1
|
Kawser Z, Shamsuzzaman SM. Intradermal Immunization with Heat-Killed Klebsiella pneumoniae Leading to the Production of Protective Immunoglobulin G in BALB/c Mice. Int J Appl Basic Med Res 2021; 11:160-165. [PMID: 34458118 PMCID: PMC8360222 DOI: 10.4103/ijabmr.ijabmr_63_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 12/02/2020] [Accepted: 04/20/2021] [Indexed: 11/08/2022] Open
Abstract
Introduction: Klebsiella pneumoniae superbug is emerging as a serious health concern as resistance to last-resort antibiotics spreads. To bypass the therapeutic molecules used today, the development of an immunoprophylactic safe approach is of great clinical relevance. This study was conducted to determine the protective efficacy of antibodies elicited by killed vaccine against multidrug-resistant (MDR) K. pneumoniae. Materials and Methods: In this study, heat-killed MDR K. pneumoniae isolated from different clinical samples were employed for the intradermal immunization of 10 BALB/c mice. Two weeks after the third dose of immunization, the mice were intraperitoneally challenged with live K. pneumoniae and observed for 14 days. Tail blood was collected 7 days after each booster followed by cardiac puncture 14 days postchallenge. Bactericidal activity and antigen-binding capacity of the serum antibody produced by the vaccine were evaluated by serum bactericidal antibody (SBA) assay and ELISA, respectively. Results: In this study, 80% survival rates were observed at 14 days postchallenge among the immunized mice. Regarding SBA assay, 100% bactericidal activity of the immunized mouse sera was observed using 50% guinea pig complement at 1:10 serum dilution after 3 h of incubation, and all the pre- and postchallenge immunized serum immunoglobulin G antibody had significantly higher optical density values comparing the control mice in ELISA. Conclusion: In our study, intradermal immunization with heat-killed MDR K. pneumoniae produced protective antibodies in BALB/c mice. These findings suggest that the use of a first-generation vaccine provides the supply of a larger number of candidate antigens for eliciting required immune response.
Collapse
Affiliation(s)
- Zannat Kawser
- Department of Microbiology, Dhaka Medical College, Dhaka, Bangladesh
| | - S M Shamsuzzaman
- Department of Microbiology, Dhaka Medical College, Dhaka, Bangladesh
| |
Collapse
|
2
|
Antonelli G, Cappelli L, Cinelli P, Cuffaro R, Manca B, Nicchi S, Tondi S, Vezzani G, Viviani V, Delany I, Scarselli M, Schiavetti F. Strategies to Tackle Antimicrobial Resistance: The Example of Escherichia coli and Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:4943. [PMID: 34066555 PMCID: PMC8125385 DOI: 10.3390/ijms22094943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon called antimicrobial resistance (AMR). Nowadays, AMR represents a critical health threat, for which new medical interventions are urgently needed. By 2050, it is estimated that the leading cause of death will be through untreatable AMR pathogens. Although antibiotics remain a first-line treatment, non-antibiotic therapies such as prophylactic vaccines and therapeutic monoclonal antibodies (mAbs) are increasingly interesting alternatives to limit the spread of such antibiotic resistant microorganisms. For the discovery of new vaccines and mAbs, the search for effective antigens that are able to raise protective immune responses is a challenging undertaking. In this context, outer membrane vesicles (OMV) represent a promising approach, as they recapitulate the complete antigen repertoire that occurs on the surface of Gram-negative bacteria. In this review, we present Escherichia coli and Pseudomonas aeruginosa as specific examples of key AMR threats caused by Gram-negative bacteria and we discuss the current status of mAbs and vaccine approaches under development as well as how knowledge on OMV could benefit antigen discovery strategies.
Collapse
Affiliation(s)
- Giada Antonelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Luigia Cappelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Paolo Cinelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Cuffaro
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Benedetta Manca
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Sonia Nicchi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Serena Tondi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Viola Viviani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Isabel Delany
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Maria Scarselli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Francesca Schiavetti
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| |
Collapse
|
3
|
Kanwar N, Banerjee D, Harrison CJ, Newland JG, Qin X, Zerr DM, Zaoutis T, Selvarangan R. Comparative in vitro effectiveness of ceftolozane/tazobactam against pediatric gram-negative drug-resistant isolates. J Chemother 2021; 33:288-293. [PMID: 33645447 DOI: 10.1080/1120009x.2021.1888030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ceftolozane/tazobactam (C/T), a cephalosporin/beta-lactamase inhibitor combination, was evaluated in vitro vs. 10 comparators against 299 pediatric extended-spectrum-cephalosporin-resistant or carbapenem-resistant (ESC-R/CR) Gram-negative Enterobacteriaceae from three freestanding pediatric centers. Isolates were from urine or other sterile sites of children and adolescents through 21 years of age. Susceptibilities were assayed by microbroth dilution via custom Sensititre plates (Thermo Fisher Scientific). Susceptibility was determined using the Sensititre Vizion® system (Thermo Fisher Scientific). Susceptibility breakpoint criteria were those of the Clinical and Laboratory Standards Institute (CLSI) for 2017, except for colistin (EUCAST 2019). Overall, 87.5% isolates were C/T susceptible (MIC ≤2 μg/ml; MIC50/90, 0.25/4 μg/ml). Susceptibility to C/T was detected more frequently as compared to all other antimicrobials tested except for colistin (95.4%) and meropenem (97.4%). Percent susceptibility to C/T was high for E. coli (91%) and Klebsiella spp. (73.3%). C/T demonstrated good in-vitro activity and high potency against most beta-lactam resistant pediatric Enterobacteriaceae from three geographically diverse U.S. regions.
Collapse
Affiliation(s)
- Neena Kanwar
- Children's Mercy, Department of Pathology and Laboratory Medicine, Kansas City, MO, USA.,School of Medicine, Department of Pathology and Laboratory Medicine, University of Missouri-Kansas City, MO, USA
| | - Dithi Banerjee
- Children's Mercy, Department of Pathology and Laboratory Medicine, Kansas City, MO, USA.,School of Medicine, Department of Pathology and Laboratory Medicine, University of Missouri-Kansas City, MO, USA
| | - Christopher J Harrison
- Children's Mercy, Department of Infectious Diseases, Kansas City, MO, USA.,School of Medicine, Department of Pediatrics, University of Missouri-Kansas City, MO, USA
| | - Jason G Newland
- Department of Infectious Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - Xuan Qin
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Danielle M Zerr
- University of Washington, Pediatric Infectious Diseases, Seattle, WA, USA
| | - Theoklis Zaoutis
- The Children's Hospital of Philadelphia, Division of Infectious Diseases, PA, USA
| | - Rangaraj Selvarangan
- Children's Mercy, Department of Pathology and Laboratory Medicine, Kansas City, MO, USA.,School of Medicine, Department of Pediatrics, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
4
|
Mehmood A, Naseer S, Ali A, Fatimah H, Rehman S, Kiani AK. Identification of novel vaccine candidates against carbapenem resistant Klebsiella pneumoniae: A systematic reverse proteomic approach. Comput Biol Chem 2020; 89:107380. [PMID: 32992120 DOI: 10.1016/j.compbiolchem.2020.107380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/09/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
Klebsiella pneumoniae is declared as antibiotic resistant by WHO, with the critical urgency of developing novel antimicrobial therapeutics as drug resistance is the second most dangerous threat after terrorism. Besides many attempts still, there is no effective vaccine available against K. pneumoniae. By utilizing all the available proteomic data we prioritized the novel proteins ideal for vaccine development using bioinformatics tools and techniques. Among the huge data, eight proteins passed all the barriers and were considered ideal candidates for vaccine development. These include: copper silver efflux system outer membrane protein (CusC), outer membrane porin protein (OmpN), Fe++ enterobactin transporter substrate binding protein (fepB), zinc transporter substrate binding protein (ZnuA), ribonuclease HI, tellurite resistant methyltransferase (the B), and two uncharacterized hypothetical proteins (WP_002918223 and WP_002892366). These proteins were also subjected to epitope analysis and were found best for developing subunit vaccine against K. pneumoniae. The study shows that the potential vaccine targets are sufficiently efficient being virulent, of outer membranous origin and can be proposed for the DNA third-generation vaccines development that would help to cope up infections caused by multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Asim Mehmood
- Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Samar Naseer
- Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad, Pakistan.
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Hina Fatimah
- Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Shazia Rehman
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Aysha Karim Kiani
- Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| |
Collapse
|
5
|
Adlbrecht C, Wurm R, Depuydt P, Spapen H, Lorente JA, Staudinger T, Creteur J, Zauner C, Meier-Hellmann A, Eller P, Laenen MV, Molnár Z, Várkonyi I, Schaaf B, Héjja M, Šrámek V, Schneider H, Kanesa-Thasan N, Eder-Lingelbach S, Klingler A, Dubischar K, Wressnigg N, Rello J. Efficacy, immunogenicity, and safety of IC43 recombinant Pseudomonas aeruginosa vaccine in mechanically ventilated intensive care patients-a randomized clinical trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:74. [PMID: 32131866 PMCID: PMC7057595 DOI: 10.1186/s13054-020-2792-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
Abstract
Background Pseudomonas aeruginosa infections are a serious threat in intensive care units (ICUs). The aim of this confirmatory, randomized, multicenter, placebo-controlled, double-blind, phase 2/3 study was to assess the efficacy, immunogenicity, and safety of IC43 recombinant Pseudomonas aeruginosa vaccine in non-surgical ICU patients. Methods Eight hundred patients aged 18 to 80 years admitted to the ICU with expected need for mechanical ventilation for ≥ 48 h were randomized 1:1 to either IC43 100 μg or saline placebo, given in two vaccinations 7 days apart. The primary efficacy endpoint was all-cause mortality in patients 28 days after the first vaccination. Immunogenicity and safety were also evaluated. Findings All-cause mortality rates at day 28 were 29.2% vs 27.7% in the IC43 and placebo groups, respectively (P = .67). Overall survival (Kaplan-Meier survival estimates, P = .46) and proportion of patients with ≥ one confirmed P. aeruginosa invasive infection or respiratory tract infection also did not differ significantly between both groups. The geometric mean fold increase in OprF/I titers was 1.5 after the first vaccination, 20 at day 28, after the second vaccination, and 2.9 at day 180. Significantly more patients in the placebo group (96.5%) had ≥ one adverse event (AE) versus the IC43 100 μg group (93.1%) (P = .04). The most frequently reported severe AEs in the IC43 and placebo groups were respiratory failure (6.9% vs 5.7%, respectively), septic shock (4.1% vs 6.5%), cardiac arrest (4.3% vs 5.7%), multiorgan failure (4.6% vs 5.5%), and sepsis (4.6% vs 4.2%). No related serious AEs were reported in the IC43 group. Interpretation The IC43 100 μg vaccine was well tolerated in this large population of medically ill, mechanically ventilated patients. The vaccine achieved high immunogenicity but provided no clinical benefit over placebo in terms of overall mortality. Trial registration https://clinicaltrials.gov (NCT01563263). Registration was sent to ClinicalTrials.gov on March 14, 2012, but posted by ClinicalTrials.gov on March 26, 2012. The first subject was included in the trial on March 22, 2012.
Collapse
Affiliation(s)
- Christopher Adlbrecht
- Department of Cardiology, Vienna North Hospital-Clinic Floridsdorf and the Karl Landsteiner Institute for Cardiovascular and Critical Care Research, Vienna, Austria
| | | | | | | | - Jose A Lorente
- Hospital Universitario de Getafe, CIBER de Enfermedades Respiratorias, Universidad Europea, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | - Mária Héjja
- Országos Korányi TBC és Pulmonológiai Intézet, Budapest, Hungary
| | - Vladimír Šrámek
- Fakultní nemocnice U Svaté Anny v Brně, Brno, Czech Republic
| | - Hauke Schneider
- Technische Universität Dresden, Dresden, Germany.,University Hospital Augsburg, Augsburg, Germany
| | | | | | - Anton Klingler
- Assign Data Management and Biostatistics GmbH, Innsbruck, Austria
| | - Katrin Dubischar
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030, Vienna, Austria
| | - Nina Wressnigg
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030, Vienna, Austria.
| | - Jordi Rello
- Centro de Investigacion Biomedica en Red (CIBERES), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
6
|
Manikandan M, Gowdaman V, Duraimurugan K, Prabagaran SR. Taxonomic characterization and antimicrobial compound production from Streptomyces chumphonensis BDK01 isolated from marine sediment. 3 Biotech 2019; 9:167. [PMID: 30997304 PMCID: PMC6449414 DOI: 10.1007/s13205-019-1687-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/19/2019] [Indexed: 10/27/2022] Open
Abstract
Streptomyces sp. isolated from marine sediment collected from Palk Strait, Bay of Bengal was investigated for its antagonistic potential. The isolate exhibited antimicrobial activity against selected bacterial strains of clinical importance such as Staphylococcus aureus MTCC 3160, Bacillus pumilus NCIM 2327, S. aureus (methicillin resistant), Escherichia coli MTCC 1698, E. coli (ESBL), Shigella flexneri MTCC 1457, Proteus vulgaris and Enterobacter cloacae. Phenotypic and molecular characterization ascertained the isolate BDK01 as Streptomyces chumphonensis. Media optimization with one variable-at-a-time strategy was attempted to identify the ideal concentrations of starch (5-15 g/l), casein (0.01-0.05 g/l), NaCl 1.0-3.0 g/l, pH (4.0-9.0 g/l), temperature (25-45 °C) and inoculum level (0.5-5 ml) towards achieving maximum antimicrobial compound production. Statistical optimization of production media was carried by establishing an 11 variables 17 run experiment through PB model which evinced starch, calcium carbonate, pH and inoculum concentration that highly influenced bioactive compound production. Spectral data of active ethyl acetate extract revealed the presence of various bioactive compounds such as Salicyl alcohol, N-phenyl benzamide. 6-Octadecenoic acid, (Z), 1,3,5-Cycloheptatriene. Antiproliferation activity of active fraction against MCF-7 Cell line exhibited IC50 value of 9.5 µg/ml. Overall, it is observed that the marine actinomycete S. chumphonensis BDK01 could be employable as promising strain for novel antimicrobial and cytotoxic metabolites.
Collapse
Affiliation(s)
- Madheslu Manikandan
- Department of Biotechnology, Sri Krishna Arts and Science College, Coimbatore, 641 008 India
| | | | - Kasiviswanathan Duraimurugan
- School of Community Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, 711 103 India
| | | |
Collapse
|
7
|
Why Don't We Have a Vaccine Against……….? Part 3. Bacteria, Too. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2016. [DOI: 10.1097/ipc.0000000000000363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Wan QQ, Ye QF, Yuan H. Multidrug-resistant Gram-negative bacteria in solid organ transplant recipients with bacteremias. Eur J Clin Microbiol Infect Dis 2015; 34:431-437. [PMID: 25388855 DOI: 10.1007/s10096-014-2271-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/28/2014] [Indexed: 12/11/2022]
Abstract
Bloodstream infections (BSIs) remain as life-threatening complications and are associated with significant morbidity and mortality among solid organ transplant (SOT) recipients. Multidrug-resistant (MDR) Gram-negative bacteria can cause serious bacteremias in these recipients. Reviews have aimed to investigate MDR Gram-negative bacteremias; however, they were lacking in SOT recipients in the past. To better understand the characteristics of bacteremias due to MDR Gram-negative bacteria, optimize preventive and therapeutic strategies, and improve the outcomes of SOT recipients, this review summarize the epidemiology, clinical and laboratory characteristics, and explores the mechanisms, prevention, and treatment of MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Q Q Wan
- Department of Transplant Surgery, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | | | | |
Collapse
|
9
|
Sorbera M, Chung E, Ho CW, Marzella N. Ceftolozane/Tazobactam: a new option in the treatment of complicated gram-negative infections. P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT 2014; 39:825-832. [PMID: 25516692 PMCID: PMC4264669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ceftolozane/tazobactam: a new option in the treatment of complicated gram-negative infections.
Collapse
|