1
|
Maan AM, Graafsma CN, Hofman AH, Pelras T, de Vos WM, Kamperman M. Scalable Fabrication of Reversible Antifouling Block Copolymer Coatings via Adsorption Strategies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19682-19694. [PMID: 37016820 PMCID: PMC10119854 DOI: 10.1021/acsami.3c01060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Fouling remains a widespread challenge as its nonspecific and uncontrollable character limits the performance of materials and devices in numerous applications. Although many promising antifouling coatings have been developed to reduce or even prevent this undesirable adhesion process, most of them suffer from serious limitations, specifically in scalability. Whereas scalability can be particularly problematic for covalently bound antifouling polymer coatings, replacement by physisorbed systems remains complicated as it often results in less effective, low-density films. In this work, we introduce a two-step adsorption strategy to fabricate high-density block copolymer-based antifouling coatings on hydrophobic surfaces, which exhibit superior properties compared to one-step adsorbed coatings. The obtained hybrid coating manages to effectively suppress the attachment of both lysozyme and bovine serum albumin, which can be explained by its dense and homogeneous surface structure as well as the desired polymer conformation. In addition, the intrinsic reversibility of the adhered complex coacervate core micelles allows for the successful triggered release and regeneration of the hybrid coating, resulting in full recovery of its antifouling properties. The simplicity and reversibility make this a unique and promising antifouling strategy for large-scale underwater applications.
Collapse
Affiliation(s)
- Anna M.
C. Maan
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Chantal N. Graafsma
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anton H. Hofman
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Théophile Pelras
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Marleen Kamperman
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Preparation and Performance of Silica-di-Block Polymer Hybrids for BSA-Resistance Coatings. MATERIALS 2020; 13:ma13163478. [PMID: 32784566 PMCID: PMC7475825 DOI: 10.3390/ma13163478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
A series of tem-responsive and protein-resistance property silica-di-block polymers SiO2-g-PMMA-b-P(PEGMA) hybrids are synthesized with methyl methacrylate (MMA) and poly (ethylene glycol) methyl ether methacrylate (PEGMA) by the surface-initiated atom transfer radical polymerization (SI-ATRP). The morphology in tetrahydrofuran (THF) solution, lower critical solution temperature (LCST), surface morphology, bovine serum albumin (BSA)-resistance property, and thermal stability of nanoparticles were analyzed. The results of 1H-NMR, GPC, and TEM prove that the silica-di-block hybrids have been obtained. The silica-di-block hybrids shows the LCST (52–64 °C) in aqueous solution. The hybrid films casted by THF present distributed uniform granular bulges and the film surface is relatively smooth (Ra = 15.4 nm ~ 10.5 nm). The results of QCM-D showed that only a small amount of BSA protein(△f = 18.6 ~ 11.8 Hz) was adsorbed on the surface of the films. The result of XPS also demonstrated that only a small amount of BSA protein was absorbed onto the surface of the film (N% = 1.86). The TGA analyses indicate that the thermal decomposition temperature of hybrids is 288 °C. Thus, it is suggested that the hybrids are served as a suitable coating with BSA resistance property and thermal stability.
Collapse
|
3
|
Sproncken CCM, Surís-Valls R, Cingil HE, Detrembleur C, Voets IK. Complex Coacervate Core Micelles Containing Poly(vinyl alcohol) Inhibit Ice Recrystallization. Macromol Rapid Commun 2018; 39:e1700814. [PMID: 29635766 DOI: 10.1002/marc.201700814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/19/2018] [Indexed: 11/09/2022]
Abstract
Complex coacervate core micelles (C3Ms) form upon complexation of oppositely charged copolymers. These co-assembled structures are widely investigated as promising building blocks for encapsulation, nanoparticle synthesis, multimodal imaging, and coating technology. Here, the impact on ice growth is investigated of C3Ms containing poly(vinyl alcohol), PVA, which is well known for its high ice recrystallization inhibition (IRI) activity. The PVA-based C3Ms are prepared upon co-assembly of poly(4-vinyl-N-methyl-pyridinium iodide) and poly(vinyl alcohol)-block-poly(acrylic acid). Their formation conditions, size, and performance as ice recrystallization inhibitors are studied. It is found that the C3Ms exhibit IRI activity at PVA monomer concentrations as low as 1 × 10-3 m. The IRI efficacy of PVA-C3Ms is similar to that of linear PVA and PVA graft polymers, underlining the influence of vinyl alcohol monomer concentration rather than polymer architecture.
Collapse
Affiliation(s)
- Christian C M Sproncken
- Laboratory of Self-Organizing Soft Matter, Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands.,Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands
| | - Romà Surís-Valls
- Laboratory of Self-Organizing Soft Matter, Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands.,Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands
| | - Hande E Cingil
- Laboratory of Self-Organizing Soft Matter, Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands.,Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules, CESAM Research Unit, University of Liège, Sart-Tilman B6a, B-4000, Liège, Belgium
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands.,Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands.,Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600, MD, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Understanding complex coacervation in serum albumin and pectin mixtures using a combination of the Boltzmann equation and Monte Carlo simulation. Carbohydr Polym 2014; 101:544-53. [DOI: 10.1016/j.carbpol.2013.09.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/20/2022]
|
5
|
Peng B, Chu X, Li Y, Li D, Chen Y, Zhao J. Adsorption kinetics and stability of poly(ethylene oxide)-block-polystyrene micelles on polystyrene surface. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.08.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
van der Kooij HM, Spruijt E, Voets IK, Fokkink R, Cohen Stuart MA, van der Gucht J. On the stability and morphology of complex coacervate core micelles: from spherical to wormlike micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14180-14191. [PMID: 22978707 DOI: 10.1021/la303211b] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present a systematic study of the stability and morphology of complex coacervate core micelles (C3Ms) formed from poly(acrylic acid) (PAA) and poly(N-methyl-2-vinylpyridinium)-b-poly(ethylene oxide) (PM2VP-b-PEO). We use polarized and depolarized dynamic and static light scattering, combined with small-angle X-ray scattering, to investigate how the polymer chain length and salt concentration affect the stability, size, and shape of these micelles. We show that C3Ms are formed in aqueous solution below a critical salt concentration, which increases considerably with increasing PAA and PM2VP length and levels off for long chains. This trend is in good agreement with a mean-field model of polyelectrolyte complexation based on the Voorn-Overbeek theory. In addition, we find that salt induces morphological changes in C3Ms when the PAA homopolymer is sufficiently short: from spherical micelles with a diameter of several tens of nanometers at low salt concentration to wormlike micelles with a contour length of several hundreds of nanometers just before the critical salt concentration. By contrast, C3Ms of long PAA homopolymers remain spherical upon addition of salt and shrink slightly. A critical review of existing literature on other C3Ms reveals that the transition from spherical to wormlike micelles is probably a general phenomenon, which can be rationalized in terms of a classical packing parameter for amphiphiles.
Collapse
Affiliation(s)
- Hanne M van der Kooij
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
7
|
Hurtgen M, Detrembleur C, Jerome C, Debuigne A. Insight into Organometallic-Mediated Radical Polymerization. POLYM REV 2011. [DOI: 10.1080/15583724.2011.566401] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Brzozowska AM, Keesman KJ, de Keizer A, Leermakers FAM. Formation and structure of ionomer complexes from grafted polyelectrolytes. Colloid Polym Sci 2011; 289:889-902. [PMID: 21765579 PMCID: PMC3102187 DOI: 10.1007/s00396-010-2368-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/19/2010] [Accepted: 12/23/2010] [Indexed: 11/28/2022]
Abstract
We discuss the structure and formation of Ionomer Complexes formed upon mixing a grafted block copolymer (poly(acrylic acid)-b-poly(acrylate methoxy poly(ethylene oxide)), PAA21-b-PAPEO14) with a linear polyelectrolyte (poly(N-methyl 2-vinyl pyridinium iodide), P2MVPI), called grafted block ionomer complexes (GBICs), and a chemically identical grafted copolymer (poly(acrylic acid)-co-poly(acrylate methoxy poly(ethylene oxide)), PAA28-co-PAPEO22) with a linear polyelectrolyte, called grafted ionomer complexes (GICs). Light scattering measurements show that GBICs are much bigger (~70–100 nm) and GICs are much smaller or comparable in size (6–22 nm) to regular complex coacervate core micelles (C3Ms). The mechanism of GICs formation is different from the formation of regular C3Ms and GBICs, and their size depends on the length of the homopolyelectrolyte. The sizes of GBICs and GICs slightly decrease with temperature increasing from 20 to 65 °C. This effect is stronger for GBICs than for GICs, is reversible for GICs and GBIC-PAPEO14/P2MVPI228, and shows some hysteresis for GBIC-PAPEO14/P2MVPI43. Self-consistent field (SCF) calculations for assembly of a grafted block copolymer (having clearly separated charged and grafted blocks) with an oppositely charged linear polyelectrolyte of length comparable to the charged copolymer block predict formation of relatively small spherical micelles (~6 nm), with a composition close to complete charge neutralization. The formation of micellar assemblies is suppressed if charged and grafted monomers are evenly distributed along the backbone, i.e., in case of a grafted copolymer. The very large difference between the sizes found experimentally for GBICs and the sizes predicted from SCF calculations supports the view that there is some secondary association mechanism. A possible mechanism is discussed.
Collapse
Affiliation(s)
- Agata M. Brzozowska
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 Wageningen, the Netherlands
- Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 Leeuwarden, the Netherlands
| | - Karel J. Keesman
- Systems and Control Group, Wageningen University, Bornse Weilanden 9, 6708 Wageningen, the Netherlands
| | - Arie de Keizer
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 Wageningen, the Netherlands
| | - Frans A. M. Leermakers
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 Wageningen, the Netherlands
| |
Collapse
|
9
|
On the stability of the polymer brushes formed by adsorption of Ionomer Complexes on hydrophilic and hydrophobic surfaces. J Colloid Interface Sci 2011; 353:380-91. [DOI: 10.1016/j.jcis.2010.09.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 11/22/2022]
|
10
|
Brzozowska AM, de Keizer A, Detrembleur C, Cohen Stuart MA, Norde W. Grafted ionomer complexes and their effect on protein adsorption on silica and polysulfone surfaces. Colloid Polym Sci 2010; 288:1621-1632. [PMID: 21125002 PMCID: PMC2974926 DOI: 10.1007/s00396-010-2295-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/04/2010] [Accepted: 09/04/2010] [Indexed: 12/04/2022]
Abstract
We have studied the formation and the stability of ionomer complexes from grafted copolymers (GICs) in solution and the influence of GIC coatings on the adsorption of the proteins β-lactoglobulin (β-lac), bovine serum albumin (BSA), and lysozyme (Lsz) on silica and polysulfone. The GICs consist of the grafted copolymer PAA28-co-PAPEO22 {poly(acrylic acid)-co-poly[acrylate methoxy poly(ethylene oxide)]} with negatively charged AA and neutral APEO groups, and the positively charged homopolymers: P2MVPI43 [poly(N-methyl 2-vinyl pyridinium iodide)] and PAH∙HCl160 [poly(allylamine hydrochloride)]. In solution, these aggregates are characterized by means of dynamic and static light scattering. They appear to be assemblies with hydrodynamic radii of 8 nm (GIC-PAPEO22/P2MVPI43) and 22 nm (GIC-PAPEO22/PAH∙HCl160), respectively. The GICs partly disintegrate in solution at salt concentrations above 10 mM NaCl. Adsorption of GICs and proteins has been studied with fixed angle optical reflectometry at salt concentrations ranging from 1 to 50 mM NaCl. Adsorption of GICs results in high density PEO side chains on the surface. Higher densities were obtained for GICs consisting of PAH∙HCl160 (1.6 ÷ 1.9 chains/nm2) than of P2MVPI43 (0.6 ÷ 1.5 chains/nm2). Both GIC coatings strongly suppress adsorption of all proteins on silica (>90%); however, reduction of protein adsorption on polysulfone depends on the composition of the coating and the type of protein. We observed a moderate reduction of β-lac and Lsz adsorption (>60%). Adsorption of BSA on the GIC-PAPEO22/P2MVPI43 coating is moderately reduced, but on the GIC-PAPEO22/PAH∙HCl160 coating it is enhanced.
Collapse
|