1
|
Karkhaneh F, Sadr ZK, Rad AM, Divsalar A. Detection of tetanus toxoid with iron magnetic nanobioprobe. Biomed Phys Eng Express 2024; 10:045030. [PMID: 38479000 DOI: 10.1088/2057-1976/ad33a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/13/2024] [Indexed: 05/26/2024]
Abstract
Diagnosis of diseases with low facilities, speed, accuracy and sensitivity is an important matter in treatment. Bioprobes based on iron oxide nanoparticles are a good candidate for early detection of deadly and infectious diseases such as tetanus due to their high reactivity, biocompatibility, low production cost and sample separation under a magnetic field. In this study, silane groups were coated on surface of iron oxide nanoparticles using tetraethoxysilane (TEOS) hydrolysis. Also, NH2groups were generated on the surface of silanized nanoparticles using 3-aminopropyl triethoxy silane (APTES). Antibody was immobilized on the surface of silanized nanoparticles using TCT trichlorothriazine as activator. Silanization and stabilized antibody were investigated by using of FT-IR, EDX, VSM, SRB technique. UV/vis spectroscopy, fluorescence, agglutination test and ELISA were used for biosensor performance and specificity. The results of FT-IR spectroscopy showed that Si-O-Si and Si-O-Fe bonds and TCT chlorine and amine groups of tetanus anti-toxoid antibodies were formed on the surface of iron oxide nanoparticles. The presence of Si, N and C elements in EDX analysis confirms the silanization of iron oxide nanoparticles. VSM results showed that the amount of magnetic nanoparticles after conjugation is sufficient for biological applications. Antibody stabilization on nanoparticles increased the adsorption intensity in the uv/vis spectrometer. The fluorescence intensity of nano bioprobe increased in the presence of 10 ng ml-1. Nanobio probes were observed as agglomerates in the presence of tetanus toxoid antigen. The presence of tetanus antigen caused the formation of antigen-nanobioprobe antigen complex. Identification of this complex by HRP-bound antibody confirmed the specificity of nanobioprobe. Tetanus magnetic nanobioprobe with a diagnostic limit of 10 ng ml-1of tetanus antigen in a short time can be a good tool in LOC devices and microfluidic chips.
Collapse
Affiliation(s)
- Farzaneh Karkhaneh
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Ziba Karimi Sadr
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Ahmad Molai Rad
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Adele Divsalar
- Faculty of Biological Science, Kharazmi University, Tehran, Iran
| |
Collapse
|
2
|
Li M, Xu W, Wu X, Zhang X, Fang Q, Cai T, Yang J, Hua Y. Enhanced mechanism of calcium towards uranium incorporation and stability in magnetite during electromineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131641. [PMID: 37329595 DOI: 10.1016/j.jhazmat.2023.131641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/19/2023]
Abstract
Doping uranium into a room-temperature stable Fe3O4 lattice structure effectively reduces its migration. However, the synergistic or competitive effects of coexisting ions in an aqueous solution directly affect the uranium mineralization efficiency and the structural stability of uranium-bearing Fe3O4. The effects of calcium, carbonate, and phosphate on uranium electromineralization were investigated via batch experiments and theoretical calculations. Calcium incorporated into the Fe3O4 lattice increased the level and stability of doped uranium in Fe3O4. Uranium and calcium occupied the octahedral and tetrahedral sites of Fe3O4, respectively; the formation energy was only -10.23 eV due to strong hybridization effects between Fe1s, U4f, O2p, and Ca3d orbitals. Compared to the uranium-doped Fe3O4, uranium leaching ratios decreased by 19.2 % and 48.9 % under strongly acidic and alkaline conditions after 120 days. However, high concentrations of phosphate inhibited Fe3O4 crystallization. These results should provide new avenues for the development of multi-metal co-doping technologies and mineralization optimization to treat uranium-containing complex wastewater.
Collapse
Affiliation(s)
- Mi Li
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Wanqin Xu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xiaoyan Wu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xiaowen Zhang
- Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, China
| | - Qi Fang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tao Cai
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Jianping Yang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yilong Hua
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Ultrasonic preparation of new nanocomposites poly(GMA)@amino-functionalized Fe3O4: structural, morphological and thermal properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Lv SY, Li M, Wu XY, Zhang XW, Hua YL, Bi L, Fang Q, Cai T. A non-polluting method for rapidly purifying uranium-containing wastewater and efficiently recovering uranium through electrochemical mineralization and oxidative roasting. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125885. [PMID: 34492823 DOI: 10.1016/j.jhazmat.2021.125885] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
Iron-based materials have been widely used for treating uranium-containing wastewater. However, the iron-uranium solids originating by treating radioactive water through pollutant transfer methods has become a new uncontrolled source of persistent radioactive pollution. The safe disposal of such hazardous waste is not yet well-resolved. The electrochemical mineralization method was developed to rapidly purify uranium-containing wastewater through lattice doping in magnetite and recover uranium without generating any pollutants. An unexpected isolation of U3O8 from uranium-doped magnetite was discovered through in-situ XRD with a temperature variation from 300 °C to 700 °C. Through HRTEM and DFT calculation, it was confirmed that the destruction of the inverse spinel crystal structure during the gradual transformation of magnetite into γ-Fe2O3 and α-Fe2O3 promoted the migration, aggregation, and isolation of uranium atoms. Uniquely generated U3O8 and Fe2O3 were easily separated and over 80% uranium and 99.5% iron could be recovered. These results demonstrate a new strategy for uranium utilization and the environmentally friendly treatment of uranium-containing wastewater.
Collapse
Affiliation(s)
- Shao-Yan Lv
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Mi Li
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, China.
| | - Xiao-Yan Wu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Wen Zhang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Yi-Long Hua
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Lei Bi
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Fang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tao Cai
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Fabrication, Microstructure and Colloidal Stability of Humic Acids Loaded Fe 3O 4/APTES Nanosorbents for Environmental Applications. NANOMATERIALS 2021; 11:nano11061418. [PMID: 34072193 PMCID: PMC8228359 DOI: 10.3390/nano11061418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022]
Abstract
Nowadays, numerous researches are being performed to formulate nontoxic multifunctional magnetic materials possessing both high colloidal stability and magnetization, but there is a demand in the prediction of chemical and colloidal stability in water solutions. Herein, a series of silica-coated magnetite nanoparticles (MNPs) has been synthesized via the sol-gel method with and without establishing an inert atmosphere, and then it was tested in terms of humic acids (HA) loading applied as a multifunctional coating agent. The influence of ambient conditions on the microstructure, colloidal stability and HA loading of different silica-coated MNPs has been established. The XRD patterns show that the content of stoichiometric Fe3O4 decreases from 78.8% to 42.4% at inert and ambient atmosphere synthesis, respectively. The most striking observation was the shift of the MNPs isoelectric point from pH ~7 to 3, with an increasing HA reaching up to the reversal of the zeta potential sign as it was covered completely by HA molecules. The zeta potential data of MNPs can be used to predict the loading capacity for HA polyanions. The data help to understand the way for materials’ development with the complexation ability of humic acids and with the insolubility of silica gel to pave the way to develop a novel, efficient and magnetically separable adsorbent for contaminant removal.
Collapse
|
6
|
Inductive calorimetric assessment of iron oxide nano-octahedrons for magnetic fluid hyperthermia. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Mitran G, Chen S, Seo DK. Molybdenum Dopped Copper Ferrites as Active Catalysts for Alcohols Oxidative Coupling. MATERIALS 2019; 12:ma12111871. [PMID: 31185628 PMCID: PMC6601298 DOI: 10.3390/ma12111871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/16/2022]
Abstract
Copper ferrites dopped with molybdenum were studied in an oxidative coupling reaction between methanol and ethanol in the gas phase. The catalysts have been characterized by X-ray diffraction, where the presence of ferrite, magnetite, and tenorite phases was observed; scanning electron microscopy; UV-Vis spectroscopy; and Fourier-transform infrared spectroscopy, which highlighted the presence of octahedral coordination of isolated molybdena species. The catalyst with the highest activity in this reaction and with the highest selectivity to hydroxyacetone is the one that presents Lewis sites with weak acidity. The methyl and ethyl acetate selectivities are directly proportional to the Cu/Fe ratio. It has been observed that the presence of reduced copper sites is responsible for the selectivity in esters, while the presence of reduced iron and molybdenum sites is responsible for the acetol production.
Collapse
Affiliation(s)
- Gheorghiţa Mitran
- Laboratory of Chemical Technology and Catalysis, Department of Organic Chemistry, Biochemistry & Catalysis, Faculty of Chemistry, University of Bucharest, 4-12, Blv. Regina Elisabeta, 030018 Bucharest, Romania.
| | - Shaojiang Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| | - Dong-Kyun Seo
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
8
|
A new magnetically recyclable heterogeneous palladium(II) as a green catalyst for Suzuki-Miyaura cross-coupling and reduction of nitroarenes in aqueous medium at room temperature. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|