1
|
Clement L, Schwarz S, Mahot-Castaing B, Wystrach A. Is this scenery worth exploring? Insight into the visual encoding of navigating ants. J Exp Biol 2025; 228:JEB249935. [PMID: 39882691 DOI: 10.1242/jeb.249935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Solitary foraging insects such as desert ants rely heavily on vision for navigation. Although ants can learn visual scenes, it is unclear what cues they use to decide whether a scene is worth exploring at the first place. To investigate this, we recorded the motor behaviour of Cataglyphis velox ants navigating in a virtual reality setup and measured their lateral oscillations in response to various unfamiliar visual scenes under both closed-loop and open-loop conditions. In naturalistic-looking panorama, ants display regular oscillations as observed outdoors, allowing them to efficiently scan the scenery. Manipulations of the virtual environment revealed distinct functions served by dynamic and static cues. Dynamic cues, mainly rotational optic flow, regulated the amplitude of oscillations but not their regularity. Conversely, static cues had little impact on the amplitude but were essential for producing regular oscillations. Regularity of oscillations decreased in scenes with only horizontal, only vertical or no edges, but was restored in scenes with both edge types together. The actual number of edges, the visual pattern heterogeneity across azimuths, the light intensity or the relative elevation of brighter regions did not affect oscillations. We conclude that ants use a simple but functional heuristic to determine whether the visual world is worth exploring, relying on the presence of at least two different edge orientations in the scene.
Collapse
Affiliation(s)
- Leo Clement
- Centre de Recherches sur la Cognition Animale, CNRS, Université Paul Sabatier, Toulouse 31062 cedex 09, France
| | - Sebastian Schwarz
- Centre de Recherches sur la Cognition Animale, CNRS, Université Paul Sabatier, Toulouse 31062 cedex 09, France
- Department of Biology, University of Graz, 8010 Graz, Austria
| | - Blandine Mahot-Castaing
- Centre de Recherches sur la Cognition Animale, CNRS, Université Paul Sabatier, Toulouse 31062 cedex 09, France
| | - Antoine Wystrach
- Centre de Recherches sur la Cognition Animale, CNRS, Université Paul Sabatier, Toulouse 31062 cedex 09, France
| |
Collapse
|
2
|
Deeti S, Cheng K. Desert ants (Melophorus bagoti) oscillate and scan more in navigation when the visual scene changes. Anim Cogn 2025; 28:15. [PMID: 39979462 PMCID: PMC11842525 DOI: 10.1007/s10071-025-01936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Solitarily foraging ants learn to navigate between important locations by comparing their current view with memorized scenes along a familiar route. As desert ants, in particular, travel between their nest and a food source, they establish stable and visually guided routes that guide them without relying on trail pheromones. We investigated how changes in familiar visual scenes affect the navigation of the red honey ant (Melophorus bagoti). In Experiment 1, ants were trained to follow a one-way diamond-shaped path to forage and return home. We manipulated scene familiarity by adding a board on their homebound route just before the nest. In Experiment 2, ants were trained to travel a straight path from their nest to a feeder, and we removed the prominent landmarks on the route after they had established a stable route. We predicted that these scene changes would cause the ants to deviate from their usual straight paths, slow down, scan more, and increase their lateral oscillations to gather additional information. Our findings showed that when the familiar scene was changed, ants oscillated more, slowed their speed, and increased scanning bouts, indicating a shift from exploiting known information to more actively exploring and learning new visual cues. These results suggest that scene familiarity plays a crucial role in ant navigation, and changes in their visual environment lead to distinct behavioral adaptations aimed at learning about the new cues.
Collapse
Affiliation(s)
- Sudhakar Deeti
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
3
|
Lee TYH, Phelan PL. Reticulitermes flavipes (Blattodea: Rhinotermitidae) Response to Wood Mulch and Workers Mediated by Attraction to Carbon Dioxide. INSECTS 2025; 16:194. [PMID: 40003824 PMCID: PMC11856009 DOI: 10.3390/insects16020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
The eastern subterranean termite, Reticulitermes flavipes, is challenged by the significant energy expenditures of tunnel construction for resource discovery. Subterranean termites use idiothetic mechanisms to explore large spaces, while the use of resource-specific cues for localized search is disputed. Here, termite response to wood mulch, termite workers, extracts of wood mulch, and CO2 alone were tested using a bioassay design that distinguished between attraction and arrestment. Termites showed significant attraction to wood mulch with workers or to wood mulch alone. They did not respond to workers alone at the initial dose tested, but were attracted to workers at higher densities. Termites did not respond to water or the acetone extracts of wood mulch, but did show a partial response to hexane extract compared to intact wood mulch. More significantly, when CO2 was removed from the emissions of wood mulch and workers using soda lime, attraction was eliminated. Furthermore, termites showed a quadratic response to CO2 concentration that peaked at ca. 14,000 ppm. The response to CO2 alone predicted by the model matched termite response to mulch + workers when compared at the level of CO2 they emitted. The results suggest that CO2 is both necessary and sufficient to explain the attraction response of R. flavipes to mulch and workers we observed. It is argued that orientation to food cues complements the previously demonstrated idiothetic program to maximize the efficiency of resource location.
Collapse
Affiliation(s)
- Tae Young Henry Lee
- Department of Entomology, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - P. Larry Phelan
- Department of Entomology, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
| |
Collapse
|
4
|
Dauzere-Peres O, Wystrach A. Ants integrate proprioception as well as visual context and efference copies to make robust predictions. Nat Commun 2024; 15:10205. [PMID: 39617774 PMCID: PMC11609268 DOI: 10.1038/s41467-024-53856-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 10/23/2024] [Indexed: 05/17/2025] Open
Abstract
Forward models are mechanisms enabling an agent to predict the sensory outcomes of its actions. They can be implemented through efference copies: copies of motor signals inhibiting the expected sensory stimulation, literally canceling the perceptual outcome of the predicted action. In insects, efference copies are known to modulate optic flow detection for flight control in flies. Here we investigate whether forward models account for the detection of optic flow in walking ants, and how the latter is integrated for locomotion control. We mounted Cataglyphis velox ants in a virtual reality setup and manipulated the relationship between the ants' movements and the optic flow perceived. Our results show that ants compute predictions of the optic flow expected according to their own movements. However, the prediction is not solely based on efference copies, but involves proprioceptive feedbacks and is fine-tuned by the panorama's visual structure. Mismatches between prediction and perception are computed for each eye, and error signals are integrated to adjust locomotion through the modulation of internal oscillators. Our work reveals that insects' forward models are non-trivial and compute predictions based on multimodal information.
Collapse
Affiliation(s)
- Océane Dauzere-Peres
- Centre de Recherches sur la Cognition Animale, CBI,CNRS, Université Paul Sabatier, Toulouse, France.
| | - Antoine Wystrach
- Centre de Recherches sur la Cognition Animale, CBI,CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
5
|
Nakata T, Terutsuki D, Fukui C, Uchida T, Kanzaki K, Koeda T, Koizumi S, Murayama Y, Kanzaki R, Liu H. Olfactory sampling volume for pheromone capture by wing fanning of silkworm moth: a simulation-based study. Sci Rep 2024; 14:17879. [PMID: 39095549 PMCID: PMC11297250 DOI: 10.1038/s41598-024-67966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Odours used by insects for foraging and mating are carried by the air. Insects induce airflows around them by flapping their wings, and the distribution of these airflows may strongly influence odour source localisation. The flightless silkworm moth, Bombyx mori, has been a prominent insect model for olfactory research. However, although there have been numerous studies on antenna morphology and its fluid dynamics, neurophysiology, and localisation algorithms, the airflow manipulation of the B. mori by fanning has not been thoroughly investigated. In this study, we performed computational fluid dynamics (CFD) analyses of flapping B. mori to analyse this mechanism in depth. A three-dimensional simulation using reconstructed wing kinematics was used to investigate the effects of B. mori fanning on locomotion and pheromone capture. The fanning of the B. mori was found to generate an aerodynamic force on the scale of its weight through an aerodynamic mechanism similar to that of flying insects. Our simulations further indicate that the B. mori guides particles from its anterior direction within the ~ 60° horizontally by wing fanning. Hence, if it detects pheromones during fanning, the pheromone can be concluded to originate from the direction the head is pointing. The anisotropy in the sampling volume enables the B. mori to orient to the pheromone plume direction. These results provide new insights into insect behaviour and offer design guidelines for robots for odour source localisation.
Collapse
Affiliation(s)
| | - Daigo Terutsuki
- Department of Mechanical Engineering and Robotics, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan.
| | - Chihiro Fukui
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Tomoya Uchida
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kohei Kanzaki
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Taito Koeda
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Sakito Koizumi
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Yuta Murayama
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Brezovec BE, Berger AB, Hao YA, Chen F, Druckmann S, Clandinin TR. Mapping the neural dynamics of locomotion across the Drosophila brain. Curr Biol 2024; 34:710-726.e4. [PMID: 38242122 DOI: 10.1016/j.cub.2023.12.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Locomotion engages widely distributed networks of neurons. However, our understanding of the spatial architecture and temporal dynamics of the networks that underpin walking remains incomplete. We use volumetric two-photon imaging to map neural activity associated with walking across the entire brain of Drosophila. We define spatially clustered neural signals selectively associated with changes in either forward or angular velocity, demonstrating that neurons with similar behavioral selectivity are clustered. These signals reveal distinct topographic maps in diverse brain regions involved in navigation, memory, sensory processing, and motor control, as well as regions not previously linked to locomotion. We identify temporal trajectories of neural activity that sweep across these maps, including signals that anticipate future movement, representing the sequential engagement of clusters with different behavioral specificities. Finally, we register these maps to a connectome and identify neural networks that we propose underlie the observed signals, setting a foundation for subsequent circuit dissection. Overall, our work suggests a spatiotemporal framework for the emergence and execution of complex walking maneuvers and links this brain-wide neural activity to single neurons and local circuits.
Collapse
Affiliation(s)
- Bella E Brezovec
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Andrew B Berger
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Yukun A Hao
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Feng Chen
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Louis M. Drosophila flight: How flies control casts and surges. Curr Biol 2024; 34:R91-R94. [PMID: 38320480 DOI: 10.1016/j.cub.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
In the absence of directional cues, most foraging animals explore space by turning and zigzagging in search of sensory information. Recent progress in the identification of the neural correlates of turns in flies offers exciting new perspectives on the evolution of neural circuits controlling fundamental aspects of orientation responses.
Collapse
Affiliation(s)
- Matthieu Louis
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
8
|
Nishino H. Spatial odor map formation, development, and possible function in a nocturnal insect. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101087. [PMID: 37468043 DOI: 10.1016/j.cois.2023.101087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
An odor plume is composed of fine filamentous structures interspersed by clean air. Various animals use bilateral comparison with paired olfactory organs for detecting spatial and temporal features of the plume. American cockroaches are capable of locating a sex pheromone source with one long antenna spanning 5 cm, so-called unilateral odor sampling. This capability stems from an antennotopic map in which olfactory sensory neurons located proximo-distally in the antenna send axon terminals proximo-distally in a given glomerulus, relative to axonal entry points. Multiple output neurons (projection neurons) utilize this spatial map in the pheromone-receptive glomerulus. Here, I summarize neuronal underpinnings of receptive field formation, development, and how this intraglomerular spatial map can be utilized for odor localization.
Collapse
Affiliation(s)
- Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
9
|
Deeti S, Cheng K, Graham P, Wystrach A. Scanning behaviour in ants: an interplay between random-rate processes and oscillators. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01628-8. [PMID: 37093284 DOI: 10.1007/s00359-023-01628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/05/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023]
Abstract
At the start of a journey home or to a foraging site, ants often stop, interrupting their forward movement, turn on the spot a number of times, and fixate in different directions. These scanning bouts are thought to provide visual information for choosing a path to travel. The temporal organization of such scanning bouts has implications about the neural organisation of navigational behaviour. We examined (1) the temporal distribution of the start of such scanning bouts and (2) the dynamics of saccadic body turns and fixations that compose a scanning bout in Australian desert ants, Melophorus bagoti, as they came out of a walled channel onto open field at the start of their homeward journey. Ants were caught when they neared their nest and displaced to different locations to start their journey home again. The observed parameters were mostly similar across familiar and unfamiliar locations. The turning angles of saccadic body turning to the right or left showed some stereotypy, with a peak just under 45°. The direction of such saccades appears to be determined by a slow oscillatory process as described in other insect species. In timing, however, both the distribution of inter-scanning-bout intervals and individual fixation durations showed exponential characteristics, the signature for a random-rate or Poisson process. Neurobiologically, therefore, there must be some process that switches behaviour (starting a scanning bout or ending a fixation) with equal probability at every moment in time. We discuss how chance events in the ant brain that occasionally reach a threshold for triggering such behaviours can generate the results.
Collapse
Affiliation(s)
- Sudhakar Deeti
- School of Natural Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, NSW 2019, Australia.
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Antoine Wystrach
- Centre de Recherches Sur La Cognition Animale, CBI, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
10
|
Grob R, Jundi BE. Insect navigation: Where to face when moving through space. Curr Biol 2023; 33:R100-R103. [PMID: 36750018 DOI: 10.1016/j.cub.2022.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ants perform oscillating scans of the environment during homing. A new study has shown that this scanning behaviour in ants is controlled by an intrinsic neuronal oscillator, which is modulated by both innate, and learnt visual cues.
Collapse
Affiliation(s)
- Robin Grob
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7941 Trondheim, Norway
| | - Basil El Jundi
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7941 Trondheim, Norway.
| |
Collapse
|
11
|
Clement L, Schwarz S, Wystrach A. An intrinsic oscillator underlies visual navigation in ants. Curr Biol 2023; 33:411-422.e5. [PMID: 36538930 DOI: 10.1016/j.cub.2022.11.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Many insects display lateral oscillations while moving, but how these oscillations are produced and participate in visual navigation remains unclear. Here, we show that visually navigating ants continuously display regular lateral oscillations coupled with variations of forward speed that strongly optimize the distance covered while simultaneously enabling them to scan left and right directions. This pattern of movement is produced endogenously and conserved across navigational contexts in two phylogenetically distant ant species. Moreover, the oscillations' amplitude can be modulated by both innate or learnt visual cues to adjust the exploration/exploitation balance to the current need. This lower-level motor pattern thus drastically reduces the degree of freedom needed for higher-level strategies to control behavior. The observed dynamical signature readily emerges from a simple neural circuit model of the insect's conserved pre-motor area known as the lateral accessory lobe, offering a surprisingly simple but effective neural control and endorsing oscillation as a core, ancestral way of moving in insects.
Collapse
Affiliation(s)
- Leo Clement
- Centre de Recherches sur la Cognition Animale, CBI, CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 09, France.
| | - Sebastian Schwarz
- Centre de Recherches sur la Cognition Animale, CBI, CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 09, France
| | - Antoine Wystrach
- Centre de Recherches sur la Cognition Animale, CBI, CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 09, France
| |
Collapse
|
12
|
Steinbeck F, Nowotny T, Philippides A, Graham P. Production of adaptive movement patterns via an insect inspired spiking neural network central pattern generator. Front Comput Neurosci 2022; 16:948973. [DOI: 10.3389/fncom.2022.948973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Navigation in ever-changing environments requires effective motor behaviors. Many insects have developed adaptive movement patterns which increase their success in achieving navigational goals. A conserved brain area in the insect brain, the Lateral Accessory Lobe, is involved in generating small scale search movements which increase the efficacy of sensory sampling. When the reliability of an essential navigational stimulus is low, searching movements are initiated whereas if the stimulus reliability is high, a targeted steering response is elicited. Thus, the network mediates an adaptive switching between motor patterns. We developed Spiking Neural Network models to explore how an insect inspired architecture could generate adaptive movements in relation to changing sensory inputs. The models are able to generate a variety of adaptive movement patterns, the majority of which are of the zig-zagging kind, as seen in a variety of insects. Furthermore, these networks are robust to noise. Because a large spread of network parameters lead to the correct movement dynamics, we conclude that the investigated network architecture is inherently well-suited to generating adaptive movement patterns.
Collapse
|
13
|
Kymre JH, Chu X, Ian E, Berg BG. Organization of the parallel antennal-lobe tracts in the moth. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:707-721. [PMID: 36112200 PMCID: PMC9734247 DOI: 10.1007/s00359-022-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
The olfactory pathways of the insect brain have been studied comprehensively for more than 40 years, yet the last decade has included a particularly large accumulation of new information relating to this system's structure. In moths, sharp intracellular recording and staining has been used to elucidate the anatomy and physiology of output neurons from the primary olfactory center, the antennal lobe. This review concentrates on the connection patterns characterizing these projection neurons, which follow six separate antennal-lobe tracts. In addition to highlighting the connections between functionally distinct glomerular clusters and higher-order olfactory neuropils, we discuss how parallel tracts in the male convey distinct features of the social signals released by conspecific and heterospecific females. Finally, we consider the current state of knowledge regarding olfactory processing in the moth's protocerebrum and make suggestions as to how the information concerning antennal-lobe output may be used to design future studies.
Collapse
Affiliation(s)
- Jonas Hansen Kymre
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Xi Chu
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elena Ian
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bente Gunnveig Berg
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
14
|
Shiga S, Omura Y, Kawasaki Y, Watanabe K. Phylogenetic Separation of Holotrichia Species (Insecta, Coleoptera, Scarabaeidae) Exhibiting Circadian Rhythm and Circa'bi'dian Rhythm. Zoolog Sci 2022; 39:227-235. [PMID: 35699925 DOI: 10.2108/zs210091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
A unique two-day rhythm, circabidian rhythm, has been reported in the black chafer, Holotrichia parallela. However, it remains unknown how widely the circabidian rhythm appears in related species. We examined the activity rhythm and phylogeny of congeneric species inhabiting Japan to investigate the appearance of circabidian rhythms in a few subgenera of the genus Holotrichia. We found that Holotrichia picea also exhibited circabidian rhythm. In addition to the regular circabidian pattern, circabidian rhythms with day-switching or with a circadian activity component were also observed. In the day-switching pattern, H. picea switched appearance from odd to even days, or vice versa. In the circadian-like activity patterns, a major night activity and a minor dusk activity appeared alternately. Holotrichia kiotonensis, Holotrichia convexopyga, and Holotrichia loochooana loochooana exhibited a circadian rhythm. Two distinct clades, A and B, were recognized in the histone H3, cytochrome c oxidase subunit 1, and 16S ribosomal RNA phylogenetic trees. This phylogenetic separation was in accordance with the subgeneric classification based on external morphology in a previous study and with behavioral rhythm in the present study: clade A included Nigrotrichia group members, H. kiotonensis, H. convexopyga, H. loochooana loochooana, and H. loochooana okinawana, while clade B included Pedinotrichia group members, H. paralella and H. picea. We suggest that after separation into Nigrotrichia and Pedinotrichia, the behavioral trait of circabidian rhythm probably appeared once in an ancestral species of the Pedinotrichia group, including H. parallela and H. picea.
Collapse
Affiliation(s)
- Sakiko Shiga
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan,
| | - Yuzuru Omura
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuta Kawasaki
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Kohei Watanabe
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
15
|
Cheng K. Oscillators and servomechanisms in orientation and navigation, and sometimes in cognition. Proc Biol Sci 2022; 289:20220237. [PMID: 35538783 PMCID: PMC9091845 DOI: 10.1098/rspb.2022.0237] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Navigational mechanisms have been characterized as servomechanisms. A navigational servomechanism specifies a goal state to strive for. Discrepancies between the perceived current state and the goal state specify error. Servomechanisms adjust the course of travel to reduce the error. I now add that navigational servomechanisms work with oscillators, periodic movements of effectors that drive locomotion. I illustrate this concept selectively over a vast range of scales of travel from micrometres in bacteria to thousands of kilometres in sea turtles. The servomechanisms differ in sophistication, with some interrupting forward motion occasionally or changing travel speed in kineses and others adjusting the direction of travel in taxes. I suggest that in other realms of life as well, especially in cognition, servomechanisms work with oscillators.
Collapse
Affiliation(s)
- Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, North Ryde, NSW 2109, Australia
| |
Collapse
|
16
|
Woodgate JL, Perl C, Collett TS. The routes of one-eyed ants suggest a revised model of normal route following. J Exp Biol 2021; 224:271814. [PMID: 34382659 DOI: 10.1242/jeb.242167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/12/2021] [Indexed: 11/20/2022]
Abstract
The prevailing account of visually controlled routes is that an ant learns views as it follows a route, while guided by other path-setting mechanisms. Once a set of route views is memorised, the insect follows the route by turning and moving forwards when the view on the retina matches a stored view. We engineered a situation in which this account cannot suffice in order to discover whether there may be additional components to the performance of routes. One-eyed wood ants were trained to navigate a short route in the laboratory, guided by a single black, vertical bar placed in the blinded visual field. Ants thus had to turn away from the route to see the bar. They often turned to look at or beyond the bar and then turned to face in the direction of the goal. Tests in which the bar was shifted to be more peripheral or more frontal than in training produced a corresponding directional change in the ants' paths, demonstrating that they were guided by the bar. Examination of the endpoints of turns towards and away from the bar indicate that ants use the bar for guidance by learning how large a turn-back is needed to face the goal. We suggest that the ants' zigzag paths are, in part, controlled by turns of a learnt amplitude and that these turns are an integral component of visually guided route following.
Collapse
Affiliation(s)
- Joseph L Woodgate
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Craig Perl
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Thomas S Collett
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
17
|
Wystrach A. Movements, embodiment and the emergence of decisions. Insights from insect navigation. Biochem Biophys Res Commun 2021; 564:70-77. [PMID: 34023071 DOI: 10.1016/j.bbrc.2021.04.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
We readily infer that animals make decisions, but what this implies is usually not clearly defined. The notion of 'decision-making' ultimately stems from human introspection, and is thus loaded with anthropomorphic assumptions. Notably, the decision is made internally, is based on information, and precedes the goal directed behaviour. Also, making a decision implies that 'something' did it, thus hints at the presence of a cognitive mind, whose existence is independent of the decision itself. This view may convey some truth, but here I take the opposite stance. Using examples from research in insect navigation, this essay highlights how apparent decisions can emerge without a brain, how actions can precede information or how sophisticated goal directed behaviours can be implemented without neural decisions. This perspective requires us to shake off the idea that behaviour is a consequence of the brain; and embrace the concept that movements arise from - as much as participate in - distributed interactions between various computational centres - including the body - that reverberate in closed-loop with the environment. From this perspective we may start to picture how a cognitive mind can be the consequence, rather than the cause, of such neural and body movements.
Collapse
Affiliation(s)
- Antoine Wystrach
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route deNarbonne, F-31062, Toulouse, France.
| |
Collapse
|
18
|
Burbano-L. DA, Porfiri M. Modeling multi-sensory feedback control of zebrafish in a flow. PLoS Comput Biol 2021; 17:e1008644. [PMID: 33481795 PMCID: PMC7857640 DOI: 10.1371/journal.pcbi.1008644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/03/2021] [Accepted: 12/18/2020] [Indexed: 11/18/2022] Open
Abstract
Understanding how animals navigate complex environments is a fundamental challenge in biology and a source of inspiration for the design of autonomous systems in engineering. Animal orientation and navigation is a complex process that integrates multiple senses, whose function and contribution are yet to be fully clarified. Here, we propose a data-driven mathematical model of adult zebrafish engaging in counter-flow swimming, an innate behavior known as rheotaxis. Zebrafish locomotion in a two-dimensional fluid flow is described within the finite-dipole model, which consists of a pair of vortices separated by a constant distance. The strength of these vortices is adjusted in real time by the fish to afford orientation and navigation control, in response to of the multi-sensory input from vision, lateral line, and touch. Model parameters for the resulting stochastic differential equations are calibrated through a series of experiments, in which zebrafish swam in a water channel under different illumination conditions. The accuracy of the model is validated through the study of a series of measures of rheotactic behavior, contrasting results of real and in-silico experiments. Our results point at a critical role of hydromechanical feedback during rheotaxis, in the form of a gradient-following strategy.
Collapse
Affiliation(s)
- Daniel A. Burbano-L.
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York City, New York, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York City, New York, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York City, New York, USA
- Center for Urban Sciences and Progress, Tandon School of Engineering, New York University, New York City, New York, USA
- * E-mail:
| |
Collapse
|
19
|
Le Moël F, Wystrach A. Towards a multi-level understanding in insect navigation. CURRENT OPINION IN INSECT SCIENCE 2020; 42:110-117. [PMID: 33252043 DOI: 10.1016/j.cois.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
To understand the brain is to understand behaviour. However, understanding behaviour itself requires consideration of sensory information, body movements and the animal's ecology. Therefore, understanding the link between neurons and behaviour is a multi-level problem, which can be achieved when considering Marr's three levels of understanding: behaviour, computation, and neural implementation. Rather than establishing direct links between neurons and behaviour, the matter boils down to understanding two transitions: the link between neurons and brain computation on one hand, and the link between brain computations and behaviour on the other hand. The field of insect navigation illustrates well the power of such two-sided endeavour. We provide here examples revealing that each transition requires its own approach with its own intrinsic difficulties, and show how modelling can help us reach the desired multi-level understanding.
Collapse
Affiliation(s)
- Florent Le Moël
- Centre de recherches sur la cognition animale, Toulouse, France.
| | | |
Collapse
|
20
|
Abstract
AbstractReliance on broad-spectrum insecticides and chemotherapeutic agents to control hematophagous insect vectors, and their related diseases is threatened by increasing insecticide and drug resistance, respectively. Thus, development of novel, alternative, complementary and effective technologies for surveillance and control of such insects is strongly encouraged. Semiochemicals are increasingly developed for monitoring and intervention of insect crop pests, but this has not been adequately addressed for hematophagous insects of medical and veterinary importance. This review provides an insight in the application of semiochemicals for control of hematophagous insects. Here, we provide specific information regarding the isolation and identification of semiochemical compounds, optimization approaches, detection, perception and discrimination by the insect olfactory system. Navigation of insects along wind-borne odor plumes is discussed and methods of odor application in field situations are reviewed. Finally, we discuss prospects and future challenges for the application of semiochemical-based tools with emphasis on mosquitoes. The acquired knowledge can guide development of more effective components of integrated vector management, safeguard against emerging resistance of insects to existing insecticides and reduce the burden of vector-borne diseases.
Collapse
|
21
|
Steinbeck F, Adden A, Graham P. Connecting brain to behaviour: a role for general purpose steering circuits in insect orientation? J Exp Biol 2020; 223:223/5/jeb212332. [DOI: 10.1242/jeb.212332] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
The lateral accessory lobes (LALs), paired structures that are homologous among all insect species, have been well studied for their role in pheromone tracking in silkmoths and phonotaxis in crickets, where their outputs have been shown to correlate with observed motor activity. Further studies have shown more generally that the LALs are crucial both for an insect's ability to steer correctly and for organising the outputs of the descending pathways towards the motor centres. In this context, we propose a framework by which the LALs may be generally involved in generating steering commands across a variety of insects and behaviours. Across different behaviours, we see that the LAL is involved in generating two kinds of steering: (1) search behaviours and (2) targeted steering driven by direct sensory information. Search behaviours are generated when the current behaviourally relevant cues are not available, and a well-described LAL subnetwork produces activity which increases sampling of the environment. We propose that, when behaviourally relevant cues are available, the LALs may integrate orientation information from several sensory modalities, thus leading to a collective output for steering driven by those cues. These steering commands are then sent to the motor centres, and an additional efference copy is sent back to the orientation-computing areas. In summary, we have taken known aspects of the neurophysiology and function of the insect LALs and generated a speculative framework that suggests how LALs might be involved in steering control for a variety of complex real-world behaviours in insects.
Collapse
Affiliation(s)
- Fabian Steinbeck
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Andrea Adden
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
22
|
Adden A, Wibrand S, Pfeiffer K, Warrant E, Heinze S. The brain of a nocturnal migratory insect, the Australian Bogong moth. J Comp Neurol 2020; 528:1942-1963. [PMID: 31994724 DOI: 10.1002/cne.24866] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Every year, millions of Australian Bogong moths (Agrotis infusa) complete an astonishing journey: In Spring, they migrate over 1,000 km from their breeding grounds to the alpine regions of the Snowy Mountains, where they endure the hot summer in the cool climate of alpine caves. In autumn, the moths return to their breeding grounds, where they mate, lay eggs and die. These moths can use visual cues in combination with the geomagnetic field to guide their flight, but how these cues are processed and integrated into the brain to drive migratory behavior is unknown. To generate an access point for functional studies, we provide a detailed description of the Bogong moth's brain. Based on immunohistochemical stainings against synapsin and serotonin (5HT), we describe the overall layout as well as the fine structure of all major neuropils, including the regions that have previously been implicated in compass-based navigation. The resulting average brain atlas consists of 3D reconstructions of 25 separate neuropils, comprising the most detailed account of a moth brain to date. Our results show that the Bogong moth brain follows the typical lepidopteran ground pattern, with no major specializations that can be attributed to their spectacular migratory lifestyle. These findings suggest that migratory behavior does not require widespread modifications of brain structure, but might be achievable via small adjustments of neural circuitry in key brain areas. Locating these subtle changes will be a challenging task for the future, for which our study provides an essential anatomical framework.
Collapse
Affiliation(s)
- Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Sara Wibrand
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.,NanoLund, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Le Möel F, Wystrach A. Opponent processes in visual memories: A model of attraction and repulsion in navigating insects' mushroom bodies. PLoS Comput Biol 2020; 16:e1007631. [PMID: 32023241 PMCID: PMC7034919 DOI: 10.1371/journal.pcbi.1007631] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/21/2020] [Accepted: 01/04/2020] [Indexed: 11/19/2022] Open
Abstract
Solitary foraging insects display stunning navigational behaviours in visually complex natural environments. Current literature assumes that these insects are mostly driven by attractive visual memories, which are learnt when the insect's gaze is precisely oriented toward the goal direction, typically along its familiar route or towards its nest. That way, an insect could return home by simply moving in the direction that appears most familiar. Here we show using virtual reconstructions of natural environments that this principle suffers from fundamental drawbacks, notably, a given view of the world does not provide information about whether the agent should turn or not to reach its goal. We propose a simple model where the agent continuously compares its current view with both goal and anti-goal visual memories, which are treated as attractive and repulsive respectively. We show that this strategy effectively results in an opponent process, albeit not at the perceptual level-such as those proposed for colour vision or polarisation detection-but at the level of the environmental space. This opponent process results in a signal that strongly correlates with the angular error of the current body orientation so that a single view of the world now suffices to indicate whether the agent should turn or not. By incorporating this principle into a simple agent navigating in reconstructed natural environments, we show that it overcomes the usual shortcomings and produces a step-increase in navigation effectiveness and robustness. Our findings provide a functional explanation to recent behavioural observations in ants and why and how so-called aversive and appetitive memories must be combined. We propose a likely neural implementation based on insects' mushroom bodies' circuitry that produces behavioural and neural predictions contrasting with previous models.
Collapse
Affiliation(s)
- Florent Le Möel
- Research Centre on Animal Cognition, University Paul Sabatier/CNRS, Toulouse, France
| | - Antoine Wystrach
- Research Centre on Animal Cognition, University Paul Sabatier/CNRS, Toulouse, France
| |
Collapse
|
24
|
Abstract
Continuously monitoring its position in space relative to a goal is one of the most essential tasks for an animal that moves through its environment. Species as diverse as rats, bees, and crabs achieve this by integrating all changes of direction with the distance covered during their foraging trips, a process called path integration. They generate an estimate of their current position relative to a starting point, enabling a straight-line return, following what is known as a home vector. While in theory path integration always leads the animal precisely back home, in the real world noise limits the usefulness of this strategy when operating in isolation. Noise results from stochastic processes in the nervous system and from unreliable sensory information, particularly when obtaining heading estimates. Path integration, during which angular self-motion provides the sole input for encoding heading (idiothetic path integration), results in accumulating errors that render this strategy useless over long distances. In contrast, when using an external compass this limitation is avoided (allothetic path integration). Many navigating insects indeed rely on external compass cues for estimating body orientation, whereas they obtain distance information by integration of steps or optic-flow-based speed signals. In the insect brain, a region called the central complex plays a key role for path integration. Not only does the central complex house a ring-attractor network that encodes head directions, neurons responding to optic flow also converge with this circuit. A neural substrate for integrating direction and distance into a memorized home vector has therefore been proposed in the central complex. We discuss how behavioral data and the theoretical framework of path integration can be aligned with these neural data.
Collapse
Affiliation(s)
| | | | - Allen Cheung
- The University of Queensland, Queensland Brain Institute, Upland Road, St. Lucia, Queensland, Australia
| |
Collapse
|
25
|
Barbosa-Cornelio R, Cantor F, Coy-Barrera E, Rodríguez D. Tools in the Investigation of Volatile Semiochemicals on Insects: From Sampling to Statistical Analysis. INSECTS 2019; 10:insects10080241. [PMID: 31390759 PMCID: PMC6723273 DOI: 10.3390/insects10080241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022]
Abstract
The recognition of volatile organic compounds (VOCs) involved in insect interactions with plants or other organisms is essential for constructing a holistic comprehension of their role in ecology, from which the implementation of new strategies for pest and disease vector control as well as the systematic exploitation of pollinators and natural enemies can be developed. In the present paper, some of the general methods employed in this field are examined, focusing on their available technologies. An important part of the investigations conducted in this context begin with VOC collection directly from host organisms, using classical extraction methods, by the employment of adsorption materials used in solid-phase micro extraction (SPME) and direct-contact sorptive extraction (DCSE) and, subsequently, analysis through instrumental analysis techniques such as gas chromatography (GC), nuclear magnetic resonance (NMR) and mass spectrometry (MS), which provide crucial information for determining the chemical identity of volatile metabolites. Behavioral experiments, electroantennography (EAG), and biosensors are then carried out to define the semiochemicals with the best potential for performing relevant functions in ecological relationships. Chemical synthesis of biologically-active VOCs is alternatively performed to scale up the amount to be used in different purposes such as laboratory or field evaluations. Finally, the application of statistical analysis provides tools for drawing conclusions about the type of correlations existing between the diverse experimental variables and data matrices, thus generating models that simplify the interpretation of the biological roles of VOCs.
Collapse
Affiliation(s)
- Ricardo Barbosa-Cornelio
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Fernando Cantor
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| | - Daniel Rodríguez
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| |
Collapse
|
26
|
Navarro-Roldán MA, Amat C, Bau J, Gemeno C. Extremely low neonicotinoid doses alter navigation of pest insects along pheromone plumes. Sci Rep 2019; 9:8150. [PMID: 31148562 PMCID: PMC6544627 DOI: 10.1038/s41598-019-44581-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022] Open
Abstract
The prevailing use of neonicotinoids in pest control has adverse effects on non-target organisms, like honeybees. However, relatively few studies have explored the effect of sublethal neonicotinoid levels on olfactory responses of pest insects, and thus their potential impact on semiochemical surveillance and control methods, such as monitoring or mating disruption. We recently reported that sublethal doses of the neonicotinoid thiacloprid (TIA) had dramatic effects on sex pheromone release in three tortricid moth species. We present now effects of TIA on pheromone detection and, for the first time, navigational responses of pest insects to pheromone sources. TIA delayed and reduced the percentage of males responding in the wind tunnel without analogous alteration of electrophysiological antennal responses. During navigation along an odor plume, treated males exhibited markedly slower flights and, in general, described narrower flight tracks, with an increased susceptibility to wind-induced drift. All these effects increased in a dose-dependent manner starting at LC0.001 - which would kill just 10 out of 106 individuals - and revealed an especially pronounced sensitivity in one of the species, Grapholita molesta. Our results suggest that minimal neonicotinoid quantities alter chemical communication, and thus could affect the efficacy of semiochemical pest management methods.
Collapse
Affiliation(s)
| | - Carles Amat
- Department of Crop and Forest Sciences, University of Lleida (UdL), 25198, Lleida, Spain
| | - Josep Bau
- Department of Biosciences, University of Vic - Central University of Catalonia, 08500, Vic, Spain
| | - César Gemeno
- Department of Crop and Forest Sciences, University of Lleida (UdL), 25198, Lleida, Spain.
| |
Collapse
|
27
|
Honkanen A, Adden A, da Silva Freitas J, Heinze S. The insect central complex and the neural basis of navigational strategies. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb188854. [PMID: 30728235 DOI: 10.1242/jeb.188854] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oriented behaviour is present in almost all animals, indicating that it is an ancient feature that has emerged from animal brains hundreds of millions of years ago. Although many complex navigation strategies have been described, each strategy can be broken down into a series of elementary navigational decisions. In each moment in time, an animal has to compare its current heading with its desired direction and compensate for any mismatch by producing a steering response either to the right or to the left. Different from reflex-driven movements, target-directed navigation is not only initiated in response to sensory input, but also takes into account previous experience and motivational state. Once a series of elementary decisions are chained together to form one of many coherent navigation strategies, the animal can pursue a navigational target, e.g. a food source, a nest entrance or a constant flight direction during migrations. Insects show a great variety of complex navigation behaviours and, owing to their small brains, the pursuit of the neural circuits controlling navigation has made substantial progress over the last years. A brain region as ancient as insects themselves, called the central complex, has emerged as the likely navigation centre of the brain. Research across many species has shown that the central complex contains the circuitry that might comprise the neural substrate of elementary navigational decisions. Although this region is also involved in a wide range of other functions, we hypothesize in this Review that its role in mediating the animal's next move during target-directed behaviour is its ancestral function, around which other functions have been layered over the course of evolution.
Collapse
Affiliation(s)
- Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | | | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
28
|
Murray T, Kocsi Z, Dahmen H, Narendra A, Le Möel F, Wystrach A, Zeil J. The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi). J Exp Biol 2019; 223:jeb.210021. [DOI: 10.1242/jeb.210021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/04/2019] [Indexed: 01/20/2023]
Abstract
Solitary foraging ants rely on vision when travelling along routes and when pinpointing their nest. We tethered foragers of Myrmecia croslandi on a trackball and recorded their intended movements when the trackball was located on their normal foraging corridor (on-route), above their nest and at a location several meters away where they have never been before (off-route). We find that at on- and off-route locations, most ants walk in the nest or foraging direction and continue to do so for tens of metres in a straight line. In contrast, above the nest, ants walk in random directions and change walking direction frequently. In addition, the walking direction of ants above the nest oscillates at a fine scale, reflecting search movements that are absent from the paths of ants at the other locations. An agent-based simulation shows that the behaviour of ants at all three locations can be explained by the integration of attractive and repellent views directed towards or away from the nest, respectively. Ants are likely to acquire such views via systematic scanning movements during their learning walks. The model predicts that ants placed in a completely unfamiliar environment should behave as if at the nest, which our subsequent experiments confirmed. We conclude first, that the ants’ behaviour at release sites is exclusively driven by what they currently see and not by information on expected outcomes of their behaviour. Second, that navigating ants might continuously integrate attractive and repellent visual memories. We discuss the benefits of such a procedure.
Collapse
Affiliation(s)
- Trevor Murray
- Research School of Biology, Australian National University, Canberra, Australia
| | - Zoltan Kocsi
- Research School of Biology, Australian National University, Canberra, Australia
| | | | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Florent Le Möel
- Research Center on Animal Cognition, University Paul Sabatier/CNRS, Toulouse, France
| | - Antoine Wystrach
- Research Center on Animal Cognition, University Paul Sabatier/CNRS, Toulouse, France
| | - Jochen Zeil
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
29
|
Heinze S. Unraveling the neural basis of insect navigation. CURRENT OPINION IN INSECT SCIENCE 2017; 24:58-67. [PMID: 29208224 PMCID: PMC6186168 DOI: 10.1016/j.cois.2017.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 05/09/2023]
Abstract
One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons.
Collapse
Affiliation(s)
- Stanley Heinze
- Lund University, Department of Biology, Lund Vision Group, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|
30
|
Stone T, Webb B, Adden A, Weddig NB, Honkanen A, Templin R, Wcislo W, Scimeca L, Warrant E, Heinze S. An Anatomically Constrained Model for Path Integration in the Bee Brain. Curr Biol 2017; 27:3069-3085.e11. [PMID: 28988858 DOI: 10.1016/j.cub.2017.08.052] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/24/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023]
Abstract
Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved.
Collapse
Affiliation(s)
- Thomas Stone
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Rachel Templin
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Luca Scimeca
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
31
|
de Vries L, Pfeiffer K, Trebels B, Adden AK, Green K, Warrant E, Heinze S. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths. Front Behav Neurosci 2017; 11:158. [PMID: 28928641 PMCID: PMC5591330 DOI: 10.3389/fnbeh.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species-thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the detailed wiring characteristics of the neural circuits underlying navigation-differences that are only accessible through detailed physiological and ultrastructural investigations. The presented results aid this task in two ways. First, the identified differences in neuropil volumes serve as promising initial targets for electrophysiology. Second, the new standard atlases provide an anatomical reference frame for embedding all functional data obtained from the brains of the Bogong and the Turnip moth.
Collapse
Affiliation(s)
- Liv de Vries
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Keram Pfeiffer
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Björn Trebels
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Andrea K Adden
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Ken Green
- New South Wales National Parks and Wildlife ServiceJindabyne, NSW, Australia
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| |
Collapse
|