1
|
Su X, Li B, Chen S, Wang X, Song H, Shen B, Zheng Q, Yang M, Yue P. Pore engineering of micro/mesoporous nanomaterials for encapsulation, controlled release and variegated applications of essential oils. J Control Release 2024; 367:107-134. [PMID: 38199524 DOI: 10.1016/j.jconrel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Essential oils have become increasingly popular in fields of medical, food and agriculture, owing to their strongly antimicrobial, anti-inflammation and antioxidant effects, greatly meeting demand from consumers for healthy and safe natural products. However, the easy volatility and/or chemical instability of active ingredients of essential oils (EAIs) can result in the loss of activity before realizing their functions, which have greatly hindered the widely applications of EAIs. As an emerging trend, micro/mesoporous nanomaterials (MNs) have drawn great attention for encapsulation and controlled release of EAIs, owing to their tunable pore structural characteristics. In this review, we briefly discuss the recent advances of MNs that widely used in the controlled release of EAIs, including zeolites, metal-organic frameworks (MOFs), mesoporous silica nanomaterials (MSNs), and provide a comprehensive summary focusing on the pore engineering strategies of MNs that affect their controlled-release or triggered-release for EAIs, including tailorable pore structure properties (e.g., pore size, pore surface area, pore volume, pore geometry, and framework compositions) and surface properties (surface modification and surface functionalization). Finally, the variegated applications and potential challenges are also given for MNs based delivery strategies for EAIs in the fields of healthcare, food and agriculture. These will provide considerable instructions for the rational design of MNs for controlled release of EAIs.
Collapse
Affiliation(s)
- Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuiyan Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinmin Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane 4072, Australia
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
2
|
Souza IMS, García-Villén F, Viseras C, Perger SBC. Zeolites as Ingredients of Medicinal Products. Pharmaceutics 2023; 15:pharmaceutics15051352. [PMID: 37242594 DOI: 10.3390/pharmaceutics15051352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Development of new medicinal products for particular therapeutic treatment or for better manipulations with better quality and less side effects are possible as a result of advanced inorganic and organic materials application, among which zeolites, due to their properties and versatility, have been gaining attention. This paper is an overview of the development in the use of zeolite materials and their composites and modifications as medicinal products for several purposes such as active agents, carriers, for topical treatments, oral formulations, anticancer, the composition of theragnostic systems, vaccines, parenteral dosage forms, tissue engineering, etc. The objective of this review is to explore the main properties of zeolites and associate them with their drug interaction, mainly addressing the advances and studies related to the use of zeolites for different types of treatments due to their zeolite characteristics such as molecule storage capacity, physical and chemical stability, cation exchange capacity, and possibility of functionalization. The use of computational tools to predict the drug-zeolite interaction is also explored. As conclusion was possible to realize the possibilities and versatility of zeolite applications as being able to act in several aspects of medicinal products.
Collapse
Affiliation(s)
- Iane M S Souza
- Laboratório de Peneiras Moleculares, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Fátima García-Villén
- NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Armilla, 18100 Granada, Spain
| | - Sibele B C Perger
- Laboratório de Peneiras Moleculares, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
3
|
Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238525. [PMID: 36500617 PMCID: PMC9740572 DOI: 10.3390/molecules27238525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Essential oils (EO) obtained from plants have proven industrial applications in the manufacturing of perfumes and cosmetics, in the production and flavoring of foods and beverages, as therapeutic agents in aromatherapy, and as the active principles or excipients of medicines and pharmaceutics due to their olfactory, physical-chemical, and biological characteristics. On behalf of the new paradigm of a more natural and sustainable lifestyle, EO are rather appealing due to their physical, chemical, and physiological actions in human beings. However, EO are unstable and susceptible to degradation or loss. To tackle this aspect, the encapsulation of EO in microporous structures as zeolites is an attractive solution, since these host materials are cheap and non-toxic to biological environments. This overview provides basic information regarding essential oils, including their recognized benefits and functional properties. Current progress regarding EO encapsulation in zeolite structures is also discussed, highlighting some representative examples of essential oil delivery systems (EODS) based on zeolites for healthcare applications or aromatherapy.
Collapse
|
4
|
Nanomedicine as an Emerging Technology to Foster Application of Essential Oils to Fight Cancer. Pharmaceuticals (Basel) 2022; 15:ph15070793. [PMID: 35890092 PMCID: PMC9320655 DOI: 10.3390/ph15070793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022] Open
Abstract
Natural prodrugs extracted from plants are increasingly used in many sectors, including the pharmaceutical, cosmetic, and food industries. Among these prodrugs, essential oils (EOs) are of particular importance. These biologically active volatile oily liquids are produced by medicinal and aromatic plants and characterized by a distinctive odor. EOs possess high anticancer, antibacterial, antiviral, and antioxidant potential but often are associated with low stability; high volatility; and a high risk of deterioration with exposure to heat, humidity, light, or oxygen. Furthermore, their bioavailability is limited because they are not soluble in water, and enhancements are needed to increase their potential to target specific cells or tissues, as well as for controlled release. Nanomedicine, the application of nanotechnology in medicine, may offer efficient solutions to these problems. The technology is based on creating nanostructures in which the natural prodrug is connected to or encapsulated in nanoparticles or submicron-sized capsules that ensure their solubility in water and their targeting properties, as well as controlled delivery. The potential of EOs as anticancer prodrugs is considerable but not fully exploited. This review focusses on the recent progress towards the practical application of EOs in cancer therapy based on nanotechnology applications.
Collapse
|
5
|
Bahari M, Vaziri AS, Alemzadeh I. Extraction and purification of phosphatidylcholine and its potential in nanoliposomal delivery of
Eucalyptus citriodora
oil. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohsen Bahari
- Department of Chemical and Petroleum Engineering, Biochemical and Bioenvironmental Research Center (BBRC) Sharif University of Technology Tehran Iran
| | - Asma Sadat Vaziri
- Department of Chemical and Petroleum Engineering, Biochemical and Bioenvironmental Research Center (BBRC) Sharif University of Technology Tehran Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Biochemical and Bioenvironmental Research Center (BBRC) Sharif University of Technology Tehran Iran
| |
Collapse
|
6
|
de Oliveira LH, Trigueiro P, Souza JSN, de Carvalho MS, Osajima JA, da Silva-Filho EC, Fonseca MG. Montmorillonite with essential oils as antimicrobial agents, packaging, repellents, and insecticides: an overview. Colloids Surf B Biointerfaces 2021; 209:112186. [PMID: 34740094 DOI: 10.1016/j.colsurfb.2021.112186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Essential oils (EOs) are complex natural mixtures of secondary plant metabolites that function as biocides and therapeutic agents. They are extensively used in bactericidal, virucidal, fungicidal, antiparasitic, insecticidal, pharmaceutical, and cosmetic products. However, certain characteristics, such as the volatility of EOs, hinder their widespread use. To mitigate this limitation, several studies have investigated combinations of EOs with natural materials, including clay minerals. Clay minerals are abundant in nature, biocompatible, and non-toxic to the environment and humans. Clay minerals such as montmorillonite possess available sites where EO molecules can interact. The combination of EOs with clay minerals produces new materials for various applications including antibacterial, antifungal, insecticidal/repellent, and active packaging materials. Therefore, this review focuses on the immobilization of several types of EOs in raw and modified montmorillonites. The applications of the described systems were evaluated and demonstrated the synergism of the properties of the isolated components as a function of different EOs incorporated in the silicate matrix.
Collapse
Affiliation(s)
- Luís H de Oliveira
- LACOM, Laboratory of Fuels and Materials of Paraíba Federal University, 58051-085 João Pessoa, Paraíba, Brazil
| | - Pollyana Trigueiro
- LIMAV, Interdisciplinary Laboratory of Advanced Materials of Piauí Federal University, 64049-550 Teresina, Piauí, Brazil
| | | | | | - Josy A Osajima
- LIMAV, Interdisciplinary Laboratory of Advanced Materials of Piauí Federal University, 64049-550 Teresina, Piauí, Brazil
| | - Edson C da Silva-Filho
- LIMAV, Interdisciplinary Laboratory of Advanced Materials of Piauí Federal University, 64049-550 Teresina, Piauí, Brazil
| | - Maria G Fonseca
- LACOM, Laboratory of Fuels and Materials of Paraíba Federal University, 58051-085 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
7
|
Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants (Basel) 2020; 9:antiox9121309. [PMID: 33371338 PMCID: PMC7767362 DOI: 10.3390/antiox9121309] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Recently, increasing public concern about hygiene has been driving many studies to investigate antimicrobial and antiviral agents. However, the use of any antimicrobial agents must be limited due to their possible toxic or harmful effects. In recent years, due to previous antibiotics' lesser side effects, the use of herbal materials instead of synthetic or chemical drugs is increasing. Herbal materials are found in medicines. Herbs can be used in the form of plant extracts or as their active components. Furthermore, most of the world's populations used herbal materials due to their strong antimicrobial properties and primary healthcare benefits. For example, herbs are an excellent material to replace nanosilver as an antibiotic and antiviral agent. The use of nanosilver involves an ROS-mediated mechanism that might lead to oxidative stress-related cancer, cytotoxicity, and heart diseases. Oxidative stress further leads to increased ROS production and also delays the cellular processes involved in wound healing. Therefore, existing antibiotic drugs can be replaced with biomaterials such as herbal medicine with high antimicrobial, antiviral, and antioxidant activity. This review paper highlights the antibacterial, antiviral, and radical scavenger (antioxidant) properties of herbal materials. Antimicrobial activity, radical scavenger ability, the potential for antimicrobial, antiviral, and anticancer agents, and efficacy in eliminating bacteria and viruses and scavenging free radicals in herbal materials are discussed in this review. The presented herbal antimicrobial agents in this review include clove, portulaca, tribulus, eryngium, cinnamon, turmeric, ginger, thyme, pennyroyal, mint, fennel, chamomile, burdock, eucalyptus, primrose, lemon balm, mallow, and garlic, which are all summarized.
Collapse
|
8
|
Li Z, Wen W, Chen X, Zhu L, Cheng G, Liao Z, Huang H, Ming L. Release Characteristics of an Essential Oil Component Encapsulated with Cyclodextrin Shell Matrices. Curr Drug Deliv 2020; 18:487-499. [PMID: 32735520 DOI: 10.2174/1567201817666200731164902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Accepted: 07/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Essential oils are poor aqueous solubility and high volatility compounds. The encapsulation of essential oils with Cyclodextrins (CDs) can protect them from adverse environmental conditions and improve their stability. Therefore, increasing the functional capabilities of essential oils when they were used as additives in pharmaceutical and food systems. Additionally, the release of active compounds is an important issue. However, there were few studies about the effect of different CDs on the release of drugs after encapsulation. Therefore, the information on the study of release models is considerably limited. OBJECTIVE This study aimed to (i) characterize the physico-chemical properties and release behavior of myrcene encapsulated in the four different shell matrices of α-CD, β-CD, γ-CD and 2-hydroxypropyl-β- cyclodextrin (HP-β-CD), which were selected from the perspective of stability, and (ii) determine the release mechanism of myrcene in Inclusion Complexes (ICs). METHODS ICs of myrcene and four CDs were prepared by freeze-drying. The physico-chemical properties of ICs were fully characterized by laser diffraction particle size analyzer, Scanning Electron Microscope (SEM), Fourier-Transform Infrared spectroscopy (FT-IR) and Differential Scanning Calorimeter (DSC). The release behaviors of ICs at 50, 60, 70 and 80 °C were determined and described by zeroorder or first-order kinetics with the Henderson-Pabis, Peppas, Avrami and Page mathematical models. Moreover, the possible binding modes of ICs were identified with molecular modelling technique. RESULTS Firstly, the structure of Particle Size Distribution (PSD), FT-IR, DSC and SEM showed that (i) CDs could effectively encapsulate the myrcene molecules, and (ii) the release kinetics were well simulated by Avrami and Page models. Secondly, the release rates of the ICs experienced an unsteady state in the early stage, and gradually became almost constants period after 20 hours. Except that the release of myrcene in γ-CD/myrcene belonged to the first-order kinetic, the release models of the remaining three ICs belonged to diffusion mode. Thirdly, the calculated binding energies of the optimized structures for α-CD/myrcene, β-CD/myrcene, γ-CD/myrcene, and HP-β-CD/myrcene ICs were -4.28, -3.82, -4.04, and -3.72 kcal/mol, respectively. Finally, the encapsulation of myrcene with α-CD and β-CD was preferable according to the stability and release characteristics. CONCLUSION The encapsulation of myrcene was profoundly affected by the type of CDs, and the stability could be improved by complexation with suitable CDs. The binding behavior between guest and CD molecules, and the release profile of the guest molecules could be effectively explained by the kinetics parameters and molecular modelling. This study can provide an effective basis and guide for screening suitable shell matrices.
Collapse
Affiliation(s)
- Zhe Li
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Wangwen Wen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Jiangxi Ganzhou, 341000, China
| | - Xulong Chen
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Lin Zhu
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Genjinsheng Cheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Jiangxi Ganzhou, 341000, China
| | - Zhenggen Liao
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Jiangxi Ganzhou, 341000, China
| | - Liangshan Ming
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| |
Collapse
|
9
|
Cheng M, Wang J, Zhang R, Kong R, Lu W, Wang X. Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. Int J Biol Macromol 2019; 141:259-267. [PMID: 31465805 DOI: 10.1016/j.ijbiomac.2019.08.215] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/09/2019] [Accepted: 08/25/2019] [Indexed: 01/07/2023]
Abstract
The carvacrol (CAR) was microencapsulated by β-cyclodextrin (βCD). To extend the shelf-life of white mushrooms against Trichoderma sp., the microencapsulated CAR (βCD-CARM)/sodium alginate (SA) films were prepared and characterized. The antifungal, physical, and mechanical properties of the films were investigated in this study. The results showed that the βCD-CARM with a core-to-wall ratio of 1:10 had better encapsulation efficiency and antifungal activity against Trichoderma sp., which was isolated from postharvest white mushrooms stored at 4 °C. The optimum concentration of βCD-CARM against Trichoderma sp. in vitro was 15 g/L. The water resistance, mechanical properties, light barrier property and heat aging of the film were enhanced after adding βCD-CARM. The films with 30 g/L βCD-CARM could efficiently against Trichoderma sp. The performance of βCD-CARM/SA films was confirmed to control the release of CAR for enhanced antifungal activity. Besides, the βCD-CARM/SA films increased the activities of active free-radical scavenging enzymes to alleviate oxidative damage and delay senescence of the postharvest white mushrooms.
Collapse
Affiliation(s)
- Meng Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Juan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Rongfei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Ruiqi Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Wenqian Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
10
|
Xiao Z, Kang Y, Hou W, Niu Y, Kou X. Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. Int J Biol Macromol 2019; 137:132-138. [PMID: 31252018 DOI: 10.1016/j.ijbiomac.2019.06.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
Octenyl succinic anhydride (OSA)-modified starch and maltodextrins (MDs) are important carbohydrate polymers as wall materials. However, few studies have shown whether these two wall materials affect the composition of core materials. In this work, we investigated the effects of OSA-modified starch and MD on the release property of essential oils. Results showed that among the seven characteristic aroma components (CACs) of rose essential oil (REO), the esters released the fastest, followed by the alcohols, while the release of the phenols was the slowest. Environmental factors such as temperature and relative humidities (RHs) had significant influences on the release kinetics of CACs in REO. This work provides new insights into the use of OSA-modified starch and MDs as wall materials for encapsulating complex and bioactive components.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Wenjing Hou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
11
|
Benelli G, Pavela R, Drenaggi E, Maggi F. Insecticidal efficacy of the essential oil of jambú (Acmella oleracea (L.) R.K. Jansen) cultivated in central Italy against filariasis mosquito vectors, houseflies and moth pests. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:272-279. [PMID: 30149065 DOI: 10.1016/j.jep.2018.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/03/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acmella oleracea (L.) R.K. Jansen (Compositae), well-known as jambú, is a medicinal herb of pungent taste, native to Brazil but cultivated in different parts of the world due to its aromatic and pharmacological properties. In folk medicine, the plant has been used against parasites and to combat insects and mites. No data are available on the insecticidal activity of jambú essential oil. AIM OF THE STUDY To test the jambú essential oil obtained from A. oleracea cultivated in central Italy against the filariasis vector, Culex quinquefasciatus, the Egyptian cotton worm, Spodoptera littoralis, and the housefly, Musca domestica. MATERIALS AND METHODS The chemical composition of the essential oil was achieved by GC-FID and GC-MS analyses. Acute toxicity experiments were conducted on larvae of the filariasis vector C. quinquefasciatus and S. littoralis and adults of M. domestica to determine the LC50(LD50) and LC90(LD90) values of the oil, along with the positive control, α-cypermethrin. RESULTS (E)-caryophyllene (20.8%), β-pinene (17.3%), myrcene (17.1%) and caryophyllene oxide (10.0%) were the major volatile constituents. Interestingly, the oil contained little amounts (3.9%) of the insecticidal spilanthol. Jambú essential oil exerted relevant effects on C. quinquefasciatus (LC50 = 42.2 mg L-1, LC90 = 73.6 mg L-1) and S. littoralis 3rd instar larvae (LD50 = 68.1 µg larva-1, LD90 = 132.1 µg larva-1). High acute toxicity was also detected testing the jambú oil against adult females of M. domestica, achieving a LD50 value of 44.3 µg adult-1 and a LD90 value of 87.5 µg adult-1. CONCLUSIONS Taken together our data support the traditional use of jambú as an insecticidal agent and represent the scientific basis for the industrial exploitation of the essential oil in the fabrication of green insecticides.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06 Prague, Czech Republic.
| | - Ettore Drenaggi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, Camerino, Italy.
| |
Collapse
|
12
|
|