1
|
Velotti F, Bernini R. Hydroxytyrosol Interference with Inflammaging via Modulation of Inflammation and Autophagy. Nutrients 2023; 15:nu15071774. [PMID: 37049611 PMCID: PMC10096543 DOI: 10.3390/nu15071774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Inflammaging refers to a chronic, systemic, low-grade inflammation, driven by immune (mainly macrophages) and non-immune cells stimulated by endogenous/self, misplaced or altered molecules, belonging to physiological aging. This age-related inflammatory status is characterized by increased inflammation and decreased macroautophagy/autophagy (a degradation process that removes unnecessary or dysfunctional cell components). Inflammaging predisposes to age-related diseases, including obesity, type-2 diabetes, cancer, cardiovascular and neurodegenerative disorders, as well as vulnerability to infectious diseases and vaccine failure, representing thus a major target for anti-aging strategies. Phenolic compounds-found in extra-virgin olive oil (EVOO)-are well known for their beneficial effect on longevity. Among them, hydroxytyrosol (HTyr) appears to greatly contribute to healthy aging by its documented potent antioxidant activity. In addition, HTyr can modulate inflammation and autophagy, thus possibly counteracting and reducing inflammaging. In this review, we reference the literature on pure HTyr as a modulatory agent of inflammation and autophagy, in order to highlight its possible interference with inflammaging. This HTyr-mediated activity might contribute to healthy aging and delay the development or progression of diseases related to aging.
Collapse
Affiliation(s)
- Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
2
|
Chen Y, Xiao L, Xu J, Wang J, Yu Z, Zhao K, Zhang H, Cheng S, Sharma S, Liao A, Liu C. Recent insight into autophagy and immunity at the maternal-fetal interface. J Reprod Immunol 2023; 155:103781. [PMID: 36463798 DOI: 10.1016/j.jri.2022.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Autophagy is a lysosomal degradation pathway that supports metabolic adaptation and energy cycling. It is essential for cell homeostasis, differentiation, development, and survival. Recent studies have shown that autophagy could influence immune responses by regulating immune cell functions. Reciprocally, immune cells strongly influence autophagy. Immune cells at the maternal-fetal interface are thought to play essential roles in pregnancy. Here, we review the induction of autophagy at the maternal-fetal interface and its role in decidualization and placental development. Additionally, we emphasize the role of autophagy in the immune microenvironment at the maternal-fetal interface, including innate immunity, adaptive immunity, and immune tolerance molecules. It also suggests new research directions and prospects.
Collapse
Affiliation(s)
- Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Jingming Wang
- Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Zhiquan Yu
- Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Shibin Cheng
- Department of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| |
Collapse
|
3
|
Lahner E, Dilaghi E, Cingolani S, Pivetta G, Dottori L, Esposito G, Marzinotto I, Lampasona V, Buzzetti R, Annibale B. Gender-sex differences in autoimmune atrophic gastritis. Transl Res 2022; 248:1-10. [PMID: 35470008 DOI: 10.1016/j.trsl.2022.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
Gender-sex differences in autoimmune diseases are gaining increasing attention due to their effects on prevalence and clinical features. Data on gender-sex differences in autoimmune atrophic gastritis (AAG), a chronic not-self-limiting inflammatory condition characterized by corpus-oxyntic mucosa atrophy sparing the antrum, are lacking. This study aimed to assess possible gender-sex differences of clinical, serological, histological, and genetic features in AAG patients. Cross-sectional study on 435 patients with histological-AAG, stratified according to female-male gender. In subsets of patients, serum gastric-autoantibodies against intrinsic-factor (IFA) and parietal-cells (PCA) by luminescent-immunoprecipitation-system (LIPS) (n = 81) and of HLA-DRB1-genotyping (n = 89) were available and stratified according to sex. Female AAG-patients were preponderant: 69.2%vs30.8%, P < 0.0001(ratio 2.2:1). Females were more frequently PCA and/or IFA-positive than males (90.9%vs73.1%, P = 0.0361). HLA-DRB1*06-alleles were significantly more frequent in females [30%vs4%, P = 0.01, OR 10.1(95%CI 1.3-80.4); HLA-DRB1*04-alleles were more frequent and HLA-DRB1*03 and *05-alleles less frequent in females without reaching statistical significance. At logistic regression, iron-deficiency-anemia [OR 3.6(95%CI 1.9-7.0)], body-mass-index <25m2/kg [OR 3.1(95%CI 1.7-5.6)], autoimmune-thyroid-disease [OR 2.5(95%CI 1.4-4.5), and dyspepsia [OR 2.4(95%CI 1.4-4.3) were significantly associated to females. Body-mass-index>25m2/kg [OR 3.2(95%CI1.8-5.6)], absence of autoimmune-thyroid-disease [OR 2.3(95%CI 1.3-4.2)] and dyspepsia [OR 2.1(95%CI 1.2-3.7)], smoking habit [OR 1.8(95%CI 1.1-3.1)], and pernicious-anemia [OR 1.7(95%CI 1.0-3.0)], were significantly associated to males. AAG was preponderant in women who showed stronger autoimmune serological responsiveness and different HLA-DRB1 association. AAG showed differential clinical profiles in female and male patients occurring mainly in normal weight, dyspeptic women with iron-deficiency anemia and autoimmune thyroid disease, but in overweight male smokers with pernicious anemia. Stratification for sex and gender should be considered in future genetic, immunological, and clinical studies on autoimmune atrophic gastritis.
Collapse
Affiliation(s)
- Edith Lahner
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, School of Medicine, University Sapienza, Rome, Italy.
| | - Emanuele Dilaghi
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, School of Medicine, University Sapienza, Rome, Italy
| | - Sophia Cingolani
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, School of Medicine, University Sapienza, Rome, Italy
| | - Giulia Pivetta
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, School of Medicine, University Sapienza, Rome, Italy
| | - Ludovica Dottori
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, School of Medicine, University Sapienza, Rome, Italy
| | - Gianluca Esposito
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, School of Medicine, University Sapienza, Rome, Italy
| | - Ilaria Marzinotto
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Bruno Annibale
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University Sapienza, Rome, Italy
| |
Collapse
|
4
|
Panda S, Swain SK, Sahu BP, Sarangi R. Gene expression and involvement of signaling pathways during host-pathogen interplay in Orientia tsutsugamushi infection. 3 Biotech 2022; 12:180. [PMID: 35860421 PMCID: PMC9295102 DOI: 10.1007/s13205-022-03239-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
Scrub typhus is a neglected tropical disease that affects one-third of the world’s population. The disease is caused by Orientia tsutsugamushi (OT), an obligate intracellular Gram-negative bacterium. OT efficiently escapes from the endosomal pathway after entering the host cell and replicates inside cytosol. OT infection promotes cellular autophagy, the autonomous defense mechanism unlike other bacteria. This study has discussed the bacterial invasion process through the extracellular matrix and the immune response activated by the bacterium within the hosts. Furthermore, we have emphasized the importance of extracellular matrix and their cross-talk with the immune cells, such as, macrophages, neutrophils, and dendritic cells followed by their inflammatory response. We have also put an insight into the host factors associated with signaling pathways during scrub typhus disease with a special focus on the OT-induced stress response, autophagy, apoptosis, and innate immunity. Multiple cytokines and chemokines play a significant role in activating different immune-related signaling pathways. Due to the presence of high antigenic diversity among strains, the signaling pathways during the host–pathogen interplay of OT with its host is very complicated. Thus, it hinders to mitigate the severity of the pandemic occurred by the respective pathogen. Our investigation will provide a useful guide to better understand the virulence and physiology of this intracellular pathogen which will lead towards a better therapeutic diagnosis and vaccine development.
Collapse
Affiliation(s)
- Subhasmita Panda
- Department of Pediatrics, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, Odisha 751003 India
| | - Subrat Kumar Swain
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, Odisha 751003 India
| | - Basanta Pravas Sahu
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552 India
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, Odisha 751003 India
| |
Collapse
|
5
|
Wang M, Qi Y, Cao Y, Zhang X, Wang Y, Liu Q, Zhang J, Zhou G, Ai Y, Wei S, Wang L, Liu G, Lian Z, Han H. Domain fusion TLR2-4 enhances the autophagy-dependent clearance of Staphylococcus aureus in the genetic engineering goat. eLife 2022; 11:78044. [PMID: 35762728 PMCID: PMC9239677 DOI: 10.7554/elife.78044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus infections pose a potential threat to livestock production and public health. A novel strategy is needed to control S. aureus infections due to its adaptive evolution to antibiotics. Autophagy plays a key role in degrading bacteria for innate immune cells. In order to promote S. aureus clearance via Toll-like receptor (TLR)-induced autophagy pathway, the domain fusion TLR2-4 with the extracellular domain of TLR2, specific recognizing S. aureus, and transmembrane and intracellular domains of TLR4 is assembled, then the goat expressing TLR2-4 is generated. TLR2-4 substantially augments the removal of S. aureus within macrophages by elevating autophagy level. Phosphorylated JNK and ERK1/2 promote LC3-puncta in TLR2-4 macrophages during S. aureus-induced autophagy via MyD88 mediated the TAK1 signaling cascade. Meantime, the TRIF-dependent TBK1-TFEB-OPTN signaling is involved in TLR2-4-triggered autophagy after S. aureus challenge. Moreover, the transcript of ATG5 and ATG12 is significantly increased via cAMP-PKA-NF-κB signaling, which facilitates S. aureus-induced autophagy in TLR2-4 macrophages. Overall, the novel receptor TLR2-4 enhances the autophagy-dependent clearance of S. aureus in macrophages via TAK1/TBK1-JNK/ERK, TBK1-TFEB-OPTN, and cAMP-PKA-NF-κB-ATGs signaling pathways, which provide an alternative approach for resistant against S. aureus infection.
Collapse
Affiliation(s)
- Mengyao Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Qi
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yutao Cao
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest Agriculture and Forest University, Shaanxi, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jinlong Zhang
- Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yue Ai
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shao Wei
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linli Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
7
|
Lee MR, Kim JE, Park JJ, Choi JY, Song BR, Choi YW, Kim DS, Kim KM, Song HK, Hwang DY. Protective role of fermented mulberry leave extract in LPS‑induced inflammation and autophagy of RAW264.7 macrophage cells. Mol Med Rep 2020; 22:4685-4695. [PMID: 33174019 PMCID: PMC7646855 DOI: 10.3892/mmr.2020.11563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Mulberry leaves have antioxidant activity and anti‑inflammatory effects in several types of cells. However, the efficacy of mulberry leaves fermented with Cordyceps militaris remains unknown. Therefore, the present study aimed to investigate whether the ethanol extracts of mulberry leaves fermented with C. militaris (EMfC) can prevent lipopolysaccharide (LPS)‑induced inflammation and autophagy in macrophages. To achieve this, RAW264.7 cells pretreated with three different dose of EMfCs were subsequently stimulated with LPS, and examined for alterations in the regulatory factors of inflammatory responses and key parameters of the autophagy signaling pathway. EMfC treatment inhibited the generation of reactive oxidative species; however, significant activity was observed for 2,2‑diphenyl‑1‑picrylhydrazyl (DPPH) radical scavenging (IC50=579.6703 mg/ml). Most regulatory factors in inflammatory responses were significantly inhibited following treatment with EMfC, without any significant cellular toxicity. EMfC‑treated groups exhibited marked suppression of nitrogen oxide (NO) levels, mRNA expression levels of iNOS/COX‑2, levels of all inflammatory cytokines (TNF‑α, IL‑1β and IL‑6) and phosphorylation of MAPK members, as well as recovery of cell cycle progression. Furthermore, similar effects were observed in the LPS‑induced autophagy signaling pathway of RAW264.7 cells. The expression levels of microtubule‑associated protein 1A/1B‑light chain 3 (LC3) and Beclin exhibited a dose‑dependent decrease in the EMfC+LPS‑treated groups compared with in the Vehicle+LPS‑treated group, whereas the phosphorylation of PI3K and mTOR were enhanced in a dose‑dependent manner in the same groups. Overall, the results of the present study provide evidence that exposure to EMfC protects against LPS‑induced inflammation and autophagy in RAW264.7 cells. These results indicated that EMfC is a potential candidate for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Mi Rim Lee
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Jin Ju Park
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Jun Young Choi
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Bo Ram Song
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Life Sciences, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Dong-Seob Kim
- Department of Food Science and Technology, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyung Mi Kim
- Life Science Research Institute, Novarex Co., Ltd., Chungju 28126, Republic of Korea
| | - Hyun Keun Song
- Central Research Institute, Kinesciences Co., Seoul 02850, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
8
|
Kashiwagi K, Iizuka Y. Effect and underlying mechanisms of airborne particulate matter 2.5 (PM2.5) on cultured human corneal epithelial cells. Sci Rep 2020; 10:19516. [PMID: 33177636 PMCID: PMC7659009 DOI: 10.1038/s41598-020-76651-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022] Open
Abstract
Health problems caused by airborne particulate matter with a diameter less than 2.5 (PM2.5), especially in the respiratory system, have become a worldwide problem, but the influence and mechanisms of PM2.5 on the ocular surface have not been sufficiently elucidated. We investigated in vitro the onset and pathogenesis of corneal damage induced by PM2.5. Two types of PM2.5 samples originating from Beijing (designated #28) and the Gobi Desert (designated #30) were added to the culture medium of immortalized cultured human corneal epithelial cells (HCECs) to examine the effects on survival rates, autophagy, and proinflammatory cytokine production. Both types of PM2.5 significantly reduced the HCEC survival rate in a concentration-dependent manner by triggering autophagy. In particular, compared with #30, #28 induced much more severe damage in HCECs. Physical contact between PM2.5 and HCECs was not a primary contributor to PM2.5-induced HCEC damage. Among the 38 proinflammatory cytokines examined in this study, significant increases in the granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-6 levels and a significant reduction in the interleukin-8 level were detected in culture medium of PM2.5-exposed HCECs. Simultaneous addition of a GM-CSF inhibitor, suramin, alleviated the HCEC impairment induced by PM2.5. In conclusion, PM2.5 induces HCEC death by triggering autophagy. Some cytokines that are released from HCECs, including GM-CSF, may be involved in HCEC damage caused by PM2.5 exposure.
Collapse
Affiliation(s)
- Kenji Kashiwagi
- Department of Ophthalmology, University of Yamanashi, Chuo, Yamanashi, Japan.
| | - Yoko Iizuka
- Department of Ophthalmology, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
9
|
Daussy CF, Wodrich H. "Repair Me if You Can": Membrane Damage, Response, and Control from the Viral Perspective. Cells 2020; 9:cells9092042. [PMID: 32906744 PMCID: PMC7564661 DOI: 10.3390/cells9092042] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cells are constantly challenged by pathogens (bacteria, virus, and fungi), and protein aggregates or chemicals, which can provoke membrane damage at the plasma membrane or within the endo-lysosomal compartments. Detection of endo-lysosomal rupture depends on a family of sugar-binding lectins, known as galectins, which sense the abnormal exposure of glycans to the cytoplasm upon membrane damage. Galectins in conjunction with other factors orchestrate specific membrane damage responses such as the recruitment of the endosomal sorting complex required for transport (ESCRT) machinery to either repair damaged membranes or the activation of autophagy to remove membrane remnants. If not controlled, membrane damage causes the release of harmful components including protons, reactive oxygen species, or cathepsins that will elicit inflammation. In this review, we provide an overview of current knowledge on membrane damage and cellular responses. In particular, we focus on the endo-lysosomal damage triggered by non-enveloped viruses (such as adenovirus) and discuss viral strategies to control the cellular membrane damage response. Finally, we debate the link between autophagy and inflammation in this context and discuss the possibility that virus induced autophagy upon entry limits inflammation.
Collapse
|
10
|
Wang Z, Li C. Xenophagy in innate immunity: A battle between host and pathogen. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103693. [PMID: 32243873 DOI: 10.1016/j.dci.2020.103693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a fundamental bulk intracellular degradation and recycling process that directly eliminates intracellular microorganisms through "xenophagy" in various types of cells, especially in macrophages. Meanwhile, bacteria have evolved strategies and cellular self-defense mechanisms to prevent autophagosomal degradation and even attack the immune system of host. The lack of knowledge about the roles of autophagy in innate immunity severely limits our understanding of host defensive system and the development of farmed industry consisting of aquaculture. Increasing evidence in recent decades has shown the importance of autophagy. This review focuses on the triggering of xenophagy, targeting of invading pathogens to autophagosomes and elimination in the autophagolysosomes during pathogen infection. How the pathogen can escape from the xenophagy pathway was also discussed. Overall, we aim to reduce diseases and improve industrial production in aquaculture by providing theoretical and technical guidance on xenophagy.
Collapse
Affiliation(s)
- Zhenhui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
11
|
Zhao X, Jiang Y, Jiang T, Han X, Wang Y, Chen L, Feng X. Physiological and pathological regulation of autophagy in pregnancy. Arch Gynecol Obstet 2020; 302:293-303. [PMID: 32556514 DOI: 10.1007/s00404-020-05607-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
Abstract
Autophagy exists widely in eukaryotic cells and is regulated by a variety of molecular mechanisms. Its physiological functions include providing energy, maintaining cell homeostasis, and promoting apoptosis of abnormal cells. At present, the regulation of autophagy in tumor, degenerative disease, and cardiovascular disease has attracted much attention. Gradually, the role of autophagy in pregnancy tends to be valued. The previous literature has shown that autophagy can influence the occurrence and maintenance of pregnancy from three aspects: embryo (affecting the process of fertilization and embryonic development and the function of trophoblast cells), maternal (decidualization), and maternal-to-fetal immune crosstalk. Undoubtedly, abnormalities in autophagy levels are associated with a variety of pregnancy complications, such as preeclampsia, fetal growth restriction, and preterm delivery which have been proven by human, animal, and in vitro experiments. The regulation of autophagy is expected to be a target for the treatment of these pregnancy complications. This article reviews the research on autophagy, especially about its physiological and pathological regulation during pregnancy.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yuepeng Jiang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tianyue Jiang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xinyu Han
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Wang
- Department of First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Lu Chen
- Department of First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiaoling Feng
- Department of First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
12
|
Wang L, Tan Z, Zhang Y, Kady Keita N, Liu H, Zhang Y. ADAM12 silencing promotes cellular apoptosis by activating autophagy in choriocarcinoma cells. Int J Oncol 2020; 56:1162-1174. [PMID: 32319603 PMCID: PMC7115740 DOI: 10.3892/ijo.2020.5007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
ADAM metallopeptidase domain 12 (ADAM12) has been demonstrated to mediate cell proliferation and apoptosis resistance in several types of cancer cells. However, the effect of ADAM12 silencing on the proliferation and apoptosis of choriocarcinoma cells remains unknown. The present study revealed that ADAM12 silencing significantly inhibited cellular activity and proliferation in the human choriocarcinoma JEG3 cell line and increased the rate of apoptosis. In addition, ADAM12 silencing significantly increased the expression levels of the autophagy proteins microtubule-associated protein-light-chain 3 (LC3B) and autophagy related 5 (ATG5) and the fluorescence density of LC3B in JEG-3 cells. However, the suppression of autophagy by 3-methyladenine could block ADAM12 silencing-induced cellular apoptosis. ADAM12 silencing reduced the levels of the inflammatory factors interleukin-1β, interferon-γ and TNF-α, and inactivated nuclear p65-NF-κB and p-mTOR in JEG-3 cells. The downregulation of p-mTOR expression by ADAM12 silencing was rescued in 3-methyladenine-treated JEG-3 cells, indicating that mTOR might participate in the autophagy-mediated pro-apoptotic effect of ADAM12 silencing. In conclusion, ADAM12 silencing promoted cellular apoptosis in human choriocarcinoma JEG3 cells, which might be associated with autophagy and the mTOR response. These findings indicate that ADAM12 silencing might be a potential novel therapeutic target for choriocarcinoma.
Collapse
Affiliation(s)
- Lin Wang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhihui Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ying Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Nankoria Kady Keita
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Huining Liu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
13
|
Lan J, Zhang R, Yu H, Wang J, Xue W, Chen J, Lin S, Wang Y, Xie Z, Jiang S. Quantitative Proteomic Analysis Uncovers the Mediation of Endoplasmic Reticulum Stress-Induced Autophagy in DHAV-1-Infected DEF Cells. Int J Mol Sci 2019; 20:ijms20246160. [PMID: 31817666 PMCID: PMC6940786 DOI: 10.3390/ijms20246160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a tightly regulated catabolic process and is activated in cells in response to stress signals. Despite extensive study, the interplay between duck hepatitis A virus type 1 (DHAV-1) and the autophagy of host cells is not clear. In this study, we applied proteomics analysis to investigate the interaction mechanism between DHAV-1 and duck embryo fibroblast (DEF) cells. In total, 507 differentially expressed proteins (DEPs) were identified, with 171 upregulated proteins and 336 downregulated proteins. The protein expression level of heat shock proteins (Hsps) and their response to stimulus proteins and zinc finger proteins (ZFPs) were significantly increased while the same aspects of ribosome proteins declined. Bioinformatics analysis indicated that DEPs were mainly involved in the “response to stimulus”, the “defense response to virus”, and the “phagosome pathway”. Furthermore, Western blot results showed that the conversion of microtubule-associated protein 1 light chain 3-I (LC3-I) to the lipidation form of LC3-II increased, and the conversion rate decreased when DEF cells were processed with 4-phenylbutyrate (4-PBA). These findings indicated that DHAV-1 infection could cause endoplasmic reticulum (ER) stress-induced autophagy in DEF cells, and that ER stress was an important regulatory factor in the activation of autophagy. Our data provide a new clue regarding the host cell response to DHAV-1 and identify proteins involved in the DHAV-1 infection process or the ER stress-induced autophagy process.
Collapse
Affiliation(s)
- Jingjing Lan
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Ruihua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Honglei Yu
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Jingyu Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Wenxiang Xue
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Junhao Chen
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- College of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Shaoli Lin
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA;
| | - Yu Wang
- Department of Basic Medical Sciences, Taishan Medical College, Taian 271000, China;
| | - Zhijing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Shijin Jiang
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (H.Y.); (J.W.); (W.X.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
- Correspondence: ; Tel.: +86-538-8245799
| |
Collapse
|
14
|
Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK, Chaicumpa W. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells 2019; 8:674. [PMID: 31277291 PMCID: PMC6678135 DOI: 10.3390/cells8070674] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy (self-eating) is a conserved cellular degradation process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Autophagy dysfunction can have various pathological consequences, including tumor progression, pathogen hyper-virulence, and neurodegeneration. This review describes the mechanisms of autophagy and its associations with other cell death mechanisms, including apoptosis, necrosis, necroptosis, and autosis. Autophagy has both positive and negative roles in infection, cancer, neural development, metabolism, cardiovascular health, immunity, and iron homeostasis. Genetic defects in autophagy can have pathological consequences, such as static childhood encephalopathy with neurodegeneration in adulthood, Crohn's disease, hereditary spastic paraparesis, Danon disease, X-linked myopathy with excessive autophagy, and sporadic inclusion body myositis. Further studies on the process of autophagy in different microbial infections could help to design and develop novel therapeutic strategies against important pathogenic microbes. This review on the progress and prospects of autophagy research describes various activators and suppressors, which could be used to design novel intervention strategies against numerous diseases and develop therapeutic drugs to protect human and animal health.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu 600051, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh 281 001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, FL 33136, USA.
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
15
|
Casassa AF, Vanrell MC, Colombo MI, Gottlieb RA, Romano PS. Autophagy plays a protective role against Trypanosoma cruzi infection in mice. Virulence 2019; 10:151-165. [PMID: 30829115 PMCID: PMC6550547 DOI: 10.1080/21505594.2019.1584027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a catabolic pathway required for cellular and organism homeostasis. Autophagy participates in the innate and adaptive immune responses at different levels. Xenophagy is a class of selective autophagy that involves the elimination of intracellular pathogens. Trypanosoma cruzi is the causative agent of Chagas, a disease that affects 8 million individuals worldwide. Previously, our group has demonstrated that autophagy participates in the invasion of T. cruzi in non-phagocytic cells. In this work we have studied the involvement of autophagy in the development of T. cruzi infection in mice. Beclin-1 is a protein essential for autophagy, required for autophagosome biogenesis and maturation. We have performed an acute model of infection on the autophagic deficient Beclin-1 heterozygous knock-out mice (Bcln±) and compared to control Bcln+/+ animals. In addition, we have analyzed the infection process in both peritoneal cells and RAW macrophages. Our results have shown that the infection was more aggressive in the autophagy-deficient mice, which displayed higher numbers of parasitemia, heart´s parasitic nests and mortality rates. We have also found that peritoneal cells derived from Bcln± animals and RAW macrophages treated with autophagy inhibitors displayed higher levels of infection compared to controls. Interestingly, free cytosolic parasites recruited LC3 protein and other markers of xenophagy in control compared to autophagy-deficient cells. Taken together, these data suggest that autophagy plays a protective role against T. cruzi infection in mice, xenophagy being one of the processes activated as part of the repertoire of immune responses generated by the host.
Collapse
Affiliation(s)
- Ana Florencia Casassa
- a Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora- Instituto de Histología y Embriología "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina
| | - María Cristina Vanrell
- a Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora- Instituto de Histología y Embriología "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina.,b Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - María Isabel Colombo
- b Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina.,c Laboratorio: Mecanismos moleculares implicados en el tráfico vesicular y la vía autofágica Instituto de Histología y Embriología (IHEM) "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina
| | - Roberta A Gottlieb
- d Smidt Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Patricia Silvia Romano
- a Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora- Instituto de Histología y Embriología "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina.,b Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| |
Collapse
|
16
|
Tan DX. Aging: An evolutionary competition between host cells and mitochondria. Med Hypotheses 2019; 127:120-128. [PMID: 31088635 DOI: 10.1016/j.mehy.2019.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Here, a new theory of aging is proposed. This new theory is referred as the Host-Mitochondria Intracellular Innate Immune Theory of Aging (HMIIITA). The main point of this theory is that the aging is rooted from an evolutionary competition, that is, a never ending coevolutionary race between host cells and mitochondria. Mitochondria are the descendants of bacteria. The host cells will inevitably sense their bacterial origin, particularly their circular mtDNA. The host intracellular innate immune pressure (HIIIP) aims to eliminate mtDNA as more as possible while mitochondria have to adapt the HIIIP for survival. Co-evolution is required for both of them. From biological point of view, the larger, the mtDNA, the higher, the chance, it becomes the target of HIIIP. As a result, mitochondria have to reduce their mtDNA size via deletion. This process has last for 1.5-2 billion yeas and the result is that mitochondria have lost excessive 95% of their DNA. This mtDNA deletion is not associated with free radical attack but a unique trait acquired during evolution. In the postmitotic cells, the deletion is passively selected by the mitochondrial fission-fusion cycles. Eventually, the accumulation of deletion will significantly jeopardize the mitochondrial function. The dysfunctional mitochondria no longer provide sufficient ATP to support host cells' continuous demanding for growth. At this stage, the cell or the organism aging is inevitable.
Collapse
Affiliation(s)
- Dun-Xian Tan
- The Department of Cell System and Anatomy, The University of Texas, Health, San Antonio, TX 78229, USA.
| |
Collapse
|
17
|
Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci 2019; 20:E340. [PMID: 30650615 PMCID: PMC6359177 DOI: 10.3390/ijms20020340] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
Epidemiological data from the Center of Disease Control (CDC) and the World Health Organization (WHO) statistics in 2017 show that 10.0 million people around the world became sick with tuberculosis. Mycobacterium tuberculosis (MTB) is an intracellular parasite that mainly attacks macrophages and inhibits their apoptosis. It can become a long-term infection in humans, causing a series of pathological changes and clinical manifestations. In this review, we summarize innate immunity including the inhibition of antioxidants, the maturation and acidification of phagolysosomes and especially the apoptosis and autophagy of macrophages. Besides, we also elaborate on the adaptive immune response and the formation of granulomas. A thorough understanding of these escape mechanisms is of major importance for the prevention, diagnosis and treatment of tuberculosis.
Collapse
Affiliation(s)
- Weijie Zhai
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Fengjuan Wu
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Yiyuan Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Yurong Fu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China.
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
18
|
Chen YM, Chang CY, Chen HH, Hsieh CW, Tang KT, Yang MC, Lan JL, Chen DY. Association between autophagy and inflammation in patients with rheumatoid arthritis receiving biologic therapy. Arthritis Res Ther 2018; 20:268. [PMID: 30518408 PMCID: PMC6280483 DOI: 10.1186/s13075-018-1763-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023] Open
Abstract
Background Increasing evidence indicates a pathogenic role of deregulated autophagy in rheumatoid arthritis (RA). We examined the relationship between autophagy and inflammatory parameters in patients with RA receiving biologic therapy. Methods In 72 patients with RA and 20 healthy control subjects (HC), autophagosome levels were determined by the mean fluorescence intensity (MFI) of autophagosomotropic dye incorporated into circulating immune cells, and p62 expression levels in immune cells were measured by flow cytometry. We used immunoblotting to examine protein expression of LC3-II and p62 in peripheral blood mononuclear cells. Results Patients with RA had significantly higher levels of autophagosome reflected by MFI of Cyto-ID in circulating lymphocytes, monocytes, and granulocytes (median values, 3.6, 11.6, and 64.8, respectively) compared with HC (1.9, 6.0, and 35.8; respectively) (all p < 0.001). p62 MFI levels in lymphocytes and granulocytes from patients with RA (17.1 and 8.6, respectively) were significantly lower than those in the corresponding cells from HC (20.2, p < 0.05; and 13.1, p < 0.001, respectively). Significantly higher levels of LC3-II protein expression in contrast to lower p62 protein levels were observed in patients with RA than in HC. The autophagosome levels in immune cells were significantly correlated with inflammatory parameters in patients with RA, and they were significantly decreased with disease remission after treatment with tumor necrosis factor-α inhibitors or interleukin-6 receptor inhibitor. Conclusions Elevated autophagy with significant correlation to inflammation suggests the involvement of autophagy in RA pathogenesis. The effectiveness of biologic therapy might be partly related to the downregulation of autophagy expression. Electronic supplementary material The online version of this article (10.1186/s13075-018-1763-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Division of Allergy, Immunology and Rheumatology, Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan.,Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, Chung Hsing University, Taichung, Taiwan
| | - Chun-Yu Chang
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung, 40447, Taiwan.,Translational Medicine Laboratory, Rheumatic Diseases Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology and Rheumatology, Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan.,Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, Chung Hsing University, Taichung, Taiwan
| | - Chia-Wei Hsieh
- Faculty of Medicine, National Yang Ming University, Taipei, Taiwan.,Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, Chung Hsing University, Taichung, Taiwan
| | - Kuo-Tung Tang
- Faculty of Medicine, National Yang Ming University, Taipei, Taiwan.,Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, Chung Hsing University, Taichung, Taiwan
| | - Meng-Chun Yang
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung, 40447, Taiwan
| | - Joung-Liang Lan
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung, 40447, Taiwan.,Translational Medicine Laboratory, Rheumatic Diseases Research Center, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung, 40447, Taiwan. .,Translational Medicine Laboratory, Rheumatic Diseases Research Center, China Medical University Hospital, Taichung, Taiwan. .,School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
19
|
Impaired intracellular pathogen clearance and inflammatory joint disease: Is Whipple's disease a guiding light? Joint Bone Spine 2018; 85:531-536. [PMID: 28965939 DOI: 10.1016/j.jbspin.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2017] [Indexed: 01/29/2023]
|
20
|
Berthelot JM, Puéchal X. Défauts d’élimination intracellulaire d’agents infectieux et rhumatismes inflammatoires : la maladie de Whipple comme fil d’Ariane ? REVUE DU RHUMATISME 2018; 85:237-242. [DOI: 10.1016/j.rhum.2017.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Yang W, Li L, Huang X, Kan G, Lin L, Cheng J, Xu C, Sun W, Cong W, Zhao S, Cui S. Levels of Leydig cell autophagy regulate the fertility of male naked mole-rats. Oncotarget 2017; 8:98677-98690. [PMID: 29228719 PMCID: PMC5716759 DOI: 10.18632/oncotarget.22088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/03/2017] [Indexed: 01/02/2023] Open
Abstract
Fertility is abolished in nonbreeding males in colonies of natal naked mole-rats (NMRs). Although spermatogenesis occurs in both breeding and nonbreeding male NMRs, the mechanisms underlying the differences in fertility between breeders and nonbreeders remain unexplored. In this study, a significant decrease in autophagy was observed in Leydig cells of the testis from nonbreeding male NMRs. This alteration was visualised as a significant decrease in the levels of autophagy-related gene 7 (Atg7), Atg5, microtubule-associated protein 1A/B light chain 3 (LC3-II/I) and the number of autophagosomes and an increase in P62 levels using Western blotting analyses. Furthermore, monodansylcadaverine (MDC) staining and Western blot analyses revealed that testosterone production decreased in nonbreeding male NMR Leydig cells, this decrease was associated with a reduction in autophagy. Primary Leydig cells from breeding and nonbreeding male NMRs were processed to investigate the effect of an autophagy inhibitor (3-MA, 3-methyladenine) or an autophagy activator (rapamycin) on testosterone production. Rapamycin induced an increase in testosterone production in NMR Leydig cells, whereas 3-MA had the opposite effect. Consequently, spermatogenesis, the weight of the testis, and androgen levels were dramatically reduced in nonbreeding male NMRs. While rapamycin treatment restored the fertility of nonbreeding male NMRs. Based on these results, inadequate autophagy correlates with a decrease in steroid production in nonbreeding male NMR Leydig cells, which may ultimately influence the spermatogenesis and fertilities of these animals.
Collapse
Affiliation(s)
- Wenjing Yang
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Li Li
- Department of Training, Second Military Medical University, Shanghai, China
| | - Xiaofeng Huang
- Medical Record Department, Ministry of Information, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guanghan Kan
- China Astronaut Research and Training Center, Beijing, China
| | - Lifang Lin
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Jishuai Cheng
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Chen Xu
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Wei Sun
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Wei Cong
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Shanmin Zhao
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Shufang Cui
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Pu J, Wu S, Xie H, Li Y, Yang Z, Wu X, Huang X. miR-146a Inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol 2017; 162:3645-3659. [PMID: 28825144 PMCID: PMC7086938 DOI: 10.1007/s00705-017-3516-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 07/18/2017] [Indexed: 12/28/2022]
Abstract
During dengue virus (DENV) infection, the virus manipulates different cellular pathways to assure productive replication, including autophagy. However, it remains unclear how this autophagic process is regulated. Here, we have demonstrated a novel role for the microRNA miR-146a in negatively regulating the cellular autophagic pathway in DENV-infected A549 cells and THP-1 cells. Overexpression of miR-146a significantly blocked DENV2-induced autophagy, and LNA-mediated inhibition of miR-146a counteracted these effects. Moreover, co-overexpression of TRAF6, a target of miR-146a, significantly reversed the inhibitory effect of miR-146a on autophagy. Notably, treatment with recombinant IFN-β fully restored the autophagic activity in TRAF6-silenced cells. Furthermore, our data showed that, in DENV2-infected A549 cells, autophagy promoted a pro-inflammatory response to significantly increase TNF-α and IL-6 production. Taken together, our results define a novel role for miR-146a as a negative regulator of DENV-induced autophagy and identify TRAF6 as a key target of this microRNA in modulating the DENV-autophagy interaction.
Collapse
Affiliation(s)
- Jieying Pu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Siyu Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Heping Xie
- Department of Traditional Chinese Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuye Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, 1 Qide Road, Guangzhou, 510440, China
| | - Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, 1 Qide Road, Guangzhou, 510440, China.
| | - Xi Huang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
23
|
Juárez E, Carranza C, Sánchez G, González M, Chávez J, Sarabia C, Torres M, Sada E. Loperamide Restricts Intracellular Growth ofMycobacterium tuberculosisin Lung Macrophages. Am J Respir Cell Mol Biol 2016; 55:837-847. [DOI: 10.1165/rcmb.2015-0383oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
24
|
Xu C, Feng K, Zhao X, Huang S, Cheng Y, Qian L, Wang Y, Sun H, Jin M, Chuang TH, Zhang Y. Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination. Autophagy 2015; 10:2239-50. [PMID: 25484083 PMCID: PMC4502788 DOI: 10.4161/15548627.2014.981792] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autophagy is an evolutionarily conserved biological process involved in an array of physiological and pathological events. Without proper control, autophagy contributes to various disorders, including cancer and autoimmune and inflammatory diseases. It is therefore of vital importance that autophagy is under careful balance. Thus, additional regulators undoubtedly deepen our understanding of the working network, and provide potential therapeutic targets for disorders. In this study, we found that RNF216 (ring finger protein 216), an E3 ubiquitin ligase, strongly inhibits autophagy in macrophages. Further exploration demonstrates that RNF216 interacts with BECN1, a key regulator in autophagy, and leads to ubiquitination of BECN1, thereby contributing to BECN1 degradation. RNF216 was involved in the ubiquitination of lysine 48 of BECN1 through direct interaction with the triad (2 RING fingers and a DRIL [double RING finger linked]) domain. We further showed that inhibition of autophagy through overexpression of RNF216 in alveolar macrophages promotes Listeria monocytogenes growth and distribution, while knockdown of RNF216 significantly inhibited these outcomes. These effects were confirmed in a mouse model of L. monocytogenes infection, suggesting that manipulating RNF216 expression could be a therapeutic approach. Thus, our study identifies a novel negative regulator of autophagy and suggests that RNF216 may be a target for treatment of inflammatory diseases.
Collapse
Key Words
- Atg, autophagy-related
- BALF, bronchoalveolar lavage fluid
- BECN1
- BMDM, bone marrow-derived macrophage
- CFU, colony-forming unit
- GFP, green fluorescent protein
- HRP, horseradish peroxidase
- LPS, lipopolysaccharide
- MAP1LC3A, microtubule-associated protein 1 light chain 3 α
- MOI, multiplicity of infection
- NFKB, nuclear factor of kappa light polypeptide gene enhancer in B-cells
- PBS, phosphate-buffered saline
- RIPK1, receptor (TNFRSF)-interacting serine-threonine kinase 1
- RNF216
- RNF216, ring finger protein 216;TIRAP, toll-interleukin 1 receptor (TIR) domain containing adaptor protein
- TICAM1/TRIF, toll-like receptor adaptor molecule 1
- TICAM2, toll-like receptor adaptor molecule 2
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TRAF, TNF receptor-associated factor
- Triad, 2 RING fingers and a DRIL (double RING finger linked)
- Ub, ubiquitin
- autophagy
- i.t., intratracheally
- protein degradation
- shRNA, short hairpin RNA
- ubiquitination
Collapse
Affiliation(s)
- Congfeng Xu
- a Shanghai Institute of Immunology; Institutes of Medical Sciences; Shanghai Jiao Tong University School of Medicine (SJTUSM); and Key Laboratory of Stem Cell Biology; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences & SJTUSM ; Shanghai , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Autophagy, a lysosomal degradative pathway that maintains cellular homeostasis, has emerged as an innate immune defense against pathogens. The role of autophagy in the deregulated HIV-infected central nervous system (CNS) is unclear. We have found that HIV-1-induced neuro-glial (neurons and astrocytes) damage involves modulation of the autophagy pathway. Neuro-glial stress induced by HIV-1 led to biochemical and morphological dysfunctions. X4 HIV-1 produced neuro-glial toxicity coupled with suppression of autophagy, while R5 HIV-1-induced toxicity was restricted to neurons. Rapamycin, a specific mTOR inhibitor (autophagy inducer) relieved the blockage of the autophagy pathway caused by HIV-1 and resulted in neuro-glial protection. Further understanding of the regulation of autophagy by cytokines and chemokines or other signaling events may lead to recognition of therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajeev Mehla
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Ashok Chauhan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| |
Collapse
|
26
|
Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum. PLoS One 2014; 9:e113220. [PMID: 25426852 PMCID: PMC4245143 DOI: 10.1371/journal.pone.0113220] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/21/2014] [Indexed: 02/07/2023] Open
Abstract
Conventional autophagy is a lysosome-dependent degradation process that has crucial homeostatic and regulatory functions in eukaryotic organisms. As malaria parasites must dispose a number of self and host cellular contents, we investigated if autophagy in malaria parasites is similar to the conventional autophagy. Genome wide analysis revealed a partial autophagy repertoire in Plasmodium, as homologs for only 15 of the 33 yeast autophagy proteins could be identified, including the autophagy marker Atg8. To gain insights into autophagy in malaria parasites, we investigated Plasmodium falciparum Atg8 (PfAtg8) employing techniques and conditions that are routinely used to study autophagy. Atg8 was similarly expressed and showed punctate localization throughout the parasite in both asexual and sexual stages; it was exclusively found in the pellet fraction as an integral membrane protein, which is in contrast to the yeast or mammalian Atg8 that is distributed among cytosolic and membrane fractions, and suggests for a constitutive autophagy. Starvation, the best known autophagy inducer, decreased PfAtg8 level by almost 3-fold compared to the normally growing parasites. Neither the Atg8-associated puncta nor the Atg8 expression level was significantly altered by treatment of parasites with routinely used autophagy inhibitors (cysteine (E64) and aspartic (pepstatin) protease inhibitors, the kinase inhibitor 3-methyladenine, and the lysosomotropic agent chloroquine), indicating an atypical feature of autophagy. Furthermore, prolonged inhibition of the major food vacuole protease activity by E64 and pepstatin did not cause accumulation of the Atg8-associated puncta in the food vacuole, suggesting that autophagy is primarily not meant for degradative function in malaria parasites. Atg8 showed partial colocalization with the apicoplast; doxycycline treatment, which disrupts apicoplast, did not affect Atg8 localization, suggesting a role, but not exclusive, in apicoplast biogenesis. Collectively, our results reveal several atypical features of autophagy in malaria parasites, which may be largely associated with non-degradative processes.
Collapse
|
27
|
Hosseini R, Lamers GE, Hodzic Z, Meijer AH, Schaaf MJ, Spaink HP. Correlative light and electron microscopy imaging of autophagy in a zebrafish infection model. Autophagy 2014; 10:1844-57. [PMID: 25126731 PMCID: PMC4198367 DOI: 10.4161/auto.29992] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High-resolution imaging of autophagy has been used intensively in cell culture studies, but so far it has been difficult to visualize this process in detail in whole animal models. In this study we present a versatile method for high-resolution imaging of microbial infection in zebrafish larvae by injecting pathogens into the tail fin. This allows visualization of autophagic compartments by light and electron microscopy, which makes it possible to correlate images acquired by the 2 techniques. Using this method we have studied the autophagy response against Mycobacterium marinum infection. We show that mycobacteria during the progress of infection are frequently associated with GFP-Lc3-positive vesicles, and that 2 types of GFP-Lc3-positive vesicles were observed. The majority of these vesicles were approximately 1 μm in size and in close vicinity of bacteria, and a smaller number of GFP-Lc3-positive vesicles was larger in size and were observed to contain bacteria. Quantitative data showed that these larger vesicles occurred significantly more in leukocytes than in other cell types, and that approximately 70% of these vesicles were positive for a lysosomal marker. Using electron microscopy, it was found that approximately 5% of intracellular bacteria were present in autophagic vacuoles and that the remaining intracellular bacteria were present in phagosomes, lysosomes, free inside the cytoplasm or occurred as large aggregates. Based on correlation of light and electron microscopy images, it was shown that GFP-Lc3-positive vesicles displayed autophagic morphology. This study provides a new approach for injection of pathogens into the tail fin, which allows combined light and electron microscopy imaging in vivo and opens new research directions for studying autophagy process related to infectious diseases.
Collapse
Affiliation(s)
- Rohola Hosseini
- Institute of Biology; Leiden University; Leiden, The Netherlands
| | - Gerda Em Lamers
- Institute of Biology; Leiden University; Leiden, The Netherlands
| | - Zlatan Hodzic
- Institute of Biology; Leiden University; Leiden, The Netherlands
| | | | - Marcel Jm Schaaf
- Institute of Biology; Leiden University; Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology; Leiden University; Leiden, The Netherlands
| |
Collapse
|
28
|
Gatto M, Iaccarino L, Ghirardello A, Bassi N, Pontisso P, Punzi L, Shoenfeld Y, Doria A. Serpins, immunity and autoimmunity: old molecules, new functions. Clin Rev Allergy Immunol 2014; 45:267-80. [PMID: 23325331 DOI: 10.1007/s12016-013-8353-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Serine protease inhibitors (serpins) are evolutionary old, structurally conserved molecules which encompass nearly all branches of life. More than 1,000 serpins were characterized to date which are subdivided into 16 subgroups (A-P) according to their common ancestry; among them, 37 are found in humans. Serpins were termed after their capability to inhibit serine proteases, but mounting evidence suggests that they may achieve a greater deal of functions, ranging from embryological growth to synaptic plasticity, development of both myeloid and lymphoid immune cells, and modulation of apoptosis. Serpins are mainly extracellular molecules, although some of them (namely, ov-serpins or clade B serpins) mostly act inside the cells, being either ubiquitously or tissue-specifically expressed. Among newly characterized serpin functions, regulation of cellular proliferation through apoptosis modulation and proteasome disturbance seems to play a major role. Accordingly, several serpins were found to be hyperexpressed in tumor cells. Indeed, apoptosis dysregulation is likely to be a cornerstone in both tumorigenesis and autoimmunity, since uncontrolled cellular viability results in tumor proliferation, while inefficient disposal of apoptotic debris may favor the rescue of autoreactive immune cells. Such a process was widely documented in systemic lupus erythematosus (SLE). Interestingly, alterations in the expression of some serpins, e.g., the ov-serpin SERPINB3, are being unraveled in patients affected with SLE and other autoimmune disorders, suggesting that a failure in serpin function might affect immune homeostasis and self-tolerance, thereby contributing to autoimmunity. Here, we provide an overview of serpin origin, function, and dysfunction, focusing on human serpins and ov-serpins, with a hub on SERPINB3.
Collapse
Affiliation(s)
- Mariele Gatto
- Division of Rheumatology, Department of Medicine, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Smeekens SP, Malireddi RK, Plantinga TS, Buffen K, Oosting M, Joosten LAB, Kullberg BJ, Perfect JR, Scott WK, van de Veerdonk FL, Xavier RJ, van de Vosse E, Kanneganti TD, Johnson MD, Netea MG. Autophagy is redundant for the host defense against systemic Candida albicans infections. Eur J Clin Microbiol Infect Dis 2013; 33:711-22. [PMID: 24202731 DOI: 10.1007/s10096-013-2002-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/16/2013] [Indexed: 12/16/2022]
Abstract
Autophagy has been demonstrated to play an important role in the immunity against intracellular pathogens, but very little is known about its role in the host defense against fungal pathogens such as Candida albicans. Therefore, the role of autophagy for the host defense against C. albicans was assessed by complementary approaches using mice defective in autophagy, as well as immunological and genetic studies in humans. Although C. albicans induced LC3-II formation in macrophages, myeloid cell-specific ATG7(-/-) mice with defects in autophagy did not display an increased susceptibility to disseminated candidiasis. In in vitro experiments in human blood mononuclear cells, blocking autophagy modulated cytokine production induced by lipopolysaccharide, but not by C. albicans. Furthermore, autophagy modulation in human monocytes did not influence the phagocytosis and killing of C. albicans. Finally, 18 single-nucleotide polymorphisms in 13 autophagy genes were not associated with susceptibility to candidemia or clinical outcome of disease in a large cohort of patients, and there was no correlation between these genetic variants and cytokine production in either candidemia patients or healthy controls. Based on these complementary in vitro and in vivo studies, it can be concluded that autophagy is redundant for the host response against systemic infections with C. albicans.
Collapse
Affiliation(s)
- S P Smeekens
- Department of Medicine, Radboud university medical center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee YR, Hu HY, Kuo SH, Lei HY, Lin YS, Yeh TM, Liu CC, Liu HS. Dengue virus infection induces autophagy: an in vivo study. J Biomed Sci 2013; 20:65. [PMID: 24011333 PMCID: PMC3848819 DOI: 10.1186/1423-0127-20-65] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/04/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We and others have reported that autophagy is induced by dengue viruses (DVs) in various cell lines, and that it plays a supportive role in DV replication. This study intended to clarify whether DV infection could induce autophagy in vivo. Furthermore, the effect of DV induced autophagy on viral replication and DV-related pathogenesis was investigated. RESULTS AND CONCLUSIONS The physiopathological parameters were evaluated after DV2 was intracranially injected into 6-day-old ICR suckling mice. Autophagy-related markers were monitored by immunohistochemical/immunofluorescent staining and Western blotting. Double-membrane autophagic vesicles were investigated by transmission-electron-microscopy. DV non-structural-protein-1 (NS1) expression (indicating DV infection) was detected in the cerebrum, medulla and midbrain of the infected mice. In these infected tissues, increased LC3 puncta formation, LC3-II expression, double-membrane autophagosome-like vesicles (autophagosome), amphisome, and decreased p62 accumulation were observed, indicating that DV2 induces the autophagic progression in vivo. Amphisome formation was demonstrated by colocalization of DV2-NS1 protein or LC3 puncta and mannose-6-phosphate receptor (MPR, endosome marker) in DV2-infected brain tissues. We further manipulated DV-induced autophagy by the inducer rapamycin and the inhibitor 3-methyladenine (3MA), which accordingly promoted or suppressed the disease symptoms and virus load in the brain of the infected mice.We demonstrated that DV2 infection of the suckling mice induces autophagy, which plays a promoting role in DV replication and pathogenesis.
Collapse
Affiliation(s)
- Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Li S, Du L, Zhang L, Hu Y, Xia W, Wu J, Zhu J, Chen L, Zhu F, Li C, Yang S. Cathepsin B contributes to autophagy-related 7 (Atg7)-induced nod-like receptor 3 (NLRP3)-dependent proinflammatory response and aggravates lipotoxicity in rat insulinoma cell line. J Biol Chem 2013; 288:30094-30104. [PMID: 23986436 DOI: 10.1074/jbc.m113.494286] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Impairment of glucose-stimulated insulin secretion caused by the lipotoxicity of palmitate was found in β-cells. Recent studies have indicated that defects in autophagy contribute to pathogenesis in type 2 diabetes. Here, we report that autophagy-related 7 (Atg7) induced excessive autophagic activation in INS-1(823/13) cells exposed to saturated fatty acids. Atg7-induced cathepsin B (CTSB) overexpression resulted in an unexpected significant increase in proinflammatory chemokine and cytokine production levels of IL-1β, monocyte chemotactic protein-1, IL-6, and TNF-α. Inhibition of receptor-interacting protein did not affect the inflammatory response, ruling out involvement of necrosis. CTSB siRNA suppressed the inflammatory response but did not affect apoptosis significantly, suggesting that CTSB was a molecular linker between autophagy and the proinflammatory response. Blocking caspase-3 suppressed apoptosis but did not affect the inflammatory response, suggesting that CTSB induced inflammatory effects independently of apoptosis. Silencing of Nod-like receptor 3 (NLRP3) completely abolished both IL-1β secretion and the down-regulation effects of Atg7-induced CTSB overexpression on glucose-stimulated insulin secretion impairment, thus identifying the NLRP3 inflammasome as an autophagy-responsive element in the pancreatic INS-1(823/13) cell line. Combined together, our results indicate that CTSB contributed to the Atg7-induced NLRP3-dependent proinflammatory response, resulting in aggravation of lipotoxicity, independently of apoptosis in the pancreatic INS-1(823/13) cell line.
Collapse
Affiliation(s)
- Shali Li
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Leilei Du
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Lu Zhang
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Yue Hu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Wenchun Xia
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Jia Wu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Jing Zhu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Lingling Chen
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Fengqi Zhu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Chunxian Li
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - SiJun Yang
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China.
| |
Collapse
|
32
|
Tezel G. A proteomics view of the molecular mechanisms and biomarkers of glaucomatous neurodegeneration. Prog Retin Eye Res 2013; 35:18-43. [PMID: 23396249 DOI: 10.1016/j.preteyeres.2013.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 02/07/2023]
Abstract
Despite improving understanding of glaucoma, key molecular players of neurodegeneration that can be targeted for treatment of glaucoma, or molecular biomarkers that can be useful for clinical testing, remain unclear. Proteomics technology offers a powerful toolbox to accomplish these important goals of the glaucoma research and is increasingly being applied to identify molecular mechanisms and biomarkers of glaucoma. Recent studies of glaucoma using proteomics analysis techniques have resulted in the lists of differentially expressed proteins in human glaucoma and animal models. The global analysis of protein expression in glaucoma has been followed by cell-specific proteome analysis of retinal ganglion cells and astrocytes. The proteomics data have also guided targeted studies to identify post-translational modifications and protein-protein interactions during glaucomatous neurodegeneration. In addition, recent applications of proteomics have provided a number of potential biomarker candidates. Proteomics technology holds great promise to move glaucoma research forward toward new treatment strategies and biomarker discovery. By reviewing the major proteomics approaches and their applications in the field of glaucoma, this article highlights the power of proteomics in translational and clinical research related to glaucoma and also provides a framework for future research to functionally test the importance of specific molecular pathways and validate candidate biomarkers.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology & Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
33
|
Abstract
Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular pathogen. After entry into host cells, the bacterium rapidly escapes from the endosomal pathway and replicates in the cytosol of eukaryotic host cells. Here we show that O. tsutsugamushi infection efficiently promotes cellular autophagy, a cell-autonomous defense mechanism of innate immunity. However, most of the internalized bacteria barely colocalized with the induced autophagosomes, even when stimulated with rapamycin, a chemical inducer of autophagy. Treatment of infected cells with tetracycline suppressed bacterial evasion from autophagy and facilitated O. tsutsugamushi targeting to autophagosomes, suggesting that the intracellular pathogen may be equipped with a bacterial factor or factors that block autophagic recognition. Finally, we also found that chemical modulators of cellular autophagy or genetic knockout of the atg3 gene does not significantly affect the intracellular growth of O. tsutsugamushi in vitro. These results suggest that O. tsutsugamushi has evolved to block autophagic microbicidal defense by evading autophagic recognition even though it activates the autophagy pathway during the early phase of infection.
Collapse
|
34
|
Abstract
Studies over the past decade have helped to decipher molecular networks dependent on Toll-like receptor (TLR) signaling, in mycobacteria-infected macrophages. Stimulation of TLRs by mycobacteria and their antigenic components rapidly induces intracellular signaling cascades involved in the activation of nuclear factor-κB and mitogen-activated protein kinase pathways, which play important roles in orchestrating proinflammatory responses and innate defense through generation of a variety of antimicrobial effector molecules. Recent studies have provided evidence that mycobacterial TLR-signaling cross talks with other intracellular antimicrobial innate pathways, the autophagy process and functional vitamin D receptor (VDR) signaling. In this article we describe recent advances in the recognition, responses, and regulation of mycobacterial signaling through TLRs.
Collapse
Affiliation(s)
- Joyoti Basu
- Department of Chemistry, Bose Institute Kolkata, India
| | | | | |
Collapse
|
35
|
Fukada H, Yamashina S, Izumi K, Komatsu M, Tanaka K, Ikejima K, Watanabe S. Suppression of autophagy sensitizes Kupffer cells to endotoxin. Hepatol Res 2012; 42:1112-8. [PMID: 22583683 DOI: 10.1111/j.1872-034x.2012.01024.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Recent evidence suggests that protein degradation system autophagy is implicated in a component of innate immunity. We report here that suppression of autophagy in Kupffer cells due to hepatic steatosis enhances an inflammatory response to endotoxin. METHODS Kupffer cells were isolated from C57BL/6J mice fed chow diet (control) or high-fat diet (HFD) for 12 weeks, liver-specific autophagy-deficient mice (Atg7(F/F) :Mx1-Cre) and wild-type mice (Atg7(F/F) ). Kupffer cells were incubated with 100 ng/mL lipopolysaccharide (LPS). The concentration of tumor necrosis factor (TNF)-α in media was measured by enzyme-linked immunoassay. Expression of Toll-like receptor (TLR)4, IκB kinase (IKK)-α/β, p38, p62 and LC3 in Kupffer cells was evaluated by western blot analysis. RESULTS Incubation with LPS increased LC3-II expression of Kupffer cells from control mice; however, an increase in LC3-II expression due to LPS was suppressed in Kupffer cells from HFD mice. Moreover, both p62 expression and TNF-α production in Kupffer cells from HFD mice was higher than control mice. On the other hand, LPS exposure increased TNF-α production from autophagy-deficient Kupffer cells more than wild type. There was no significant difference in expression of TLR4 between wild and autophagy-deficient Kupffer cells. Nevertheless, activation of p38 or IKK in Kupffer cells due to LPS was augmented by autophagy deficiency. The addition of the p38 inhibitor SB203580 attenuated TNF-α production in both wild and autophagy-deficient Kupffer cells. CONCLUSION These results suggest that suppression of autophagy observed in Kupffer cells from steatotic liver sensitizes to endotoxin. In conclusion, suppression of autophagy may play a pivotal role on progression of NAFLD.
Collapse
Affiliation(s)
- Hiroo Fukada
- Department of Gastroenterology, Juntendo University School of Medicine Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Pathogen-associated molecular pattern molecules (PAMPs) are derived from microorganisms and recognized by pattern recognition receptor (PRR)-bearing cells of the innate immune system as well as many epithelial cells. In contrast, damage-associated molecular pattern molecules (DAMPs) are cell-derived and initiate and perpetuate immunity in response to trauma, ischemia, and tissue damage, either in the absence or presence of pathogenic infection. Most PAMPs and DAMPs serve as so-called 'Signal 0s' that bind specific receptors [Toll-like receptors, NOD-like receptors, RIG-I-like receptors, AIM2-like receptors, and the receptor for advanced glycation end products (RAGE)] to promote autophagy. Autophagy, a conserved lysosomal degradation pathway, is a cell survival mechanism invoked in response to environmental and cellular stress. Autophagy is inferred to have been present in the last common eukaryotic ancestor and only to have been lost by some obligatory intracellular parasites. As such, autophagy represents a unifying biology, subserving survival and the earliest host defense strategies, predating apoptosis, within eukaryotes. Here, we review recent advances in our understanding of autophagic molecular mechanisms and functions in emergent immunity.
Collapse
Affiliation(s)
- Daolin Tang
- Department of SurgeryUniversity of Pittsburgh Cancer InstitutePittsburghPAUSA
| | - Rui Kang
- Department of SurgeryUniversity of Pittsburgh Cancer InstitutePittsburghPAUSA
| | - Carolyn B. Coyne
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghPAUSA
| | - Herbert J. Zeh
- Department of SurgeryUniversity of Pittsburgh Cancer InstitutePittsburghPAUSA
| | - Michael T. Lotze
- Department of SurgeryUniversity of Pittsburgh Cancer InstitutePittsburghPAUSA
| |
Collapse
|
37
|
Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) 2012; 4:166-75. [PMID: 22411934 PMCID: PMC3348477 DOI: 10.18632/aging.100444] [Citation(s) in RCA: 344] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammaging refers to a low-grade pro-inflammatory phenotype which accompanies aging in mammals. The aging process is associated with a decline in autophagic capacity which impairs cellular housekeeping, leading to protein aggregation and accumulation of dysfunctional mitochondria which provoke reactive oxygen species (ROS) production and oxidative stress. Recent studies have clearly indicated that the ROS production induced by damaged mitochondria can stimulate intracellular danger-sensing multiprotein platforms called inflammasomes. Nod-like receptor 3 (NLRP3) can be activated by many danger signals, e.g. ROS, cathepsin B released from destabilized lysosomes and aggregated proteins, all of which evoke cellular stress and are involved in the aging process. NLRP3 activation is also enhanced in many age-related diseases, e.g. atherosclerosis, obesity and type 2 diabetes. NLRP3 activates inflammatory caspases, mostly caspase-1, which cleave the inactive precursors of IL-1β and IL-18 and stimulate their secretion. Consequently, these cytokines provoke inflammatory responses and accelerate the aging process by inhibiting autophagy. In conclusion, inhibition of autophagic capacity with aging generates the inflammaging condition via the activation of inflammasomes, in particular NLRP3. We will provide here a perspective on the current research of the ROS-dependent activation of inflammasomes triggered by the decline in autophagic cleansing of dysfunctional mitochondria.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | | | | |
Collapse
|
38
|
Zhou XJ, Zhang H. Autophagy in immunity: implications in etiology of autoimmune/autoinflammatory diseases. Autophagy 2012; 8:1286-99. [PMID: 22878595 DOI: 10.4161/auto.21212] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is now emerging as a spotlight in trafficking events that activate innate and adaptive immunity. It facilitates innate pathogen detection and antigen presentation, as well as pathogen clearance and lymphocyte homeostasis. In this review, we first summarize new insights into its functions in immunity, which underlie its associations with autoimmunity. As some lines of evidence are emerging to support its role in autoimmune and autoinflammatory diseases, we further discuss whether and how it affects autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, diabetes mellitus and multiple sclerosis, as well as autoinflammatory diseases, such as Crohn disease and vitiligo.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | | |
Collapse
|
39
|
De Haes W, Rejman J, Pollard C, Merlin C, Vekemans M, Florence E, De Smedt SC, Grooten J, Vanham G, De Koker S, Van Gulck E. Lipoplexes carrying mRNA encoding Gag protein modulate dendritic cells to stimulate HIV-specific immune responses. Nanomedicine (Lond) 2012; 8:77-87. [PMID: 22891862 DOI: 10.2217/nnm.12.97] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM Cationic lipids (Lipofectamine™ [Invitrogen, Merelbeke, Belgium] and 1,2-dioleoyl-3-trimethylammonium-propane/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and polymers (jetPEI™ and in vivo-jetPEI™ [Polyplus-transfection, Illkirch, France]) were evaluated for their potential to deliver mRNA to monocyte-derived dendritic cells. MATERIALS & METHODS Lipoplexes and polyplexes, containing mRNA encoding GFP or Gag protein, were incubated with human monocyte-derived dendritic cells and transfection efficiencies were assessed by flow cytometry. RESULTS Lipofectamine was by far the most efficient in mRNA delivery, therefore it was used in further experiments. Incubation of monocyte-derived dendritic cells isolated from HIV-1-positive donors with mRNA encoding Gag protein complexed to Lipofectamine resulted in 50% transfection. Importantly, coculture of these Gag-transfected dendritic cells with autologous T cells induced an over tenfold expansion of IFN-γ- and IL-2-secreting CD4(+) and CD8(+) T cells. CONCLUSION Cationic lipid-mediated mRNA delivery may be a useful tool for therapeutic vaccination against HIV-1. This approach can be applied to develop vaccination strategies for other infectious diseases and cancer.
Collapse
Affiliation(s)
- Winni De Haes
- Institute of Tropical Medicine of Antwerp, Nationalestraat 155, Antwerp 2000, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tezel G, Yang X, Luo C, Cai J, Powell DW. An astrocyte-specific proteomic approach to inflammatory responses in experimental rat glaucoma. Invest Ophthalmol Vis Sci 2012; 53:4220-33. [PMID: 22570341 DOI: 10.1167/iovs.11-9101] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To delineate astrocyte-mediated inflammatory processes in glaucoma, we analyzed proteomic responses of retinal astrocytes in an experimental rat model using a cell-specific approach. METHODS IOP elevation was induced in rats by hypertonic saline injections into episcleral veins. Enriched samples of astrocytes were isolated through the immunomagnetic cell selection process established originally for retinal ganglion cell (RGC) sampling. Ocular hypertensive and control samples were collected by pooling from rat eyes matched for the cumulative IOP exposure. Protein expression was analyzed complementarily by quantitative two-dimensional capillary liquid chromatography and linear ion trap mass spectrometry (LC-MS/MS) followed by quantitative Western blot analysis and retinal tissue immunolabeling using specific antibodies to selected proteins. RESULTS Following validation of enriched astrocyte samples, LC-MS/MS analysis resulted in the identification of over 2000 proteins with high confidence. Bioinformatic comparison analysis of the high-throughput MS/MS data along with the findings of immunoblotting and immunohistochemistry supported distinct responses of ocular hypertensive astrocytes during the experimental paradigm, which exhibited predominantly cellular activation and immune/inflammatory responses as opposed to activation of cell death signaling in ocular hypertensive RGCs. Inflammatory responses of astrocytes in experimental glaucoma included up-regulation of a number of immune mediators/regulators linked to TNF-α/TNFR signaling, nuclear factor kappa-B (NF-κB) activation, autophagy regulation, and inflammasome assembly. CONCLUSIONS These findings validate an astrocyte-specific approach to quantitatively identify proteomic alterations in experimental glaucoma, and highlight many immune mediators/regulators characteristic of the inflammatory responses of ocular hypertensive astrocytes. By dissecting the complexity of prior data obtained from whole tissue, this pioneering approach should enable astrocyte responses to be defined and new treatments targeting astrocytes to be developed.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology & Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Autophagy is a housekeeping process that maintains cellular homeostasis through recycling of nutrients and degradation of damaged or aged cytoplasmic constituents. Over the past several years, accumulating evidence has suggested that autophagy can function as an intracellular innate defense pathway in response to infection with a variety of bacteria and viruses. Autophagy plays a role as a specialized immunologic effector and regulates innate immunity to exert antimicrobial defense mechanisms. Numerous bacterial pathogens have developed the ability to invade host cells or to subvert host autophagy to establish a persistent infection. In this review, we have summarized the recent advances in our understanding of the interaction between antibacterial autophagy (xenophagy) and different bacterial pathogens.
Collapse
Affiliation(s)
- Jae Min Yuk
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | | | | |
Collapse
|
42
|
Su CW, Cao Y, Zhang M, Kaplan J, Su L, Fu Y, Walker WA, Xavier R, Cherayil BJ, Shi HN. Helminth infection impairs autophagy-mediated killing of bacterial enteropathogens by macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 189:1459-66. [PMID: 22732589 DOI: 10.4049/jimmunol.1200484] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autophagy is an important mechanism used by macrophages to kill intracellular pathogens. The results reported in this study demonstrate that autophagy is also involved in the macrophage killing of the extracellular enteropathogen Citrobacter rodentium after phagocytosis. The process was significantly impaired in macrophages isolated from mice chronically infected with the helminth parasite Heligmosomoides polygyrus. The H. polygyrus-mediated inhibition of autophagy was Th2 dependent because it was not observed in macrophages isolated from helminth-infected STAT6-deficient mice. Moreover, autophagy of Citrobacter was inhibited by treating macrophages with IL-4 and IL-13. The effect of H. polygyrus on autophagy was associated with decreased expression and processing of L chain protein 3 (LC3), a key component of the autophagic machinery. The helminth-induced inhibition of LC3 expression and processing was STAT6 dependent and could be recapitulated by treatment of macrophages with IL-4 and IL-13. Knockdown of LC3 significantly inhibited autophagic killing of Citrobacter, attesting to the functional importance of the H. polygyrus-mediated downregulation of this process. These observations reveal a new aspect of the immunosuppressive effects of helminth infection and provide mechanistic insights into our earlier finding that H. polygyrus significantly worsens the in vivo course of Citrobacter infection.
Collapse
Affiliation(s)
- Chien-wen Su
- Mucosal Immunology Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tabor-Godwin JM, Tsueng G, Sayen MR, Gottlieb RA, Feuer R. The role of autophagy during coxsackievirus infection of neural progenitor and stem cells. Autophagy 2012; 8:938-53. [PMID: 22751470 DOI: 10.4161/auto.19781] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coxsackievirus B3 (CVB3) has previously been shown to utilize autophagy in an advantageous manner during the course of infection of the host cell. However, few studies have determined whether stem cells induce autophagy in a similar fashion, and whether virus-induced autophagy occurs following infection of stem cells. Therefore, we compared the induction of autophagy following CVB3 infection of neural progenitor and stem cells (NPSCs), which we have recently shown to be highly susceptible to CVB3 infection, to HL-1 cells, a transformed cardiomyocyte cell line. As previously demonstrated for other susceptible host cells, HL-1 cells showed an increase in the activity of autophagic signaling following infection with a CVB3 expressing dsRed protein (dsRed-CVB3). Furthermore, viral titers in HL-1 cells increased in the presence of an inducer of autophagy (CCPA), while viral titers decreased in the presence of an inhibitor of autophagy (3-MA). In contrast, no change in autophagic signaling was seen in NPSCs following infection with dsRed-CVB3. Also, basal levels of autophagy in NPSCs were found to be highly elevated in comparison to HL-1 cells. Autophagy could be induced in NPSCs in the presence of rapamycin without altering levels of dsRed-CVB3 replication. In differentiated NPSC precursors, autophagy was activated during the differentiation process, and a decrease in autophagic signaling was observed within all three CNS lineages following dsRed-CVB3 infection. Hence, we conclude that the role of autophagy in modulating CVB3 replication appears cell type-specific, and stem cells may uniquely regulate autophagy in response to infection.
Collapse
Affiliation(s)
- Jenna M Tabor-Godwin
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
44
|
Dai J, Wang G, Li W, Zhang L, Yang J, Zhao X, Chen X, Xu Y, Li K. High-throughput screening for anti-influenza A virus drugs and study of the mechanism of procyanidin on influenza A virus-induced autophagy. JOURNAL OF BIOMOLECULAR SCREENING 2012; 17:605-17. [PMID: 22286278 DOI: 10.1177/1087057111435236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this research, we have established a high-throughput screening (HTS) platform based on the influenza A virus (IAV) vRNA promoter. Using this HTS platform, we selected 35 medicinal plants out of 83 examples of traditional Chinese medicine and found that 7 examples had not been reported. After examining many previous reports, we found that Vaccinium angustifolium Ait., Vitis vinifera L, and Cinnamomum cassia Presl had a common active compound, procyanidin, and then determined the anti-IAV effect of procyanidin and explored its mechanism of action. With a plaque inhibition assay and a time-of-addition experiment, we found that procyanidin could inhibit the IAV replication at several stages of the life cycle. In the Western blot and EGFP-LC3 localization assays, we found that procyanidin could inhibit the accumulation of LC3II and the dot-like aggregation of EGFP-LC3. In the RT-PCR and Western blot assays, we found procyanidin could inhibit the expression of Atg7, Atg5, and Atg12. Finally, by the bimolecular fluorescence complementation-fluorescence resonance energy transfer and co-immunoprecipitation assays, we found that procyanidin could inhibit the formation of the Atg5-Atg12/Atg16 heterotrimer and the dissociation of the beclin1/bcl2 heterodimer. In conclusion, we have established an HTS platform and identified procyanidin as a novel and promising anti-IAV agent.
Collapse
Affiliation(s)
- Jianping Dai
- Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Association Analysis of ULK1 with Crohn's Disease in a New Zealand Population. Gastroenterol Res Pract 2012; 2012:715309. [PMID: 22536218 PMCID: PMC3320017 DOI: 10.1155/2012/715309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 01/17/2012] [Indexed: 01/25/2023] Open
Abstract
The gene ULK1 is an excellent candidate for Crohn's disease (CD) due to its role in autophagy. A recent study provided evidence for the involvement of ULK1 in the pathogenesis of CD (Henckaerts et al., 2011). We attempted to validate this association, using a candidate gene SNP study of ULK1 in CD. We identified tagging SNPs and genotyped these SNPs using the Sequenom platform in a Caucasian New Zealand dataset consisting of 406 CD patients and 638 controls. In this sample, we were able to demonstrate an association between CD and several different ULK1 SNPs and haplotypes. Phenotypic analysis showed an association with age of diagnosis 17–40 years and inflammatory behaviour. The findings of this study provide evidence to suggest that genetic variation in ULK1 may play a role in interindividual differences in CD susceptibility and clinical outcome.
Collapse
|
46
|
Baek KH, Park J, Shin I. Autophagy-regulating small molecules and their therapeutic applications. Chem Soc Rev 2012; 41:3245-63. [PMID: 22293658 DOI: 10.1039/c2cs15328a] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy or self-eating is a complicated cellular process that is involved in protein and organelle digestion occurring via a lysosome-dependent pathway. This process is of great importance in maintaining normal cellular homeostasis. However, disruption of autophagy is closely associated with various human diseases such as cancer, neurodegenerative disorders, heart disease and pathogen infection. Therefore, small molecules that modulate autophagy can be employed to dissect this complex process and ultimately could have high potential for the treatment of a variety of diseases. This critical review discusses general aspects of autophagy, autophagy-associated diseases and autophagy regulators for biological research and therapeutic applications (207 references).
Collapse
Affiliation(s)
- Kyung-Hwa Baek
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
47
|
Lack of intestinal epithelial atg7 affects paneth cell granule formation but does not compromise immune homeostasis in the gut. Clin Dev Immunol 2012; 2012:278059. [PMID: 22291845 PMCID: PMC3265132 DOI: 10.1155/2012/278059] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/26/2011] [Accepted: 10/03/2011] [Indexed: 12/25/2022]
Abstract
Genetic polymorphisms of autophagy-related genes have been associated with an increased risk to develop inflammatory bowel disease (IBD). Autophagy is an elementary process participating in several cellular events such as cellular clearance and nonapoptotic programmed cell death. Furthermore, autophagy may be involved in intestinal immune homeostasis due to its participation in the digestion of intracellular pathogens and in antigen presentation. In the present study, the role of autophagy in the intestinal epithelial layer was investigated. The intestinal epithelium is essential to maintain gut homeostasis, and defects within this barrier have been associated with the pathogenesis of IBD. Therefore, mice with intestinal epithelial deletion of Atg7 were generated and investigated in different mouse models. Knockout mice showed reduced size of granules and decreased levels of lysozyme in Paneth cells. However, this was dispensable for gut immune homeostasis and had no effect on susceptibility in mouse models of experimentally induced colitis.
Collapse
|
48
|
Williams CD, Jaeschke H. Role of innate and adaptive immunity during drug-induced liver injury. Toxicol Res (Camb) 2012; 1:161. [DOI: 10.1039/c2tx20032e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
49
|
Lista P, Straface E, Brunelleschi S, Franconi F, Malorni W. On the role of autophagy in human diseases: a gender perspective. J Cell Mol Med 2011; 15:1443-57. [PMID: 21362130 PMCID: PMC3823190 DOI: 10.1111/j.1582-4934.2011.01293.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytopathological features of cells from males and females, i.e. XX and XY isolated cells, have been demonstrated to represent a key variable in the mechanism underlying gender disparity in human diseases. Major insights came from the studies of gender differences in cell fate, e.g. in apoptotic susceptibility. We report here some novel insights recently emerged from literature that are referred as to a cytoprotection mechanism by which cells recycle cytoplasm and dispose of excess or defective organelles, i.e. autophagy. Autophagy and related genes have first been identified in yeast. Orthologue genes have subsequently been found in other organisms, including human beings. This stimulated the research in the field and, thanks to the use of molecular genetics and cell biology in different model systems, autophagy gained the attention of several research groups operating to analyse the pathogenetic mechanisms of human diseases. It remains unclear, however, whether autophagy can exert a protective effect or instead contribute to the pathogenesis of important human diseases. On the basis of the growing importance of sex/gender as key determinant of human pathology and of the known differences between males and females in the onset, progression, drug susceptibility and outcome of a plethora of diseases, the idea that autophagy could represent key and critical factor should be taken into account. In the review, we summarize our current knowledge about the role of autophagy in some paradigmatic human diseases (cancer, neurodegenerative, autoimmune, cardiovascular) and the role of ‘cell sex’ differences in this context.
Collapse
Affiliation(s)
- Pasquale Lista
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanitá, Viale Regina Elena 299, Rome, Italy
| | | | | | | | | |
Collapse
|
50
|
Host cell autophagy in immune response to zoonotic infections. Clin Dev Immunol 2011; 2012:910525. [PMID: 22110539 PMCID: PMC3205612 DOI: 10.1155/2012/910525] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 09/26/2011] [Indexed: 12/15/2022]
Abstract
Autophagy is a fundamental homeostatic process in which cytoplasmic targets are sequestered within double-membraned autophagosomes and subsequently delivered to lysosomes for degradation. Accumulating evidence supports the pivotal role of autophagy in host defense against intracellular pathogens implicating both innate and adaptive immunity. Many of these pathogens cause common zoonotic infections worldwide. The induction of the autophagic machinery by innate immune receptors signaling, such as TLRs, NOD1/2, and p62/SQSTM1 in antigen-presenting cells results in inhibition of survival and elimination of invading pathogens. Furthermore, Th1 cytokines induce the autophagic process, whereas autophagy also contributes to antigen processing and MHC class II presentation, linking innate to adaptive immunity. However, several pathogens have developed strategies to avoid autophagy or exploit autophagic machinery to their advantage. This paper focuses on the role of host cell autophagy in the regulation of immune response against intracellular pathogens, emphasizing on selected bacterial and protozoan zoonoses.
Collapse
|