s)
- Frances E Pearson
- Cancer Immunotherapies Laboratory Mater Research Institute - The University of Queensland Translational Research Institute Woolloongabba Australia 4102 Australia
| | - Kirsteen M Tullett
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton VIC Australia
| | - Ingrid M Leal-Rojas
- Cancer Immunotherapies Laboratory Mater Research Institute - The University of Queensland Translational Research Institute Woolloongabba Australia 4102 Australia
| | - Oscar L Haigh
- Cancer Immunotherapies Laboratory Mater Research Institute - The University of Queensland Translational Research Institute Woolloongabba Australia 4102 Australia
| | - Kelly-Anne Masterman
- Cancer Immunotherapies Laboratory Mater Research Institute - The University of Queensland Translational Research Institute Woolloongabba Australia 4102 Australia
| | - Carina Walpole
- Cancer Immunotherapies Laboratory Mater Research Institute - The University of Queensland Translational Research Institute Woolloongabba Australia 4102 Australia
| | - John S Bridgeman
- Division of Infection and Immunity Cardiff University School of Medicine Cardiff UK
| | - James E McLaren
- Division of Infection and Immunity Cardiff University School of Medicine Cardiff UK
| | - Kristin Ladell
- Division of Infection and Immunity Cardiff University School of Medicine Cardiff UK
| | - Kelly Miners
- Division of Infection and Immunity Cardiff University School of Medicine Cardiff UK
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity Cardiff University School of Medicine Cardiff UK
| | - David A Price
- Division of Infection and Immunity Cardiff University School of Medicine Cardiff UK.,Systems Immunity Research Institute Cardiff University School of Medicine Cardiff UK
| | - Antje Tunger
- Institute of Immunology Faculty of Medicine Carl Gustav Carus Technische Universistät Dresden Dresden Germany
| | - Marc Schmitz
- Institute of Immunology Faculty of Medicine Carl Gustav Carus Technische Universistät Dresden Dresden Germany.,National Center for Tumor Diseases University Hospital Carl Gustav Carus Technische Universistät Dresden Dresden Germany.,German Cancer Consortium (DKTK) Dresden Germany.,German Cancer Research Center (DKFZ) Heidelberg Germany
| | - John J Miles
- Australian Institute of Health and Medical Research James Cook University Cairns QLD Australia
| | - Mireille H Lahoud
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton VIC Australia
| | - Kristen J Radford
- Cancer Immunotherapies Laboratory Mater Research Institute - The University of Queensland Translational Research Institute Woolloongabba Australia 4102 Australia
| |
Collapse
|
22
|
Ogasawara M, Miyashita M, Yamagishi Y, Ota S. Phase I/II Pilot Study of Wilms' Tumor 1 Peptide-Pulsed Dendritic Cell Vaccination Combined With Conventional Chemotherapy in Patients With Head and Neck Cancer. Ther Apher Dial 2019; 23:279-288. [PMID: 31033141 DOI: 10.1111/1744-9987.12831] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/25/2019] [Indexed: 11/30/2022]
Abstract
The prognosis of metastatic or relapsed head and neck squamous cell carcinoma (HNSCC) remains poor despite the introduction of immune checkpoint blockade agents. We aimed to investigate the safety and the feasibility of a vaccination with Wilms' tumor 1 peptide-loaded dendritic cells (DCs) and OK-432 adjuvant combined with conventional chemotherapy. Eleven eligible patients with metastatic or relapsed HNSCC were enrolled. No severe adverse events related to a vaccination were observed. Five patients had durable stable disease and six other patients had disease progression after DC vaccination. Median progression-free survival and overall survival was 6.4 months and 12.1 months, respectively. DC vaccination augmented Wilms' tumor 1-specific immunity which might be related to clinical outcome. These results indicate that DC-based immunotherapy combined with a conventional chemotherapy is safe and feasible for patients in advanced stage of HNSCC.
Collapse
Affiliation(s)
- Masahiro Ogasawara
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan.,Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Mamiko Miyashita
- Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Yuka Yamagishi
- Cell Processing Center, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
23
|
The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. Blood 2019; 133:550-565. [DOI: 10.1182/blood-2018-07-866830] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/01/2018] [Indexed: 12/30/2022] Open
Abstract
Abstract
Antileukemia immunity plays an important role in disease control and maintenance of tyrosine kinase inhibitor (TKI)-free remission in chronic myeloid leukemia (CML). Thus, antigen-specific immunotherapy holds promise for strengthening immune control in CML but requires the identification of CML-associated targets. In this study, we used a mass spectrometry–based approach to identify naturally presented HLA class I– and class II–restricted peptides in primary CML samples. Comparative HLA ligandome profiling using a comprehensive dataset of different hematological benign specimens and samples from CML patients in deep molecular remission delineated a panel of novel frequently presented CML-exclusive peptides. These nonmutated target antigens are of particular relevance because our extensive data-mining approach suggests the absence of naturally presented BCR-ABL– and ABL-BCR–derived HLA-restricted peptides and the lack of frequent tumor-exclusive presentation of known cancer/testis and leukemia-associated antigens. Functional characterization revealed spontaneous T-cell responses against the newly identified CML-associated peptides in CML patient samples and their ability to induce multifunctional and cytotoxic antigen-specific T cells de novo in samples from healthy volunteers and CML patients. Thus, these antigens are prime candidates for T-cell–based immunotherapeutic approaches that may prolong TKI-free survival and even mediate cure of CML patients.
Collapse
|
24
|
Antigenic Targets for the Immunotherapy of Acute Myeloid Leukaemia. J Clin Med 2019; 8:jcm8020134. [PMID: 30678059 PMCID: PMC6406328 DOI: 10.3390/jcm8020134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/10/2019] [Accepted: 01/20/2019] [Indexed: 12/18/2022] Open
Abstract
One of the most promising approaches to preventing relapse is the stimulation of the body’s own immune system to kill residual cancer cells after conventional therapy has destroyed the bulk of the tumour. In acute myeloid leukaemia (AML), the high frequency with which patients achieve first remission, and the diffuse nature of the disease throughout the periphery, makes immunotherapy particularly appealing following induction and consolidation therapy, using chemotherapy, and where possible stem cell transplantation. Immunotherapy could be used to remove residual disease, including leukaemic stem cells from the farthest recesses of the body, reducing, if not eliminating, the prospect of relapse. The identification of novel antigens that exist at disease presentation and can act as targets for immunotherapy have also proved useful in helping us to gain a better understand of the biology that belies AML. It appears that there is an additional function of leukaemia associated antigens as biomarkers of disease state and survival. Here, we discuss these findings.
Collapse
|
25
|
Young JS, Dayani F, Morshed RA, Okada H, Aghi MK. Immunotherapy for High Grade Gliomas: A Clinical Update and Practical Considerations for Neurosurgeons. World Neurosurg 2019; 124:397-409. [PMID: 30677574 PMCID: PMC6642850 DOI: 10.1016/j.wneu.2018.12.222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
The current standard of care for patients with high grade gliomas includes surgical resection, chemotherapy, and radiation; but even still the majority of patients experience disease progression and succumb to their illness within a few years of diagnosis. Immunotherapy, which stimulates an anti-tumor immune response, has been revolutionary in the treatment of some hematological and solid malignancies, generating substantial excitement for its potential for patients with glioblastoma. The most commonly used immunotherapies include dendritic cell and peptide vaccines, checkpoint inhibitors, and adoptive T cell therapy. However, to date, the preclinical success of these approaches against high-grade glioma models has not been replicated in human clinical trials. Moreover, the complex response to these biologically active treatments can complicate management decisions, and the neurosurgical oncology community needs to be actively involved in and up to date on the use of these agents in high grade glioma patients. In this review, we discuss the challenges immunotherapy faces for high grade gliomas, the completed and ongoing clinical trials for the major immunotherapies, and the nuances in management for patients being actively treated with one of these agents.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Fara Dayani
- School of Medicine, University of California, San Francisco
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
26
|
Acar T, Pelit Arayıcı P, Ucar B, Karahan M, Mustafaeva Z. Synthesis, Characterization and Lipophilicity Study of Brucella abortus’ Immunogenic Peptide Sequence That Can Be Used in the Future Vaccination Studies. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9739-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Ogasawara M, Miyashita M, Ota S. Vaccination of Urological Cancer Patients With WT1 Peptide-Pulsed Dendritic Cells in Combination With Molecular Targeted Therapy or Conventional Chemotherapy Induces Immunological and Clinical Responses. Ther Apher Dial 2018; 22:266-277. [PMID: 29851270 DOI: 10.1111/1744-9987.12694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 02/01/2023]
Abstract
The prognosis of metastatic or relapsed renal cell carcinoma (RCC) or bladder cancer (BC) remains poor despite the introduction of immune checkpoint blockade agents. We aimed to investigate the safety and the feasibility of a vaccination with WT1 peptide-loaded dendritic cells (DCs) and OK-432 adjuvant combined with molecular targeted therapy or conventional chemotherapy. Five eligible patients with metastatic or relapsed RCC and five eligible patients with BC were enrolled. No severe adverse events related to a vaccination were observed. Seven patients with RCC or non-muscle invasive BC had durable stable disease and three other patients had disease progression after DC vaccination. DC vaccination augmented WT1 specific immunity and the reduction of regulatory T cells which might be related to clinical outcome. These results indicate that DC-based immunotherapy combined with a molecular targeted therapy or a conventional chemotherapy is safe and feasible for patients in advanced stage of RCC or BC.
Collapse
Affiliation(s)
- Masahiro Ogasawara
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan.,Institute for Artificial Organs, Transplantation and Gene Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Mamiko Miyashita
- Institute for Artificial Organs, Transplantation and Gene Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
28
|
Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 2018; 11:8. [PMID: 29329556 PMCID: PMC5767051 DOI: 10.1186/s13045-017-0552-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022] Open
Abstract
Malignant cells have the capacity to rapidly grow exponentially and spread in part by suppressing, evading, and exploiting the host immune system. Immunotherapy is a form of oncologic treatment directed towards enhancing the host immune system against cancer. In recent years, manipulation of immune checkpoints or pathways has emerged as an important and effective form of immunotherapy. Agents that target cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1 (PD-L1) are the most widely studied and recognized. Immunotherapy, however, extends beyond immune checkpoint therapy by using new molecules such as chimeric monoclonal antibodies and antibody drug conjugates that target malignant cells and promote their destruction. Genetically modified T cells expressing chimeric antigen receptors are able to recognize specific antigens on cancer cells and subsequently activate the immune system. Native or genetically modified viruses with oncolytic activity are of great interest as, besides destroying malignant cells, they can increase anti-tumor activity in response to the release of new antigens and danger signals as a result of infection and tumor cell lysis. Vaccines are also being explored, either in the form of autologous or allogenic tumor peptide antigens, genetically modified dendritic cells that express tumor peptides, or even in the use of RNA, DNA, bacteria, or virus as vectors of specific tumor markers. Most of these agents are yet under development, but they promise to be important options to boost the host immune system to control and eliminate malignancy. In this review, we have provided detailed discussion of different forms of immunotherapy agents other than checkpoint-modifying drugs. The specific focus of this manuscript is to include first-in-human phase I and phase I/II clinical trials intended to allow the identification of those drugs that most likely will continue to develop and possibly join the immunotherapeutic arsenal in a near future.
Collapse
Affiliation(s)
| | - Aixa E Soyano
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Bhagirathbhai Dholaria
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Current address: Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | - Yanyan Lou
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
29
|
Ueda Y, Ogura M, Miyakoshi S, Suzuki T, Heike Y, Tagashira S, Tsuchiya S, Ohyashiki K, Miyazaki Y. Phase 1/2 study of the WT1 peptide cancer vaccine WT4869 in patients with myelodysplastic syndrome. Cancer Sci 2017; 108:2445-2453. [PMID: 28949050 PMCID: PMC5715294 DOI: 10.1111/cas.13409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
WT4869 is a synthetic peptide vaccine derived from the Wilms’ tumor gene 1 (WT1) protein. This phase 1/2 open‐label study evaluated the safety and efficacy of WT4869, and biomarkers for response, in patients with myelodysplastic syndrome. WT4869 (5–1200 μg/dose) was administered intradermally every 2 weeks, according to a 3 + 3 dose‐escalation method in higher‐risk (International Prognostic Scoring System score ≥1.5) or lower‐risk (score <1.5) red blood cell transfusion‐dependent patients with myelodysplastic syndrome. Twenty‐six patients were enrolled and treated (median age, 75 years; range, 32 to 89). The most common adverse event was injection site reaction (61.5%). Main grade 3 or 4 adverse events were neutropenia (30.8%), febrile neutropenia, pneumonia, elevated blood creatine phosphokinase levels and hypoalbuminemia (all 7.7%). Dose‐limiting toxicities occurred in 1 patient in the 50 μg/dose cohort (pyrexia, muscle hemorrhage and hypoalbuminemia) and 1 patient in the 400 μg/dose cohort (pneumonitis); however, the maximum tolerated dose could not be determined from this trial. The overall response rate was 18.2%, the disease control rate was 59.1% and median overall survival was 64.71 weeks (95% confidence interval: 50.29, 142.86) as assessed by the Kaplan–Meier method. Subgroup analysis of azacitidine‐refractory patients with higher‐risk myelodysplastic syndrome (11 patients) showed median overall survival of 55.71 weeks (approximately 13 months). WT1‐specific cytotoxic T lymphocyte induction was observed in 11 of 25 evaluable patients. WT4869 was well tolerated in patients with myelodysplastic syndrome and preliminary data suggest that WT4869 is efficacious. This trial was registered at www.clinicaltrials.jp as JapicCTI‐101374.
Collapse
Affiliation(s)
- Yasunori Ueda
- Department of Hematology/Oncology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Michinori Ogura
- Department of Hematology and Oncology, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Shigesaburo Miyakoshi
- Department of Hematology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Hematology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yuji Heike
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | | |
Collapse
|
30
|
Sakai K, Shimodaira S, Maejima S, Sano K, Higuchi Y, Koya T, Sugiyama H, Hongo K. Clinical effect and immunological response in patients with advanced malignant glioma treated with WT1-pulsed dendritic cell-based immunotherapy: A report of two cases. INTERDISCIPLINARY NEUROSURGERY 2017. [DOI: 10.1016/j.inat.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
31
|
Kitagawa K, Oda T, Saito H, Araki A, Gonoi R, Shigemura K, Hashii Y, Katayama T, Fujisawa M, Shirakawa T. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein. Cancer Immunol Immunother 2017; 66:787-798. [PMID: 28299466 PMCID: PMC11028424 DOI: 10.1007/s00262-017-1984-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/05/2017] [Indexed: 01/12/2023]
Abstract
Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4+T and CD8+T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.
Collapse
Affiliation(s)
- Koichi Kitagawa
- Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tsugumi Oda
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hiroki Saito
- Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ayame Araki
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Reina Gonoi
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Katsumi Shigemura
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Toshiro Shirakawa
- Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
32
|
Nakata J, Nakae Y, Kawakami M, Morimoto S, Motooka D, Hosen N, Fujiki F, Nakajima H, Hasegawa K, Nishida S, Tsuboi A, Oji Y, Oka Y, Kumanogoh A, Sugiyama H. Wilms tumour 1 peptide vaccine as a cure-oriented post-chemotherapy strategy for patients with acute myeloid leukaemia at high risk of relapse. Br J Haematol 2017; 182:287-290. [PMID: 28542830 DOI: 10.1111/bjh.14768] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Nakata
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Nakae
- Department of Haematology, Kitano Hospital, Osaka, Japan
| | | | - Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Centre, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Naoki Hosen
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kana Hasegawa
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sumiyuki Nishida
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Oji
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshihiro Oka
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Immunopathology, Immunology Frontier Research Centre (World Premier International Research Centre), Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Disease, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Immunopathology, Immunology Frontier Research Centre (World Premier International Research Centre), Osaka University, Suita, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
33
|
Kobayashi Y, Sakura T, Miyawaki S, Toga K, Sogo S, Heike Y. A new peptide vaccine OCV-501: in vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer Immunol Immunother 2017; 66:851-863. [PMID: 28321480 PMCID: PMC5489634 DOI: 10.1007/s00262-017-1981-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/28/2017] [Indexed: 11/24/2022]
Abstract
Wilms’ tumor 1 (WT1) is a promising target of new immunotherapies for acute myeloid leukemia (AML) as well as for other cancers. OCV-501 is a helper peptide derived from the WT1 protein. OCV-501 induced OCV-501-specific Type 1 T-helper (Th1) responses dose-dependently and stimulated helper activity of the specific Th1 cells in peripheral blood mononuclear cells from healthy donors. OCV-501 also enhanced the increase in WT1-killer peptide-specific cytotoxic T lymphocytes. OCV-501 stimulated the OCV-501-specific Th1 clones in an HLA class-II restricted manner and formed a complex with HLA class-II protein. OCV-501-specific Th1 clones demonstrated significant OCV-501-specific cytolytic activity against OCV-501-pulsed B-lymphoblastoid cell line cells. Based on the pre-clinical results, phase 1 clinical trial was conducted. The result of this trial suggested that the subcutaneous administration of OCV-501 once weekly for 4 weeks at doses of 0.3, 1, and 3 mg in older patients with AML during complete remission was safe and well tolerated. The maximum tolerated dose was considered to be ≥3 mg. Of the nine subjects enrolled, neither relapse nor blast cells were observed during the study. Immunological responses were observed in OCV-501-specific delayed-type hypersensitivity test. This trial was registered at http://www.clinicaltrials.gov as NCT 01440920.
Collapse
Affiliation(s)
- Yukio Kobayashi
- Department of Hematology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Toru Sakura
- Leukemia Research Center, Saiseikai Maebashi Hospital, Maebashi, Gunma, 371-0821, Japan
| | - Shuichi Miyawaki
- Division of Hematology, Tokyo Metropolitan Ohtsuka Hospital, Toshima-ku, Tokyo, 170-8476, Japan
| | - Kazuyuki Toga
- Department of Clinical Research and Development, Headquarters of New Product Evaluation and Development, Otsuka Pharmaceutical Co., Ltd., Minato-ku, Tokyo, 108-8242, Japan
| | - Shinji Sogo
- Microbiological Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan
| | - Yuji Heike
- Immunotherapy and Cell Therapy Service, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan.,Translational Medicine Department, Phase 1 Group, Exploratory Oncology, Research & Clinical Trial Center, National Cancer Center Hospital, 5-1-1 Teukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
34
|
Understanding CD8 + T-cell responses toward the native and alternate HLA-A*02:01-restricted WT1 epitope. Clin Transl Immunology 2017; 6:e134. [PMID: 28435676 PMCID: PMC5382434 DOI: 10.1038/cti.2017.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 01/09/2023] Open
Abstract
The Wilms' tumor 1 (WT1) antigen is expressed in solid and hematological malignancies, but not healthy tissues, making it a promising target for cancer immunotherapies. Immunodominant WT1 epitopes, the native HLA-A2/WT1126-134 (RMFPNAPYL) (HLA-A2/RMFPNAPYL epitope (WT1A)) and its modified variant YMFPNAPYL (HLA-A2/YMFPNAPYL epitope (WT1B)), can induce WT1-specific CD8+ T cells, although WT1B is more stably bound to HLA-A*02:01. Here, to further determine the benefits of those two targets, we assessed the naive precursor frequencies; immunogenicity and cross-reactivity of CD8+ T cells directed toward these two WT1 epitopes. Ex vivo naive WT1A- and WT1B-specific CD8+ T cells were detected in healthy HLA-A*02:01+ individuals with comparable precursor frequencies (1 in 105–106) to other naive CD8+ T-cell pools (for example, A2/HIV-Gag77-85), but as expected, ~100 × lower than those found in memory populations (influenza, A2/M158-66; EBV, A2/BMLF1280-288). Importantly, only WT1A-specific naive precursors were detected in HLA-A2.1 mice. To further assess the immunogenicity and recruitment of CD8+ T cells responding to WT1A and WT1B, we immunized HLA-A2.1 mice with either peptide. WT1A immunization elicited numerically higher CD8+ T-cell responses to the native tumor epitope following re-stimulation, although both regimens produced functionally similar responses toward WT1A via cytokine analysis and CD107a expression. Interestingly, however, WT1B immunization generated cross-reactive CD8+ T-cell responses to WT1A and could be further expanded by WT1A peptide revealing two distinct populations of single- and cross-reactive WT1A+CD8+ T cells with unique T-cell receptor-αβ gene signatures. Therefore, although both epitopes are immunogenic, the clinical benefits of WT1B vaccination remains debatable and perhaps both peptides may have separate clinical benefits as treatment targets.
Collapse
|
35
|
|
36
|
Syndecan-4 as a biomarker to predict clinical outcome for glioblastoma multiforme treated with WT1 peptide vaccine. Future Sci OA 2016; 2:FSO96. [PMID: 28116121 PMCID: PMC5241910 DOI: 10.4155/fsoa-2015-0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022] Open
Abstract
AIM In cancer immunotherapy, biomarkers are important for identification of responsive patients. This study was aimed to find biomarkers that predict clinical outcome of WT1 peptide vaccination. MATERIALS & METHODS Candidate genes that were expressed differentially between long- and short-term survivors were identified by cDNA microarray analysis of peripheral blood mononuclear cells that were extracted from 30 glioblastoma patients (discovery set) prior to vaccination and validated by quantitative RT-PCR using discovery set and different 23 patients (validation set). RESULTS SDC-4 mRNA expression levels distinguished between the long- and short-term survivors: 1-year survival rates were 64.0 and 18.5% in SDC4-low and -high patients, respectively. CONCLUSION SDC-4 is a novel predictive biomarker for the efficacy of WT1 peptide vaccine.
Collapse
|
37
|
Sawada A, Inoue M, Kondo O, Yamada-Nakata K, Ishihara T, Kuwae Y, Nishikawa M, Ammori Y, Tsuboi A, Oji Y, Koyama-Sato M, Oka Y, Yasui M, Sugiyama H, Kawa K. Feasibility of Cancer Immunotherapy with WT1 Peptide Vaccination for Solid and Hematological Malignancies in Children. Pediatr Blood Cancer 2016; 63:234-41. [PMID: 26469989 DOI: 10.1002/pbc.25792] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND Advances in cancer immunotherapy in the pediatric field are needed in order to improve the prognosis of children with malignancies. We conducted a prospective phase I/II study of WT1 peptide vaccination for children with relapsed or refractory malignancies. METHODS The main eligibility criteria were affected tissues or leukemic cells expressing the WT1 gene, and patients (and donors for allogeneic hematopoietic stem cell transplantation) having HLA-A*24:02. Vaccination using the WT1 peptide (CYTWNQMNL), which was modified for higher affinity to this HLA-type molecule with the adjuvant Montanide ISA51, was performed weekly 12 times. RESULTS Twenty-six patients were enrolled and 13 (50.0%) completed the vaccination 12 times. Evidence for the induction of WT1-specific cytotoxic T-lymphocyte (CTL) responses without severe systemic side effects was obtained. Two out of 12 patients with bulky disease exhibited a transient clinical effect (one mixed response and one stable disease), three out of six patients with minimal residual disease achieved transient molecular remission, and five out of eight patients without a detectable level of the molecular marker, but with a high risk of relapse, had the best outcome of long-term continuous complete remission. CONCLUSIONS WT1 vaccination is a safe immunotherapy and induced WT1-specific CTL responses in children; however, as a single agent, vaccination only provided patients in remission, but with a high risk of relapse, with "long-term benefits" in the context of its use for relapse prevention. WT1 peptide-based treatments in combination with other modalities, such as anti-tumor drugs or immunomodulating agents, need to be planned.
Collapse
Affiliation(s)
- Akihisa Sawada
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Masami Inoue
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Osamu Kondo
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Kayo Yamada-Nakata
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Takashi Ishihara
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yuko Kuwae
- Department of Pathology and Clinical Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan.,Department of Diagnostic Pathology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masanori Nishikawa
- Department of Radiology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yasuhiro Ammori
- Pharmacy, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Oji
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Maho Koyama-Sato
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yoshihiro Oka
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yasui
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keisei Kawa
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| |
Collapse
|
38
|
Nishida S, Sugiyama H. Immunotherapy Targeting WT1: Designing a Protocol for WT1 Peptide-Based Cancer Vaccine. Methods Mol Biol 2016; 1467:221-232. [PMID: 27417973 DOI: 10.1007/978-1-4939-4023-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is much current excitement about the potential of cancer immunotherapy. WT1 is high on the National Cancer Institute's list of priority antigens for immune therapy. In this chapter we describe a protocol for a clinical trial using a WT1 peptide-based cancer vaccine.
Collapse
Affiliation(s)
- Sumiyuki Nishida
- Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, 2-2, Yamada-Oka, Suita-City, Osaka, 565-0871, Japan.
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
39
|
Chae YK, Chung SY, Davis AA, Carneiro BA, Chandra S, Kaplan J, Kalyan A, Giles FJ. Adenoid cystic carcinoma: current therapy and potential therapeutic advances based on genomic profiling. Oncotarget 2015; 6:37117-34. [PMID: 26359351 PMCID: PMC4741919 DOI: 10.18632/oncotarget.5076] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is a rare cancer with high potential for recurrence and metastasis. Efficacy of current treatment options, particularly for advanced disease, is very limited. Recent whole genome and exome sequencing has dramatically improved our understanding of ACC pathogenesis. A balanced translocation resulting in the MYB-NFIB fusion gene appears to be a fundamental signature of ACC. In addition, sequencing has identified a number of other driver genes mutated in downstream pathways common to other well-studied cancers. Overexpression of oncogenic proteins involved in cell growth, adhesion, cell cycle regulation, and angiogenesis are also present in ACC. Collectively, studies have identified genes and proteins for targeted, mechanism-based, therapies based on tumor phenotypes, as opposed to nonspecific cytotoxic agents. In addition, although few studies in ACC currently exist, immunotherapy may also hold promise. Better genetic understanding will enable treatment with novel targeted agents and initial exploration of immune-based therapies with the goal of improving outcomes for patients with ACC.
Collapse
Affiliation(s)
- Young Kwang Chae
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Su Yun Chung
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew A. Davis
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benedito A. Carneiro
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sunandana Chandra
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Kaplan
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aparna Kalyan
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis J. Giles
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
40
|
Sakai K, Shimodaira S, Maejima S, Udagawa N, Sano K, Higuchi Y, Koya T, Ochiai T, Koide M, Uehara S, Nakamura M, Sugiyama H, Yonemitsu Y, Okamoto M, Hongo K. Dendritic cell-based immunotherapy targeting Wilms' tumor 1 in patients with recurrent malignant glioma. J Neurosurg 2015; 123:989-97. [PMID: 26252465 DOI: 10.3171/2015.1.jns141554] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECT Dendritic cell (DC)-based vaccination is considered a potentially effective therapy against advanced cancer. The authors conducted a Phase I study to investigate the safety and immunomonitoring of Wilms' tumor 1 (WT1)-pulsed DC vaccination therapy for patients with relapsed malignant glioma. METHODS WT1-pulsed and/or autologous tumor lysate-pulsed DC vaccination therapy was performed in patients with relapsed malignant gliomas. Approximately 1 × 10(7) to 2 × 10(7) pulsed DCs loaded with WT1 peptide antigen and/or tumor lysate were intradermally injected into the axillary areas with OK-432, a streptococcal preparation, at 2-week intervals for at least 5-7 sessions (1 course) during an individual chemotherapy regimen. RESULTS Ten patients (3 men, 7 women; age range 24-64 years [median 39 years]) with the following tumors were enrolled: glioblastoma (6), anaplastic astrocytoma (2), anaplastic oligoastrocytoma (1), and anaplastic oligodendroglioma (1). Modified WT1 peptide-pulsed DC vaccine was administered to 7 patients, tumor lysate-pulsed DC vaccine to 2 patients, and both tumor lysate-pulsed and WT1-pulsed DC vaccine to 1 patient. The clinical response was stable disease in 5 patients with WT1-pulsed DC vaccination. In 2 of 5 patients with stable disease, neurological findings improved, and MR images showed tumor shrinkage. No serious adverse events occurred except Grade 1-2 erythema at the injection sites. WT1 tetramer analysis detected WT1-reactive cytotoxic T cells after vaccination in patients treated with WT1-pulsed therapy. Positivity for skin reaction at the injection sites was 80% (8 of 10 patients) after the first session, and positivity remained for these 8 patients after the final session. CONCLUSIONS This study of WT1-pulsed DC vaccination therapy demonstrated safety, immunogenicity, and feasibility in the management of relapsed malignant gliomas.
Collapse
Affiliation(s)
- Keiichi Sakai
- Department of Neurosurgery, Shinshu University School of Medicine;,Department of Neurosurgery, National Hospital Organization, Shinshu Ueda Medical Center, Ueda, Nagano, Japan
| | | | | | | | - Kenji Sano
- Department of Laboratory, Shinshu University Hospital, Matsumoto
| | - Yumiko Higuchi
- Center for Advanced Cellular Therapy, Shinshu University Hospital, Matsumoto
| | - Terutsugu Koya
- Center for Advanced Cellular Therapy, Shinshu University Hospital, Matsumoto
| | | | | | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University Hospital, Shiojiri
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University Hospital, Shiojiri
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Osaka
| | - Yoshikazu Yonemitsu
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka
| | - Masato Okamoto
- Department of Advanced Immunotherapeutics, Kitasato University School of Pharmacy, Minato-ku, Tokyo; and
| | - Kazuhiro Hongo
- Department of Neurosurgery, Shinshu University School of Medicine
| |
Collapse
|
41
|
Khalili S, Rahbar MR, Dezfulian MH, Jahangiri A. In silico analyses of Wilms׳ tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J Theor Biol 2015; 379:66-78. [DOI: 10.1016/j.jtbi.2015.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/25/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023]
|
42
|
Nakae Y, Oka Y, Fujiki F, Morimoto S, Kamiya T, Takashima S, Nakata J, Nishida S, Nakajima H, Hosen N, Tsuboi A, Kyo T, Oji Y, Mizuguchi K, Kumanogoh A, Sugiyama H. Two distinct effector memory cell populations of WT1 (Wilms' tumor gene 1)-specific cytotoxic T lymphocytes in acute myeloid leukemia patients. Cancer Immunol Immunother 2015; 64:791-804. [PMID: 25835542 PMCID: PMC11028643 DOI: 10.1007/s00262-015-1683-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/14/2015] [Indexed: 10/23/2022]
Abstract
Wilms' tumor gene 1 (WT1) protein is a promising tumor-associated antigen for cancer immunotherapy. We have been performing WT1 peptide vaccination with good clinical responses in over 750 patients with leukemia or solid cancers. In this study, we generated single-cell gene-expression profiles of the effector memory (EM) subset of WT1-specific cytotoxic T lymphocytes (CTLs) in peripheral blood of nine acute myeloid leukemia patients treated with WT1 peptide vaccine, in order to discriminate responders (WT1 mRNA levels in peripheral blood decreased to undetectable levels, decreased but stayed at abnormal levels, were stable at undetectable levels, or remained unchanged from the initial abnormal levels more than 6 months after WT1 vaccination) from non-responders (leukemic blast cells and/or WT1 mRNA levels increased relative to the initial state within 6 months of WT1 vaccination) prior to WT1 vaccination. Cluster and principal component analyses performed using 83 genes did not discriminate between responders and non-responders prior to WT1 vaccination. However, these analyses revealed that EM subset of WT1-specific CTLs could be divided into two groups: the "activated" and "quiescent" states; in responders, EM subset of the CTLs shifted to the "quiescent" state, whereas in non-responders, those shifted to the "activated" state following WT1 vaccination. These results demonstrate for the first time the existence of two distinct EM states, each of which was characteristic of responders or non-responders, of WT1-specific CTLs in AML patients, and raises the possibility of using advanced gene-expression profile analysis to clearly discriminate between responders and non-responders prior to WT1 vaccination.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Female
- Gene Expression Profiling
- Humans
- Immunologic Memory/immunology
- Immunotherapy/methods
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Principal Component Analysis
- RNA, Messenger/blood
- RNA, Messenger/genetics
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- WT1 Proteins/genetics
- WT1 Proteins/immunology
Collapse
Affiliation(s)
- Yoshiki Nakae
- Departments of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yoshihiro Oka
- Departments of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
- Department of Immunopathology, Immunology Frontier Research Center (World Premier International Research Center), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Soyoko Morimoto
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Toshio Kamiya
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Satoshi Takashima
- Departments of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Jun Nakata
- Department of Cancer Immunotherapy, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Sumiyuki Nishida
- Departments of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Naoki Hosen
- Department of Cancer Stem Cell Biology, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Taiichi Kyo
- Department of Hematology, Hiroshima Red Cross and Atomic Bomb Survivor Hospital, 1-9-6 Sendamachi, Nakaku, Hiroshima-City, Hiroshima 730-0052 Japan
| | - Yusuke Oji
- Department of Cancer Stem Cell Biology, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Kenji Mizuguchi
- National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085 Japan
| | - Atsushi Kumanogoh
- Departments of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
- Department of Immunopathology, Immunology Frontier Research Center (World Premier International Research Center), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
43
|
The Wilms' tumour suppressor Wt1 is a major regulator of tumour angiogenesis and progression. Nat Commun 2014; 5:5852. [PMID: 25510679 DOI: 10.1038/ncomms6852] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis, activation of metastasis and avoidance of immune destruction are important for cancer progression. These biological capabilities are, apart from cancer cells, mediated by different cell types, including endothelial, haematopoietic progenitor and myeloid-derived suppressor cells. We show here that all these cell types frequently express the Wilms' tumour suppressor Wt1, which transcriptionally controls expression of Pecam-1 (CD31) and c-kit (CD117). Inducible conditional knockout of Wt1 in endothelial, haematopoietic and myeloid-derived suppressor cells is sufficient to cause regression of tumour vascularization and an enhanced immune response, leading to decreased metastasis, regression of established tumours and enhanced survival. Thus, Wt1 is an important regulator of cancer growth via modulation of tumour vascularization, immune response and metastasis formation.
Collapse
|
44
|
Smith SN, Wang Y, Baylon JL, Singh NK, Baker BM, Tajkhorshid E, Kranz DM. Changing the peptide specificity of a human T-cell receptor by directed evolution. Nat Commun 2014; 5:5223. [PMID: 25376839 PMCID: PMC4225554 DOI: 10.1038/ncomms6223] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 11/09/2022] Open
Abstract
Binding of a T-cell receptor (TCR) to a peptide/major histocompatibility complex is the key interaction involved in antigen specificity of T cells. The recognition involves up to six complementarity determining regions (CDR) of the TCR. Efforts to examine the structural basis of these interactions and to exploit them in adoptive T-cell therapies has required the isolation of specific T-cell clones and their clonotypic TCRs. Here we describe a strategy using in vitro-directed evolution of a single TCR to change its peptide specificity, thereby avoiding the need to isolate T-cell clones. The human TCR A6, which recognizes the viral peptide Tax/HLA-A2, was converted to TCR variants that recognized the cancer peptide MART1/HLA-A2. Mutational studies and molecular dynamics simulations identified CDR residues that were predicted to be important in the specificity switch. Thus, in vitro engineering strategies alone can be used to discover TCRs with desired specificities.
Collapse
Affiliation(s)
- Sheena N. Smith
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
| | - Yuhang Wang
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - Javier L. Baylon
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - Nishant K. Singh
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 1234 Notre Dame Avenue, South Bend, IN 46557, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 1234 Notre Dame Avenue, South Bend, IN 46557, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - David M. Kranz
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
| |
Collapse
|
45
|
Wu C, Wang Y, Xia Y, He S, Wang Z, Chen Y, Wu C, Shu Y, Jiang J. Wilms' tumor 1 enhances Cisplatin-resistance of advanced NSCLC. FEBS Lett 2014; 588:4566-72. [PMID: 25447528 DOI: 10.1016/j.febslet.2014.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/19/2014] [Accepted: 10/22/2014] [Indexed: 01/07/2023]
Abstract
Wilms' tumor 1 (WT1) is an oncogene that has been correlated with tumor progression, bad prognosis and chemo-resistance in Non-Small-Cell lung cancer (NSCLC). Here, we found that WT1 expression is significantly higher in NSCLCs than in benign controls, and that Cisplatin-resistant patients display a notable increase in WT1 expression following relapse. In vitro, WT1 levels were associated with the IC50 of NSCLC cells and increased along with treatment time and dose of Cisplatin. Furthermore, WT1 enhanced Major Vault Protein (MVP) transcription via binding to its promoter. Therefore, WT1 may be a potential therapeutic target for solving resistance.
Collapse
Affiliation(s)
- Chen Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213000, People's Republic of China
| | - Yonggong Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yang Xia
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Shaohua He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zhiqiang Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213000, People's Republic of China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213000, People's Republic of China.
| |
Collapse
|
46
|
El Maï M, Wagner KD, Michiels JF, Ambrosetti D, Borderie A, Destree S, Renault V, Djerbi N, Giraud-Panis MJ, Gilson E, Wagner N. The Telomeric Protein TRF2 Regulates Angiogenesis by Binding and Activating the PDGFRβ Promoter. Cell Rep 2014; 9:1047-60. [PMID: 25437559 DOI: 10.1016/j.celrep.2014.09.038] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/26/2014] [Accepted: 09/19/2014] [Indexed: 12/19/2022] Open
Abstract
Telomeric repeat binding factor 2 (TRF2), which plays a central role in telomere capping, is frequently increased in human tumors. We reveal here that TRF2 is expressed in the vasculature of most human cancer types, where it colocalizes with the Wilms' tumor suppressor WT1. We further show that TRF2 is a transcriptional target of WT1 and is required for proliferation, migration, and tube formation of endothelial cells. These angiogenic effects of TRF2 are uncoupled from its function in telomere capping. Instead, TRF2 binds and transactivates the promoter of the angiogenic tyrosine kinase platelet-derived growth factor receptor β (PDGFRβ). These findings reveal an unexpected role of TRF2 in neoangiogenesis and delineate a distinct function of TRF2 as a transcriptional regulator.
Collapse
Affiliation(s)
- Mounir El Maï
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France
| | - Kay-Dietrich Wagner
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France
| | - Jean-François Michiels
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France; Department of Pathology, Le Centre Hospitalier Universitaire de Nice, 06107 Nice, France
| | - Damien Ambrosetti
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France; Department of Pathology, Le Centre Hospitalier Universitaire de Nice, 06107 Nice, France
| | - Arnaud Borderie
- Department of Pathology, Le Centre Hospitalier Universitaire de Nice, 06107 Nice, France
| | - Sandrine Destree
- Department of Pathology, Le Centre Hospitalier Universitaire de Nice, 06107 Nice, France
| | - Valerie Renault
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France
| | - Nadir Djerbi
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France
| | - Marie-Josèphe Giraud-Panis
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France
| | - Eric Gilson
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France; Department of Medical Genetics, Le Centre Hospitalier Universitaire de Nice, 06107 Nice, France.
| | - Nicole Wagner
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France.
| |
Collapse
|
47
|
Keating GL, Reid HM, Eivers SB, Mulvaney EP, Kinsella BT. Transcriptional regulation of the human thromboxane A2 receptor gene by Wilms' tumor (WT)1 and hypermethylated in cancer (HIC) 1 in prostate and breast cancers. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:476-92. [PMID: 24747176 DOI: 10.1016/j.bbagrm.2014.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 01/17/2023]
Abstract
The prostanoid thromboxane (TX) A(2) plays a central role in hemostasis and is increasingly implicated in neoplastic disease, including prostate and breast cancers. In humans, TXA(2) signals through the TPα and TPβ isoforms of the T prostanoid receptor, two structurally related receptors transcriptionally regulated by distinct promoters, Prm1 and Prm3, respectively, within the TP gene. Focusing on TPα, the current study investigated its expression and transcriptional regulation through Prm1 in prostate and breast cancers. Expression of TPα correlated with increasing prostate and breast tissue tumor grade while the TXA(2) mimetic U46619 promoted both proliferation and migration of the respective prostate (PC3) and breast (MCF-7 and MDA-MD-231) derived-carcinoma cell lines. Through 5' deletional and genetic reporter analyses, several functional upstream repressor regions (URRs) were identified within Prm1 in PC3, MCF-7 and MDA-MB-231 cells while site-directed mutagenesis identified the tumor suppressors Wilms' tumor (WT)1 and hypermethylated in cancer (HIC) 1 as the trans-acting factors regulating those repressor regions. Chromatin immunoprecipitation (ChIP) studies confirmed that WT1 binds in vivo to multiple GC-enriched WT1 cis-elements within the URRs of Prm1 in PC3, MCF-7 and MDA-MB-231 cells. Furthermore, ChIP analyses established that HIC1 binds in vivo to the HIC1((b))cis-element within Prm1 in PC3 and MCF-7 cells but not in the MDA-MB-231 carcinoma line. Collectively, these data establish that WT1 and HIC1, both tumor suppressors implicated in prostate and breast cancers, transcriptionally repress TPα expression and thereby provide a strong genetic basis for understanding the role of TXA2 in the progression of certain human cancers.
Collapse
Affiliation(s)
- Garret L Keating
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Dublin 4, Ireland
| | - Helen M Reid
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Dublin 4, Ireland
| | - Sarah B Eivers
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Dublin 4, Ireland
| | - Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Dublin 4, Ireland.
| |
Collapse
|
48
|
WT1 Overexpression Affecting Clinical Outcome in Non-Hodgkin Lymphomas and Adult Acute Lymphoblastic Leukemia. Pathol Oncol Res 2013; 20:565-70. [DOI: 10.1007/s12253-013-9729-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/27/2013] [Indexed: 11/24/2022]
|
49
|
Kawano M, Morikawa K, Suda T, Ohno N, Matsushita S, Akatsuka T, Handa H, Matsui M. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants. Virology 2013; 448:159-67. [PMID: 24314646 DOI: 10.1016/j.virol.2013.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 07/30/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A*02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A*02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties.
Collapse
Affiliation(s)
- Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kang YJ, Zeng W, Song W, Reinhold B, Choi J, Brusic V, Yamashita T, Munshi A, Li C, Minvielle S, Anderson KC, Munshi N, Reinherz EL, Sasada T. Identification of human leucocyte antigen (HLA)-A*0201-restricted cytotoxic T lymphocyte epitopes derived from HLA-DOβ as a novel target for multiple myeloma. Br J Haematol 2013; 163:343-51. [PMID: 24032635 DOI: 10.1111/bjh.12544] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/19/2013] [Indexed: 01/08/2023]
Abstract
Despite the recent development of effective therapeutic agents against multiple myeloma (MM), new therapeutic approaches, including immunotherapies, remain to be developed. Here we identified novel human leucocyte antigen (HLA)-A*0201 (HLA-A2)-restricted cytotoxic T lymphocyte (CTL) epitopes from a B cell specific molecule HLA-DOβ (DOB) as a potential target for MM. By DNA microarray analysis, the HLA-DOB expression in MM cells was significantly higher than that in normal plasma cells. Twenty-five peptides were predicted to bind to HLA-A2 from the amino acid sequence of HLA-DOB. When screened for the immunogenicity in HLA-A2-transgenic mice immunized with HLA-DOB cDNA, 4 peptides were substantially immunogenic. By mass spectrometry analysis of peptides eluted from HLA-A2-immunoprecipitates of MM cell lines, only two epitopes, HLA-DOB232-240 (FLLGLIFLL) and HLA-DOB185-193 (VMLEMTPEL), were confirmed for their physical presence on cell surface. When healthy donor blood was repeatedly stimulated in vitro with these two peptides and assessed by antigen-specific γ-interferon secretion, HLA-DOB232-240 was more immunogenic than HLA-DOB185-193 . Additionally, the HLA-DOB232-240 -specific CTLs, but not the HLA-DOB185-193 -specific CTLs, displayed an major histocompatibility complex class I-restricted reactivity against MM cell lines expressing both HLA-A2 and HLA-DOB. Taken together, based on the physical presence on tumour cell surface and high immunogenicity, HLA-DOB232-240 might be useful for developing a novel immunotherapy against MM.
Collapse
Affiliation(s)
- Yoon Joong Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Biomedical Science, Jungwon University, Chungcheongbuk-do, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|