1
|
Novaes DR, Sujii PS, Rodrigues CA, Silva KMNB, Machado AFP, Inoue-Nagata AK, Nakasu EYT, Togni PHB. Natural habitat connectivity and organic management modulate pest dispersal, gene flow, and natural enemy communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2938. [PMID: 38071736 DOI: 10.1002/eap.2938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023]
Abstract
The simplification and fragmentation of agricultural landscapes generate effects on insects at multiple spatial scales. As each functional group perceives and uses the habitat differently, the response of pest insects and their associated natural enemies to environmental changes varies. Therefore, landscape structure may have consequences on gene flow among pest populations in space. This study aimed to evaluate the effects of local and landscape factors, at multiple scales, on the local infestation, gene flow and broad dispersion dynamics of the pest insect Bemisia tabaci (Genn.) Middle East-Asia Minor 1 (MEAM-1, former biotype B) (Hemiptera: Aleyrodidae) and its associated natural enemies in a tropical agroecosystem. We evaluated the abundance of B. tabaci populations and their natural enemy community in 20 tomato farms in Brazil and the gene flow between farms from 2019 to 2021. Landscapes dominated by agriculture resulted in larger B. tabaci populations and higher gene flow, especially in conventional farms. A higher density of native vegetation patches disfavored pest populations, regardless of the management system. The results revealed that whitefly responds to intermediate spatial scales and that landscape factors interact with management systems to modulate whitefly populations on focal farms. Conversely, whitefly natural enemies benefited from higher amounts of natural vegetation at small spatial scales, while the connectivity between natural habitat patches was beneficial for natural enemies regardless of the distance from the focal farm. The resulting dispersion model predicts that the movement of whiteflies between farms increases as the amount of natural vegetation decreases. Our findings demonstrate that landscape features, notably landscape configuration, can mediate infestation episodes, as they affect pest insects and natural enemies in opposite ways. We also showed that landscape features interact with farm traits, which highlights the need for management strategies at multiple spatial scales. In conclusion, we demonstrated the importance of the conservation of natural areas as a key strategy for area-wide ecological pest management and the relevance of organic farming to benefit natural enemy communities in tropical agroecosystems.
Collapse
Affiliation(s)
- Danyelle R Novaes
- Programa de Pós-Graduação em Ecologia, Universidade de Brasília (UnB), Brasília, Brazil
| | - Patricia S Sujii
- Programa de Pós-Graduação em Ecologia, Universidade de Brasília (UnB), Brasília, Brazil
- Centro de Ensino Unificado do Distrito Federal, Brasília, Brazil
| | - Camila A Rodrigues
- Instituto Federal Goiano, Goiânia, Brazil
- Programa de Pós-Graduação em Zoologia, Universidade de Brasília (UnB), Brasília, Brazil
| | - Karen M N B Silva
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília (UnB), Brasília, Brazil
| | - Amanda F P Machado
- Programa de Pós-Graduação em Ecologia, Universidade de Brasília (UnB), Brasília, Brazil
| | - Alice K Inoue-Nagata
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Hortaliças, Brasília, Brazil
| | - Erich Y T Nakasu
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Hortaliças, Brasília, Brazil
| | - Pedro H B Togni
- Departamento de Ecologia, Universidade de Brasília (UnB), Brasília, Brazil
| |
Collapse
|
2
|
Ravigné V, Rodrigues LR, Charlery de la Masselière M, Facon B, Kuczyński L, Radwan J, Skoracka A, Magalhães S. Understanding the joint evolution of dispersal and host specialisation using phytophagous arthropods as a model group. Biol Rev Camb Philos Soc 2024; 99:219-237. [PMID: 37724465 DOI: 10.1111/brv.13018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Theory generally predicts that host specialisation and dispersal should evolve jointly. Indeed, many models predict that specialists should be poor dispersers to avoid landing on unsuitable hosts while generalists will have high dispersal abilities. Phytophagous arthropods are an excellent group to test this prediction, given extensive variation in their host range and dispersal abilities. Here, we explore the degree to which the empirical literature on this group is in accordance with theoretical predictions. We first briefly outline the theoretical reasons to expect such a correlation. We then report empirical studies that measured both dispersal and the degree of specialisation in phytophagous arthropods. We find a correlation between dispersal and levels of specialisation in some studies, but with wide variation in this result. We then review theoretical attributes of species and environment that may blur this correlation, namely environmental grain, temporal heterogeneity, habitat selection, genetic architecture, and coevolution between plants and herbivores. We argue that theoretical models fail to account for important aspects, such as phenotypic plasticity and the impact of selective forces stemming from other biotic interactions, on both dispersal and specialisation. Next, we review empirical caveats in the study of this interplay. We find that studies use different measures of both dispersal and specialisation, hampering comparisons. Moreover, several studies do not provide independent measures of these two traits. Finally, variation in these traits may occur at scales that are not being considered. We conclude that this correlation is likely not to be expected from large-scale comparative analyses as it is highly context dependent and should not be considered in isolation from the factors that modulate it, such as environmental scale and heterogeneity, intrinsic traits or biotic interactions. A stronger crosstalk between theoretical and empirical studies is needed to understand better the prevalence and basis of the correlation between dispersal and specialisation.
Collapse
Affiliation(s)
- Virginie Ravigné
- CIRAD, UMR PHIM, - PHIM, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, TA A-120/K, Campus international de Baillarguet, avenue du Campus d'Agropolis, Montpellier Cedex 5, 34398, France
| | - Leonor R Rodrigues
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| | - Maud Charlery de la Masselière
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| | - Benoît Facon
- CBGP, INRAE, IRD, CIRAD, Institut Agro, University of Montpellier, 755 avenue du Campus Agropolis, CS 34988, Montferrier sur Lez cedex, 30016, France
| | - Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| |
Collapse
|
3
|
Greenbaum G, Dener E, Giladi I. Limits to the evolution of dispersal kernels under rapid fragmentation. J R Soc Interface 2022; 19:20210696. [PMID: 35317653 PMCID: PMC8941381 DOI: 10.1098/rsif.2021.0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adaptive evolution of dispersal strategies is one mechanism by which species can respond to rapid environmental changes. However, under rapid anthropogenic fragmentation, the evolution of dispersal may be limited, and species may be unable to adequately adapt to fragmented landscapes. Here, we develop a spatially explicit model to investigate the evolution of dispersal kernels under various combinations of fragmentation dynamics and initial conditions. We also study the consequences of modelling an evolutionary process in which dispersal phenotypes continuously and gradually shift in phenotype space in a manner corresponding to a polygenic underlying genetic architecture. With rapid fragmentation rates, we observed the emergence of long-term transient states in which dispersal strategies are not well suited to fragmented landscapes. We also show that the extent and length of these transient states depend on the pre-fragmentation dispersal strategy of the species, as well as on the rate of the fragmentation process leading to the fragmented landscape. In an increasingly fragmented world, understanding the ability of populations to adapt, and the effects that rapid fragmentation has on the evolution of dispersal, is critical for an informed assessment of species viability in the Anthropocene.
Collapse
Affiliation(s)
- Gili Greenbaum
- Department of Evolution, Ecology, and Behavior, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Efrat Dener
- Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel.,Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Itamar Giladi
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
4
|
Narimanov N, Bonte D, Entling MH. Heritability of dispersal in a rapidly spreading invasive spider. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Tamin T, Doligez B. Assortative mating for between-patch dispersal status in a wild bird population: Exploring the role of direct and indirect underlying mechanisms. J Evol Biol 2021; 35:561-574. [PMID: 34480809 DOI: 10.1111/jeb.13925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022]
Abstract
Previous studies have reported functional integration between dispersal and other phenotypic traits allowing individuals to alleviate dispersal costs, and such associations can affect dispersal evolution in return. In sexually reproducing species, assortative mating according to dispersal can shape the maintenance of such trait associations. Despite the potentially crucial consequences of dispersal in natural populations, assortative mating for dispersal and its underlying mechanisms remain largely unexplored. Here, we assessed assortative mating for between-patch dispersal status in a fragmented population of a small passerine bird, the collared flycatcher, and explored whether such assortative mating could result from (i) direct mate choice based on dispersal-related behavioural (aggressiveness and boldness) and morphological traits (tarsus and wing length), (ii) biased mating due to spatio-temporal heterogeneity in the distribution of dispersal phenotypes and/or (iii) post-mating adjustment of dispersal phenotype or dispersal-related traits. We found intrinsic assortative mating (i.e. positive among-pair correlation) for current dispersal status (in the year of mating) but not for natal dispersal status, even though we could not exclude it due to limited power. We also found assortative mating for boldness and age category (yearlings vs. older adults), and the probability for pair members to be assorted for current dispersal status was higher when both pair members were of similar boldness score and of the same age compared with mixed-age pairs. Mate choice based on boldness and age thus appears as a possible mechanism underlying assortative mating for dispersal status. Our analyses however remained correlative, and only an experimental manipulation of these traits could allow inferring causal links. Non-random mating for dispersal-related traits may affect the evolution of dispersal syndromes in this population. More work is nevertheless needed to fully assess the evolutionary implications of age- and behaviour-based assortative mating for dispersal.
Collapse
Affiliation(s)
- Thibault Tamin
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, UMR 5558, CNRS, Université de Lyon, Villeurbanne, France
| | - Blandine Doligez
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, UMR 5558, CNRS, Université de Lyon, Villeurbanne, France.,Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Edelsparre AH, Fitzpatrick MJ, Rodríguez MA, Sokolowski MB. Tracking dispersal across a patchy landscape reveals a dynamic interaction between genotype and habitat structure. OIKOS 2020. [DOI: 10.1111/oik.07368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Allan H. Edelsparre
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto Toronto ON M5S 56 3B2 Canada
- Dept of Biological Sciences, Univ. of Toronto Scarborough Toronto ON M1C 1A4 Canada
| | - Mark J. Fitzpatrick
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto Toronto ON M5S 56 3B2 Canada
- Dept of Cells and Systems Biology, Univ. of Toronto Totonto ON Canada
| | - Marco A. Rodríguez
- Dépt des sciences de l'environnement, Univ. du Québec à Trois‐Rivières Trois‐Rivières QC Canada
| | - Marla B. Sokolowski
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto Toronto ON M5S 56 3B2 Canada
- Program in Child and Brain Development, Canadina Institute for Advanced Reserach Toronto ON Canada
| |
Collapse
|
7
|
Wolz M, Klockmann M, Schmitz T, Pekár S, Bonte D, Uhl G. Dispersal and life-history traits in a spider with rapid range expansion. MOVEMENT ECOLOGY 2020; 8:2. [PMID: 31921424 PMCID: PMC6947977 DOI: 10.1186/s40462-019-0182-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/25/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Dispersal and reproduction are key life-history traits that jointly determine species' potential to expand their distribution, for instance in light of ongoing climate change. These life-history traits are known to be under selection by changing local environmental conditions, but they may also evolve by spatial sorting. While local natural selection and spatial sorting are mainly studied in model organisms, we do not know the degree to which these processes are relevant in the wild, despite their importance to a comprehensive understanding of species' resistance and tolerance to climate change. METHODS The wasp spider Argiope bruennichi has undergone a natural range expansion - from the Mediterranean to Northern Europe during the recent decades. Using reciprocal common garden experiments in the laboratory, we studied differences in crucial traits between replicated core (Southern France) and edge (Baltic States) populations. We tested theoretical predictions of enhanced dispersal (ballooning behaviour) and reproductive performance (fecundity and winter survival) at the expansion front due to spatial sorting and local environmental conditions. RESULTS Dispersal rates were not consistently higher at the northern expansion front, but were impacted by the overwintering climatic conditions experienced, such that dispersal was higher when spiderlings had experienced winter conditions as occur in their region. Hatching success and winter survival were lower at the range border. In agreement with theoretical predictions, spiders from the northern leading edge invested more in reproduction for their given body size. CONCLUSIONS We found no evidence for spatial sorting leading to higher dispersal in northern range edge populations of A. bruennichi. However, reproductive investment and overwintering survival between core and edge populations differed. These life-history traits that directly affect species' expansion rates seem to have diverged during the recent range expansion of A. bruennichi. We discuss the observed changes with respect to the species' natural history and the ecological drivers associated with range expansion to northern latitudes.
Collapse
Affiliation(s)
- Marina Wolz
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| | - Michael Klockmann
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| | - Torben Schmitz
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| | | | | | - Gabriele Uhl
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Masier S, Bonte D. Spatial connectedness imposes local‐ and metapopulation‐level selection on life history through feedbacks on demography. Ecol Lett 2019; 23:242-253. [DOI: 10.1111/ele.13421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Stefano Masier
- Department of Biology Terrestrial Ecology Unit Ghent University K.L. Ledeganckstraat 35 9000 Ghent Belgium
| | - Dries Bonte
- Department of Biology Terrestrial Ecology Unit Ghent University K.L. Ledeganckstraat 35 9000 Ghent Belgium
| |
Collapse
|
9
|
Bisschop K, Mortier F, Etienne RS, Bonte D. Transient local adaptation and source-sink dynamics in experimental populations experiencing spatially heterogeneous environments. Proc Biol Sci 2019; 286:20190738. [PMID: 31238842 PMCID: PMC6599998 DOI: 10.1098/rspb.2019.0738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Local adaptation is determined by the strength of selection and the level of gene flow within heterogeneous landscapes. The presence of benign habitat can act as an evolutionary stepping stone for local adaptation to challenging environments by providing the necessary genetic variation. At the same time, migration load from benign habitats will hinder adaptation. In a community context, interspecific competition is expected to select against maladapted migrants, hence reducing migration load and facilitating adaptation. As the interplay between competition and spatial heterogeneity on the joint ecological and evolutionary dynamics of populations is poorly understood, we performed an evolutionary experiment using the herbivore spider mite Tetranychus urticae as a model. We studied the species's demography and local adaptation in a challenging environment that consisted of an initial sink (pepper plants) and/or a more benign environment (cucumber plants). Half of the experimental populations were exposed to a competitor, the congeneric T. ludeni. We show that while spider mites only adapted to the challenging pepper environment when it was spatially interspersed with benign cucumber habitat, this adaptation was only temporary and disappeared when the populations in the benign cucumber environment were expanding and spilling-over to the challenging pepper environment. Although the focal species outcompeted the competitor after about two months, a negative effect of competition on the focal species's performance persisted in the benign environment. Adaptation to challenging habitat in heterogeneous landscapes thus highly depends on demography and source-sink dynamics, but also on competitive interactions with other species, even if they are only present for a short time span.
Collapse
Affiliation(s)
- Karen Bisschop
- 1 Groningen Institute for Evolutionary Life Sciences, University of Groningen , PO Box 11103, 9700 CC Groningen , The Netherlands.,2 TEREC (Terrestrial Ecology Unit), Department of Biology, Ghent University , Karel Lodewijk Ledeganckstraat 35, 9000 Ghent , Belgium
| | - Frederik Mortier
- 2 TEREC (Terrestrial Ecology Unit), Department of Biology, Ghent University , Karel Lodewijk Ledeganckstraat 35, 9000 Ghent , Belgium
| | - Rampal S Etienne
- 1 Groningen Institute for Evolutionary Life Sciences, University of Groningen , PO Box 11103, 9700 CC Groningen , The Netherlands
| | - Dries Bonte
- 2 TEREC (Terrestrial Ecology Unit), Department of Biology, Ghent University , Karel Lodewijk Ledeganckstraat 35, 9000 Ghent , Belgium
| |
Collapse
|
10
|
Mortier F, Jacob S, Vandegehuchte ML, Bonte D. Habitat choice stabilizes metapopulation dynamics by enabling ecological specialization. OIKOS 2018. [DOI: 10.1111/oik.05885] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Frederik Mortier
- Terrestrial Ecology Unit, Dept of Biology, Ghent Univ Karel Lodewijk Ledeganckstraat 35 BE‐9000 Ghent Belgium
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, CNRS UMR5321 Moulis France
- Earth and Life Inst., Biodiversity Research Centre, Univ. Catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit, Dept of Biology, Ghent Univ Karel Lodewijk Ledeganckstraat 35 BE‐9000 Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Dept of Biology, Ghent Univ Karel Lodewijk Ledeganckstraat 35 BE‐9000 Ghent Belgium
| |
Collapse
|
11
|
Bonte D, Bafort Q. The importance and adaptive value of life-history evolution for metapopulation dynamics. J Anim Ecol 2018; 88:24-34. [PMID: 30536978 DOI: 10.1111/1365-2656.12928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/13/2018] [Indexed: 11/29/2022]
Abstract
The spatial configuration and size of patches influence metapopulation dynamics by altering colonisation-extinction dynamics and local density dependency. This spatial forcing as determined by the metapopulation typology then imposes strong selection pressures on life-history traits, which will in turn feed back on the ecological metapopulation dynamics. Given the relevance of metapopulation persistence for biological conservation, and the potential rescuing role of evolution, a firm understanding of the relevance of these eco-evolutionary processes is essential. We here follow a systems' modelling approach to quantify the importance of spatial forcing and experimentally observed life-history evolution for metapopulation demography as quantified by (meta)population size and variability. We therefore developed an individual-based model matching an earlier experimental evolution with spider mites to perform virtual translocation and invasion experiments that would have been otherwise impossible to conduct. We show that (a) metapopulation demography is more affected by spatial forcing than by life-history evolution, but that life-history evolution contributes substantially to changes in local- and especially metapopulation-level population sizes, (b) extinction rates are minimised by evolution in classical metapopulations, and (c) evolution is optimising individual performance in metapopulations when considering the importance of more cryptic stress resistance evolution. Ecological systems' modelling opens up a promising avenue to quantify the importance of eco-evolutionary feedbacks in spatially structured populations. Metapopulation sizes are especially impacted by evolution, but its variability is mainly determined by the spatial forcing. Eco-evolutionary dynamics can increase the persistence of classical metapopulations. Conservation of genetic variation and, hence, adaptive potential is thus not only essential in the face of environmental change; it also generates putative rescuing feedbacks that impact metapopulation persistence.
Collapse
Affiliation(s)
- Dries Bonte
- Department of Biology, Research Group Terrestrial Ecology, Ghent University, Ghent, Belgium
| | - Quinten Bafort
- Department of Biology, Research Group Phycology - Bioinformatics & Evolutionary Genomics, Ghent University, Ghent, Belgium
| |
Collapse
|