1
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
2
|
Distinctive spectroscopic properties and adsorption behaviors of p-sulfonatocalixarene-cetyltrimethylammonium bromide supra-amphiphilic systems. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
3
|
Affiliation(s)
- Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
4
|
|
5
|
Wang J, Ding X, Guo X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv Colloid Interface Sci 2019; 269:187-202. [PMID: 31082545 DOI: 10.1016/j.cis.2019.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Calixarene is the third generation of supra-molecular compounds after crown ether and cyclodextrin. Amphiphilic calixarene can be obtained by modulation with both hydrophilic group and hydrophobic alkyl chain. Compared with conventional surfactant, amphiphilic calixarene has much lower critical micelle concentration and is much easier to self-assemble into different morphological aggregates. Calixarene-basedsupra-amphiphile can be designed via noncovalent bonds due to the capability of calixarene to recognize surfactant; the binding of a surfactant with calixarene can decrease the critical micelle concentration of surfactant by several times. The calixarene-surfactant complex can self-aggregate to form spherical micelles, vesicles, and spherical nanoparticles, and the aggregation behavior can be controlled by the structures and the molar ratio of surfactant to calixarene and environmental factors. Calixarene-based amphiphile and supra-amphiphile show low cytotoxicity. They can load drugs and assemble into nanocapsules with drugs. The structure of the calixarene-drug complex can respond to external stimuli, rendering the sustained release of the drug and suggesting its potential application as a drug delivery system. Recently, calixarene has also been found to selectively bind proteins, suggesting its prospect in disease diagnosis and intervention treatment in clinics. This review elaborates on the research progress in the self-assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications of the calixarenes in drug delivery and protein recognition. The prospectives for the studies are also provided in this review.
Collapse
|
6
|
Rozas EE, Mendes MA, Custódio MR, Espinosa DCR, do Nascimento CAO. Self-assembly of supramolecular structure based on copper-lipopeptides isolated from e-waste bioleaching liquor. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:63-71. [PMID: 30665109 DOI: 10.1016/j.jhazmat.2019.01.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Supramolecular structures were produced by auto-assembling CuCN blocks derived from copper-lipopeptides (CuLps) isolated from bioleaching liquor. Lipopeptides produced by B. subtilis Hyhel1 have been previously related as responsible by bioleaching and intracellular copper crystal production. However, there were no records relating CuLps to extracellular copper crystal production. To study this process, CuLps were isolated from bioleaching liquor and kept at 8 °C to facilitate the CuLps aggregation. After three months, blue spheres (BS) were observed in the CuLp fraction. These spheres were then analyzed by SEM-EDS, MALDI-TOF-MS/MS, GC-MS and FTIR. SEM-EDS analysis showed that they were formed by polycrystalline structures mainly composed by Cu (46.5% m/m) and positioned concentrically. MALDI-TOF-MS/MS and GCMS showed that peptide bonds of CuLp were broken, producing lipid chains and amino acids free. The FTIR of BS showed three nitro groups: CN, NN and NO, which were not found in the control. These data suggest that the CuLp amino acid produced a CN group linked to copper, as CuCN blocks, that auto-assembled in supramolecular structures. This phenomenon could be explored as a method to recover copper and to obtain supramolecular CuCN structures, which in turn may be used as template for superconductor or computing devices.
Collapse
Affiliation(s)
- Enrique E Rozas
- Dempster-Poli-USP, Chemical Engineering Department, University of São Paulo (USP), Av. Prof. Lineu Prestes 580, block 21, CEP: 05508-910, São Paulo, Brazil.
| | - Maria Anita Mendes
- Dempster-Poli-USP, Chemical Engineering Department, University of São Paulo (USP), Av. Prof. Lineu Prestes 580, block 21, CEP: 05508-910, São Paulo, Brazil
| | - Marcio Reis Custódio
- Department of General Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, CEP: 05508-090, Brazil
| | - Denise C R Espinosa
- LAREX, Chemical Engineering Department, University of São Paulo, Av. Prof. Lineu Prestes 580, block 21, CEP: 05508-910, São Paulo (USP), Brazil
| | - Claudio A O do Nascimento
- Dempster-Poli-USP, Chemical Engineering Department, University of São Paulo (USP), Av. Prof. Lineu Prestes 580, block 21, CEP: 05508-910, São Paulo, Brazil
| |
Collapse
|
7
|
Gonçalves Lopes RCF, Silvestre OF, Faria AR, C do Vale ML, Marques EF, Nieder JB. Surface charge tunable catanionic vesicles based on serine-derived surfactants as efficient nanocarriers for the delivery of the anticancer drug doxorubicin. NANOSCALE 2019; 11:5932-5941. [PMID: 30556563 DOI: 10.1039/c8nr06346j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-assembled vesicles composed of amino acid-based cationic/anionic surfactant mixtures show promise as novel effective drug nanocarriers. Here, we report the in vitro performance of vesicles based on cationic (16Ser) and anionic (8-8Ser) serine-based surfactants using a cancer cell model for the delivery of the anticancer drug doxorubicin (DOX). This catanionic mixture yields both negatively (0.20 in the cationic surfactant molar fraction, x16Ser) and positively (x16Ser = 0.58) charged vesicles, hence providing a surface charge tunable system. Low toxicity is confirmed for concentration ranges below 32 μM in both formulations. DOX is successfully encapsulated in the vesicles, resulting in a surface charge switch to negative for the (0.58) system, making both (0.20) and (0.58) DOX-loaded vesicles highly interesting for systemic administration. High uptake by cells was demonstrated using flow cytometry and confocal microscopy. Drug accumulation results in an increase of cell uptake up to 250% and 200% for the (0.20) and (0.58) vesicles, respectively, compared to free DOX and with localizations near the nuclear regions in the cells. The in vitro cytotoxicity studies show that DOX-loaded vesicles induce cell death, confirming the therapeutic potential of the formulations. Furthermore, the efficient accumulation of the drug inside the cell compartments harbors the potential for optimization strategies including phased delivery for prolonged treatment periods or even on-demand release.
Collapse
Affiliation(s)
- Raquel C F Gonçalves Lopes
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
8
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Konovalov AI. Nanoassociates of amphiphilic carboxy-calixresorcinarene and cetylpyridinuim chloride: The search of optimal macrocycle/surfactant molar ratio. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Silva OF, de Rossi RH, Correa NM, Silber JJ, Falcone RD. Spontaneous catanionic vesicles formed by the interaction between an anionic β-cyclodextrins derivative and a cationic surfactant. RSC Adv 2018; 8:12535-12539. [PMID: 35541230 PMCID: PMC9079326 DOI: 10.1039/c8ra01482e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/21/2018] [Indexed: 11/28/2022] Open
Abstract
The present work shows the synthesis of a new type of catanionic surfactant, ModCD14–BHD, which involves an anionic amphiphilic cyclodextrin and the cationic benzyl-n-hexadecyldimethylammonium (BHD). It is obtained from the simple association of the cationic surfactant benzyl-n-hexadecyldimethylammonium chloride (BHDC) and β-cyclodextrin (β-CD) monosubstituted with an alkenyl succinate group (Mod-β-CD14). ModCD14–BHD form unilamellar vesicles spontaneously in water, while the individual components (BHDC and Mod-β-CD14) do not. The vesicles were character-ized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and 1H NMR techniques. We suggest that the formation of an inclusion complex between some of the cyclodextrins units and the long hydrocarbon moiety of the cationic surfactant play a crucial role in the vesicles formation. Besides, some or the cavities are available to interact with an external guest. We think that the new surfactant molecule has properties that may lead to important applications in biomedical and pharmaceutical sciences. Catanionic vesicles containing an anionic β-cyclodextrins derivative and a cationic surfactant.![]()
Collapse
Affiliation(s)
- O. Fernando Silva
- Instituto de Investigaciones en Físico-Química de Córdoba
- INFIQC-CONICET
- Facultad de Ciencias Químicas
- Departamento de Química Orgánica
- Universidad Nacional de Córdoba
| | - Rita H. de Rossi
- Instituto de Investigaciones en Físico-Química de Córdoba
- INFIQC-CONICET
- Facultad de Ciencias Químicas
- Departamento de Química Orgánica
- Universidad Nacional de Córdoba
| | - N. Mariano Correa
- Departamento de Química
- Universidad Nacional de Río Cuarto
- Río Cuarto
- Argentina
| | - Juana J. Silber
- Departamento de Química
- Universidad Nacional de Río Cuarto
- Río Cuarto
- Argentina
| | - R. Darío Falcone
- Departamento de Química
- Universidad Nacional de Río Cuarto
- Río Cuarto
- Argentina
| |
Collapse
|
10
|
Spectral and electrochemical investigation of 1,8-diaminonaphthalene upon encapsulation of p-sulfonatocalix[4]arene. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0729-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Harangozó JG, Wintgens V, Miskolczy Z, Guigner JM, Amiel C, Biczók L. Effect of Macrocycle Size on the Self-Assembly of Methylimidazolium Surfactant with Sulfonatocalix[n]arenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10651-10658. [PMID: 27660853 DOI: 10.1021/acs.langmuir.6b02823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of macrocycle size on the association of supramolecular amphiphiles composed of 4-sulfonatocalix[n]arene and 1-methyl-3-tetradecylimidazolium (C14mim+) was studied in aqueous solutions at pH 7. When the cavitand contained four sulfonatophenol units (SCX4), formation of spherical nanoparticles (NPs) was observed. By contrast, both supramolecular micelle (SM) and NP formation could be attained in the presence of NaCl when the larger, more flexible 4-sulfonatocalix[8]arene (SCX8) served as the host compound. The SCX8-promoted self-assembly into the SM was enthalpically more favorable than the NP production, but the molar heat capacity changes in the two processes barely differed. An addition of 50 mM NaCl significantly increased the enthalpy of C14mim+-SCX8 NP formation, thereby making the self-organization into the SM more favorable. The transformation of SM into NP at high temperatures was due to the substantial entropic contribution to the driving force behind the NP formation. The critical micelle concentration (cmc) and the local polarity in the headgroup domain were considerably lower for the SM compared with those of the conventional C14mim+Br- micelle.
Collapse
Affiliation(s)
- József G Harangozó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , P.O. Box 286, 1519 Budapest, Hungary
| | - Véronique Wintgens
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC , F 94320 Thiais, France
| | - Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , P.O. Box 286, 1519 Budapest, Hungary
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Universités-UPMC Université Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement UR 206 , 4 Place Jussieu, F-75005 Paris, France
| | - Catherine Amiel
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC , F 94320 Thiais, France
| | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , P.O. Box 286, 1519 Budapest, Hungary
| |
Collapse
|
12
|
Zhao X, Deng H, Feng H, Zhang J, Dong A, Deng L. Using Nucleobase Pairing as Supermolecule Linker to Assemble the Bionic Copolymer Nanoparticles with Small Size. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuefei Zhao
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| | - Hongzhang Deng
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| | - Hailiang Feng
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| | - Jianhua Zhang
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| | - Anjie Dong
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| | - Liandong Deng
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| |
Collapse
|
13
|
Kashapov RR, Rassadkina RI, Ziganshina AY, Mukhitova RK, Mamedov VA, Zhukova NA, Kadirov MK, Nizameev IR, Zakharova LY, Sinyashin OG. Controlling the release of hydrophobic compounds by a supramolecular amphiphilic assembly. RSC Adv 2016. [DOI: 10.1039/c6ra03838g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Here, we report a novel approach of using a supramolecular system based on calix[4]resorcinarene and surfactant to facilitate the release of hydrophobic compounds.
Collapse
Affiliation(s)
- Ruslan R. Kashapov
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russia
| | | | - Albina Yu. Ziganshina
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russia
| | - Rezeda K. Mukhitova
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russia
| | - Vakhid A. Mamedov
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russia
| | - Nataliya A. Zhukova
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russia
| | - Marsil K. Kadirov
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russia
| | - Irek R. Nizameev
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russia
| | - Lucia Ya. Zakharova
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russia
| | - Oleg G. Sinyashin
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russia
| |
Collapse
|