1
|
Rissanen J, Freitak D. Chronic exposure to nicotine in diet enhances the lethal effect of an entomopathogenic fungus in the ant Cardiocondyla obscurior. Biol Open 2025; 14:bio061928. [PMID: 40326397 DOI: 10.1242/bio.061928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Nicotine is a naturally occurring alkaloid that has acute toxic effects for insects and affects their behaviour even in sublethal amounts. In addition, nicotine is shown to accumulate and pollute environments through the use of commercially produced pesticides and tobacco products. We investigated how nicotine-polluted diets in two different concentrations impacted colony fitness in the ant Cardiocondyla obscurior, compared to a nicotine-free diet. We measured brood production and development, changes in relative abundances of bacterial endosymbionts, and worker survival in combination with a fungal pathogen. Chronic exposure to nicotine caused a concentration-dependent effect in enhancing the lethality of the fungal infection, with higher concentrations causing higher mortality in infected colonies. In the absence of pathogens, nicotine had no effect on worker survival. Furthermore, nicotine did not affect brood production or development, nor clearly affect the abundances of the bacterial endosymbionts. Our results show that nicotine pollution in the environment can negatively affect ant fitness through synergistic effects in combination with a fungal pathogen. Pathogens play a significant part in the decline of insects, and the influence that nicotine pollution may have in exacerbating them should receive more attention.
Collapse
Affiliation(s)
- Jason Rissanen
- Institute of Biology, Department of Zoology, University of Graz, Graz AT-8010, Austria
| | - Dalial Freitak
- Institute of Biology, Department of Zoology, University of Graz, Graz AT-8010, Austria
| |
Collapse
|
2
|
Lebedev E, Smutin D, Timkin P, Kotelnikov D, Taldaev A, Panushev N, Adonin L. The eusocial non-code: Unveiling the impact of noncoding RNAs on Hymenoptera eusocial evolution. Noncoding RNA Res 2025; 11:48-59. [PMID: 39736856 PMCID: PMC11683303 DOI: 10.1016/j.ncrna.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 01/01/2025] Open
Abstract
Eusociality, characterized by reproductive division of labor, cooperative brood care, and multi-generational cohabitation, represents a pinnacle of complex social evolution, most notably manifested within the Hymenoptera order including bees, ants, and wasps. The molecular underpinnings underlying these sophisticated social structures remain an enigma, with noncoding RNAs (ncRNAs) emerging as crucial regulatory players. This article delves into the roles of ncRNAs in exerting epigenetic control during the development and maintenance of Hymenopteran eusociality. We consolidate current findings on various classes of ncRNAs, underscoring their influence on gene expression regulation pertinent to caste differentiation, developmental plasticity, and behavioral modulation. Evidence is explored supporting the hypothesis that ncRNAs contribute to epigenetic landscapes fostering eusocial traits through genomic regulation. They are likely to play an important role in eusociality "point of no return". Critical analysis is provided on the functional insights garnered from ncRNA profiles correlated with caste-specific phenotypes, specifical for phylogenetic branches and transitional sociality models, drawing from comparative genomics and transcriptomics studies. Overall, ncRNA provides a missed understanding of both "genetic toolkit" and "unique genes" hypotheses of eusociality development. Moreover, it points to gaps in current knowledge, advocating for integrative approaches combining genomics, proteomics, and epigenetics to decipher the complexity of eusociality. Understanding the ncRNA contributions offers not only a window into the molecular intricacies of Hymenoptera sociality but also extends our comprehension of how complex biological systems evolve and function.
Collapse
Affiliation(s)
- Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003, Tyumen, Russia
| | - Daniil Smutin
- Faculty of Information Technology and Programming, ITMO University, St.-Petersburg, 197101, Russia
| | - Pavel Timkin
- All-russian Research Institute of Soybean, 675027, Blagoveschensk, Russia
| | - Danil Kotelnikov
- All-russian Research Institute of Soybean, 675027, Blagoveschensk, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Amir Taldaev
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Nick Panushev
- Bioinformatics Institute, 197342, St.-Petersburg, Russia
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003, Tyumen, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Federal State Budget-Financed Educational Institution of Higher Education The Bonch-Bruevich Saint Petersburg State University of Telecommunications, Saint-Petersburg, 193232, Russia
| |
Collapse
|
3
|
Perlin MH, Poulin R, de Bekker C. Invasion of the four kingdoms: the parasite journey across plant and non-plant hosts. Biol Rev Camb Philos Soc 2025; 100:936-968. [PMID: 39616537 DOI: 10.1111/brv.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 03/08/2025]
Abstract
Parasites have a rich and long natural history among biological entities, and it has been suggested that parasites are one of the most significant factors in the evolution of their hosts. However, it has been emphasized less frequently how co-evolution has undoubtedly also shaped the paths of parasites. It may seem safe to assume that specific differences among the array of potential hosts for particular parasites have restricted and diversified their evolutionary pathways and strategies for survival. Nevertheless, if one looks closely enough at host and parasite, one finds commonalities, both in terms of host defences and parasite strategies to out-manoeuvre them. While such analyses have been the source of numerous reviews, they are generally limited to interactions between, at most, one kingdom of parasite with two kingdoms of host (e.g. similarities in animal and plant host responses against fungi). With the aim of extending this view, we herein critically evaluate the similarities and differences across all four eukaryotic host kingdoms (plants, animals, fungi, and protists) and their parasites. In doing so, we show that hosts tend to share common strategies for defence, including both physical and behavioural barriers, and highly evolved immune responses, in particular innate immunity. Parasites have, similarly, evolved convergent strategies to counter these defences, including mechanisms of active penetration, and evading the host's innate and/or adaptive immune responses. Moreover, just as hosts have evolved behaviours to avoid parasites, many parasites have adaptations to manipulate host phenotype, physiologically, reproductively, and in terms of behaviour. Many of these strategies overlap in the host and parasite, even across wide phylogenetic expanses. That said, specific differences in host physiology and immune responses often necessitate different adaptations for parasites exploiting fundamentally different hosts. Taken together, this review facilitates hypothesis-driven investigations of parasite-host interactions that transcend the traditional kingdom-based research fields.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, Kentucky, 40208, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Charissa de Bekker
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584CH, Utrecht, the Netherlands
| |
Collapse
|
4
|
Hand J, Watson B. A guide to eusocial insect faulted agent resilience and its engineering applications. BIOINSPIRATION & BIOMIMETICS 2025; 20:026017. [PMID: 39904056 DOI: 10.1088/1748-3190/adb22b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Resilience is a vital aspect of modern systems, especially in multi-agent systems, where faulted agents (agents who do not behave properly) can compromise system performance. In response to this need for resilience, we turn to biological inspiration. Eusocial insects are a subset of insects that have caste-based labor distribution and cooperative brood care. These insects face analogous challenges in maintaining and improving resilience to external threats, making them prime examples to find unique biological solutions to resilience problems. Thus, the central question of this work is:How can eusocial insect behavior be used to inspire new approaches to prevent or limit faulted agents from impacting the performance of multi-agent systems? Engineers, however, do not always have the necessary biological expertise to identify behaviors to mimic. This article seeks to fill the following identified gap in current research and resources:There is need to study the impact of biologically inspired behaviors on faulted agent resilience, but engineers may struggle to identify sources in the biological literature to translate into engineering applications.To address this question and the identified gap, we provide a guide identifying a large range of insect resilience behaviors and examples of possible implementation of these behaviors. This guide is a functional decomposition examining how eusocial insects prevent disease propagation that engineers can transfer to their systems when seeking to mitigate faulted agents. The presented functional decomposition is made of 148 identified functions across 7 levels, organized into 5 primary categories. This provides a guide for engineers to use when looking for sources of inspiration to improve system resilience. Additional discussion is also provided to offer potential implementations of these 148 functions, so as to encourage further work and usage of this work.
Collapse
Affiliation(s)
- James Hand
- Electrical Engineering and Computer Science Department, Embry-Riddle Aeronautical University, Daytona Beach, FL 32124, United States of America
| | - Bryan Watson
- Electrical Engineering and Computer Science Department, Embry-Riddle Aeronautical University, Daytona Beach, FL 32124, United States of America
| |
Collapse
|
5
|
Avanzi Q, Lisart L, Detrain C. Social organization of necrophoresis: insights into disease risk management in ant societies. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240764. [PMID: 39665101 PMCID: PMC11632371 DOI: 10.1098/rsos.240764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 12/13/2024]
Abstract
Insect societies, which are at a high risk of disease outbreaks, have evolved sanitary strategies that contribute to their social immunity. Here, we investigated in the red ant Myrmica rubra, how the discarding of nestmate cadavers is socially organized depending on the associated pathogenicity. We examined whether necrophoresis is carried out by a specific functional group of workers or by any nestmates that may become short-term specialists. By observing the behavioural profiles of tagged individuals, we assigned half of the colony members to functional groups (foragers, intermittent-foragers, domestics, nurses and inactives). Following the introduction of uninfected or sporulating corpses into the nest, intermittent-foragers were the functional group most involved in necrophoresis, as they touched, moved and discarded more cadavers. Interestingly, sporulating corpses induced a more generalized response in workers from all functional groups, thereby accelerating their rejection from the nest. The individuals contacting corpses were also prophylactically engaged in more grooming behaviour, suggesting the existence of hygienist workers within ant colonies. These findings raise questions about a trade-off existing between concentrating health risks on a few workers who are highly specialized in necrophoresis and exposing a larger population of nestmates who cooperate to speed up nest sanitization.
Collapse
Affiliation(s)
- Quentin Avanzi
- Unit of Social Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Léon Lisart
- Unit of Social Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Claire Detrain
- Unit of Social Ecology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Tiritelli R, Giannetti D, Schifani E, Grasso DA, Cilia G. Neighbors sharing pathogens: the intricate relationship between Apis mellifera and ants (Hymenoptera: Formicidae) nesting in hives. INSECT SCIENCE 2024. [PMID: 39126179 DOI: 10.1111/1744-7917.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Ants are ubiquitous and eusocial insects that exhibit frequent physical contact among colony members, thereby increasing their susceptibility to diseases. Some species are often found in beehives and in their surroundings, where they exploit the food resources of honey bees. This intricate relationship may facilitate the interspecific transmission of honey bee pathogens to ants, although ants themselves may contribute to spillback phenomena. The objective of this study was to assess the presence and abundance of honey bee pathogens in ants sampled from Italian apiaries. A total of 37 colonies within 24 apiaries across 7 regions were monitored. In total, 6 pathogens were detected in adult ants and 3 in the brood. In particular, the study revealed a high prevalence of honey bee pathogens in ants, with DWV, BQCV, and CBPV being the most commonly encountered. The brood also tested positive for the same viruses. Notably, all analyzed viruses were found to be replicative in both adult ants and ant broods. Furthermore, co-infections were prevalent, suggesting complex pathogen interactions within ant populations. Statistical analysis indicated significant differences in pathogen prevalence and abundance among ant species and sample types. The findings highlight active infection in both the ants and the brood, suggesting a potential role of ants as reservoir hosts and vectors of honey bee pathogens emphasizing the need for further research to understand the implications of interspecific pathogen transmission on ant and bee health.
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Bologna, Italy
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniele Giannetti
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Schifani
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Donato A Grasso
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Bologna, Italy
| |
Collapse
|
7
|
Zhu J, Fu Y, Zhang L, Yang T, Zhou X. Transcriptomic Profiling of Bean Aphid Megoura crassicauda upon Exposure to the Aphid-Obligate Entomopathogen Conidiobolus obscurus (Entomophthoromycotina) and Screening of CytCo-Binding Aphid Proteins through a Pull-Down Assay. INSECTS 2024; 15:388. [PMID: 38921103 PMCID: PMC11203964 DOI: 10.3390/insects15060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
Prolonged periods of host-lethal infection by entomopathogenic fungi pose challenges to the development of biological control agents. The obligate entomopathogen C. obscurus, however, rapidly kills aphid hosts, warranting investigation. This study investigated the interaction between C. obscurus and a bean aphid Megoura crassicauda during the incubation period of infection, using transcriptome analysis to map host gene expression profiles. Results indicate C. obscurus-inoculated aphid activation of the wound healing immune responses, alongside suppression of the key molecules involved in Toll signaling, melanization, and metabolism. Furthermore, neuromotor system-related genes were upregulated, paralleling the intoxication observed in a nematode pest treated with C. obscurus-derived CytCo protein. To deepen interaction insights, a His-tag pull-down assay coupled with mass spectrometry analysis was conducted using CytCo as a bait to screen for potential aphid protein interactors. The proteins were identified based on the assembled transcriptome, and eleven transmembrane proteins were predicted to bind to CytCo. Notably, a protein of putatively calcium-transporting ATPase stood out with the highest confidence. This suggests that CytCo plays a vital role in C. obscurus killing aphid hosts, implicating calcium imbalance. In conclusion, C. obscurus effectively inhibits aphid immunity and exhibits neurotoxic potential, expediting the infection process. This finding facilitates our understanding of the complex host-pathogen interactions and opens new avenues for exploring biological pest management strategies in agroforestry.
Collapse
Affiliation(s)
- Jiaqin Zhu
- Jixian Honors College, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yaqi Fu
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| | - Lvhao Zhang
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| | - Tian Yang
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| | - Xiang Zhou
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| |
Collapse
|
8
|
Csata E, Pérez-Escudero A, Laury E, Leitner H, Latil G, Heinze J, Simpson SJ, Cremer S, Dussutour A. Fungal infection alters collective nutritional intake of ant colonies. Curr Biol 2024; 34:902-909.e6. [PMID: 38307022 DOI: 10.1016/j.cub.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
In animals, parasitic infections impose significant fitness costs.1,2,3,4,5,6 Infected animals can alter their feeding behavior to resist infection,7,8,9,10,11,12 but parasites can manipulate animal foraging behavior to their own benefits.13,14,15,16 How nutrition influences host-parasite interactions is not well understood, as studies have mainly focused on the host and less on the parasite.9,12,17,18,19,20,21,22,23 We used the nutritional geometry framework24 to investigate the role of amino acids (AA) and carbohydrates (C) in a host-parasite system: the Argentine ant, Linepithema humile, and the entomopathogenic fungus, Metarhizium brunneum. First, using 18 diets varying in AA:C composition, we established that the fungus performed best on the high-amino-acid diet 1:4. Second, we found that the fungus reached this optimal diet when given various diet pairings, revealing its ability to cope with nutritional challenges. Third, we showed that the optimal fungal diet reduced the lifespan of healthy ants when compared with a high-carbohydrate diet but had no effect on infected ants. Fourth, we revealed that infected ant colonies, given a choice between the optimal fungal diet and a high-carbohydrate diet, chose the optimal fungal diet, whereas healthy colonies avoided it. Lastly, by disentangling fungal infection from host immune response, we demonstrated that infected ants foraged on the optimal fungal diet in response to immune activation and not as a result of parasite manipulation. Therefore, we revealed that infected ant colonies chose a diet that is costly for survival in the long term but beneficial in the short term-a form of collective self-medication.
Collapse
Affiliation(s)
- Enikő Csata
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland; Institute for Zoology, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany.
| | - Alfonso Pérez-Escudero
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Emmanuel Laury
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Hanna Leitner
- ISTA (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Gérard Latil
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Jürgen Heinze
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sylvia Cremer
- ISTA (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Audrey Dussutour
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
9
|
Rissanen J, Helanterä H, Will T, Freitak D. Lack of Self-Medication by Fungus Infected Lasius platythorax (Formicidae, Formicinae) Ants in a Multitrophic Experiment. ANN ZOOL FENN 2022. [DOI: 10.5735/086.059.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Jason Rissanen
- Institute of Biology, University of Graz, Universitätsplatz 2, AT-8010 Graz, Austria
| | - Heikki Helanterä
- Ecology and Genetics Research Unit, P.O. Box 3000, FI-90014 University of Oulu, Finland
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI) — Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 2, DE-06484 Quedlinburg, Germany
| | - Dalial Freitak
- Institute of Biology, University of Graz, Universitätsplatz 2, AT-8010 Graz, Austria
| |
Collapse
|
10
|
Klimek B, Poliwka-Modliborek H, Grześ IM. Ant nests as a microbial hot spots in a long-term heavy metal-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10848-10857. [PMID: 34528210 PMCID: PMC8783854 DOI: 10.1007/s11356-021-16384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Interactions between soil fauna and soil microorganisms are not fully recognized, especially in extreme environments, such as long-term metal-polluted soils. The purpose of the study was to assess how the presence of Lasius niger ants affected soil microbial characteristics in a long-term metal-polluted area (Upper Silesia in Poland). Paired soil samples were taken from bulk soil and from ant nests and analysed for a range of soil physicochemical properties, including metal content (zinc, cadmium, and lead). Microbial analysis included soil microbial activity (soil respiration rate), microbial biomass (substrate-induced respiration rate), and bacteria catabolic properties (Biolog® ECO plates). Soil collected from ant nests was drier and was characterized by a lower content of organic matter, carbon and nitrogen contents, and also lower metal content than bulk soil. Soil microbial respiration rate was positively related to soil pH (p = 0.01) and negatively to water-soluble metal content, integrated into TIws index (p = 0.01). Soil microbial biomass was negatively related to TIws index (p = 0.04). Neither soil microbial activity and biomass nor bacteria catabolic activity and diversity indices differed between bulk soil and ant nests. Taken together, ant activity reduced soil contamination by metals in a microscale which support microbial community activity and biomass but did not affect Biolog® culturable bacteria.
Collapse
Affiliation(s)
- Beata Klimek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Hanna Poliwka-Modliborek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Irena M Grześ
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Mickiewicza 21, 31-120, Kraków, Poland
| |
Collapse
|
11
|
Folgarait PJ, Goffré D. Conidiobolus lunulus, a newly discovered entomophthoralean species, pathogenic and specific to leaf-cutter ants. J Invertebr Pathol 2021; 186:107685. [PMID: 34673044 DOI: 10.1016/j.jip.2021.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022]
Abstract
Conidiobolus lunulus is a recently described entomophthoralean species isolated from leaf-cutter ants. This fungus discharges not only primary but also secondary conidia and microconidia of different shapes. Because nothing was known about the biology of the fungus, and its interactions with hosts, we first evaluated if its pathogenicity against leaf-cutter ants changes with the fungal age (time grown in vitro), and if it is related to the conidial structures produced. Afterwards, we tested its virulence at three combinations of temperature and relative humidity. In addition, we noted all visible causes of death by recovering different microorganisms from the dead, non-sterilized, ants to evaluate C. lunulus virulence when pathogens carried naturally by the ants were present. Finally, we used the conditions that lead to the highest mortality to evaluate fungal virulence to other host species, including non-leaf-cutter ants. Results indicated that C. lunulus was pathogenic from a culture age of 1 to 5 days, with a peak at 2-days-old, from which we registered median lethal times of 1-2 days and 85% of the cadavers with fungal conidiation. Our results suggest that primary conidia and moon-shaped microconidia were infective. Evaluations of mortality using 2-days-old cultures on several leaf-cutter ant colonies showed 1) significantly faster mortality of C. lunulus inoculated ants in comparison to controls, 2) significantly greater and faster mortality at 23.7 °C than at 21.2 °C, 3) significantly higher and faster mortality at 88% than at 57% RH, and 4) a significant reduction of other pathogens in C. lunulus inoculated ants in comparison to controls. C. lunulus was highly specific to leaf-cutter ants, as hardly any increase in mortality was observed on inoculated ants, and no conidia were recorded on cadavers of the other three non-leaf-cutter ant species tested. Our results highlight that C. lunulus is a very promising biological control agent against leaf-cutter ants.
Collapse
Affiliation(s)
- Patricia J Folgarait
- Ants Laboratory, Department of Science and Technology, Quilmes National University, CONICET, Roque Saenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina.
| | - Daniela Goffré
- Ants Laboratory, Department of Science and Technology, Quilmes National University, CONICET, Roque Saenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Mauduit E, Lécureuil C, Meunier J. Sublethal exposure to deltamethrin stimulates reproduction and has limited effects on post-hatching maternal care in the European earwig. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39501-39512. [PMID: 33754270 DOI: 10.1007/s11356-021-13511-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Although pesticides are typically used to limit pest population, the diversity and nature of their unintentional effects on non-target organisms remain unclear. Better understanding these effects requires to carry out risk assessments on key physiological and behavioral processes specific to beneficial insects. In this study, we addressed this question by exposing mothers of the European earwig (a beneficial insect) to two sublethal doses of deltamethrin (a common pesticide in agriculture) during family life and measured the short- and long-term effects on a series of behavioral, physiological, and reproductive traits. Somewhat surprisingly, our results first revealed that high and low doses of deltamethrin enhanced mothers' future reproduction by augmenting their likelihood to produce a second clutch, shortening the number of days until its production, and increasing the resulting number of eggs and their hatching rate. Conversely, the high dose of deltamethrin was detrimental, as it limited maternal brood defence, and reduced food consumption and expression of self-grooming. Finally, other traits were independent of deltamethrin exposure, such as three proxies of family interactions (i.e., distance to the brood, occurrence, and duration of mother-offspring contacts), mothers' walking distance, and mother weight gain during family life. Our study overall demonstrates that sublethal exposure to a pesticide such as deltamethrin can have both positive and negative effects on non-target beneficial insects. It thus emphasizes that focusing on narrow parameters can lead to misleading conclusions about the unintended impacts of pesticides in treated agro-ecosystems and call for better considering this parameters diversity in integrated pest management programs.
Collapse
Affiliation(s)
- Emilie Mauduit
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France.
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France.
| |
Collapse
|
13
|
Quque M, Bles O, Bénard A, Héraud A, Meunier B, Criscuolo F, Deneubourg JL, Sueur C. Hierarchical networks of food exchange in the black garden ant Lasius niger. INSECT SCIENCE 2021; 28:825-838. [PMID: 32306510 DOI: 10.1111/1744-7917.12792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
In most eusocial insects, the division of labor results in relatively few individuals foraging for the entire colony. Thus, the survival of the colony depends on its efficiency in meeting the nutritional needs of all its members. Here, we characterize the network topology of a eusocial insect to understand the role and centrality of each caste in this network during the process of food dissemination. We constructed trophallaxis networks from 34 food-exchange experiments in black garden ants (Lasius niger). We tested the influence of brood and colony size on (i) global indices at the network level (i.e., efficiency, resilience, centralization, and modularity) and (ii) individual values (i.e., degree, strength, betweenness, and the clustering coefficient). Network resilience, the ratio between global efficiency and centralization, was stable with colony size but increased in the presence of broods, presumably in response to the nutritional needs of larvae. Individual metrics highlighted the major role of foragers in food dissemination. In addition, a hierarchical clustering analysis suggested that some domestics acted as intermediaries between foragers and other domestics. Networks appeared to be hierarchical rather than random or centralized exclusively around foragers. Finally, our results suggested that networks emerging from social insect interactions can improve group performance and thus colony fitness.
Collapse
Affiliation(s)
- Martin Quque
- CNRS, IPHC, Université de Strasbourg, Strasbourg, UMR718, France
| | - Olivier Bles
- Centre for Nonlinear Phenomena and Complex Systems (Cenoli)-CP 231, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | | - Amélie Héraud
- CNRS, IPHC, Université de Strasbourg, Strasbourg, UMR718, France
| | | | | | - Jean-Louis Deneubourg
- Centre for Nonlinear Phenomena and Complex Systems (Cenoli)-CP 231, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Cédric Sueur
- CNRS, IPHC, Université de Strasbourg, Strasbourg, UMR718, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
14
|
Csata E, Billen J, Barbu-Tudoran L, Markó B. Inside Pandora's box: Development of the lethal myrmecopathogenic fungus Pandora formicae within its ant host. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Goes AC, Barcoto MO, Kooij PW, Bueno OC, Rodrigues A. How Do Leaf-Cutting Ants Recognize Antagonistic Microbes in Their Fungal Crops? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
16
|
Eilenberg J, Hajek AE. Editorial overview: Insect resistance and susceptibility to pathogens: A multi-faceted topic. CURRENT OPINION IN INSECT SCIENCE 2019; 33:iii-v. [PMID: 31358204 DOI: 10.1016/j.cois.2019.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Jørgen Eilenberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ann E Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601, USA
| |
Collapse
|