1
|
Zhao Q, Wong SY, Zhang Y, Sim JY, Lim PC, Seng DHL, Ni XP, Zhou W, Li X. Supercooling suppression of microencapsulated capric acid-stearic acid eutectic via lignin-zein stabilized Pickering emulsion for highly efficient thermal energy storage. Int J Biol Macromol 2025; 307:141989. [PMID: 40081713 DOI: 10.1016/j.ijbiomac.2025.141989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study develops a fully biobased phase change material (PCM) by encapsulating capric acid-stearic acid eutectic (CSE) with a lignin-zein shell. It is driven by core-shell aggregation in Pickering emulsion during solvent exchange. Herein, the introduction of zein effectively promotes core-shell aggregation and stabilizes CSE Pickering emulsion. Consequently, CSE@lignin-zein capsules (zein/lignin: 10:90, w/w) achieve enhanced yield (up to 88.2 %) and encapsulation efficiency (up to 88.9 %) with a high melting enthalpy of 81.6 J g-1 at 28.2 °C. Furthermore, the lignin-zein shell significantly reduces the interaction between fatty acids (core) and lignin (shell), inducing homogeneous crystallization of fatty acids core. As a result, it suppresses supercooled phase transition at -2.5 °C and exhibits excellent thermal reliability over 200 cycles. The thermal conductivity of CSE@lignin-zein capsules is increased from 0.26 to 0.41 W m-1 K-1 with only 0.6 wt% graphene oxide nanosheet coating. Overall, this work offers a green solution to produce biobased PCM with highly efficient energy storage. The underlying mechanism of shell-induced supercooling suppression is studied systematically.
Collapse
Affiliation(s)
- Qianzhu Zhao
- Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Republic of Singapore; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Siew-Yee Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yu Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jia-Yu Sim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Poh-Chong Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Debbie Hwee-Leng Seng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xi-Ping Ni
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Weibiao Zhou
- Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Republic of Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou Industrial Park, Jiangsu 215123, China.
| | - Xu Li
- Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Republic of Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| |
Collapse
|
2
|
Miller JS, Finney TJ, Ilagan E, Frank S, Chen-Izu Y, Suga K, Kuhl TL. Fluorogenic Biosensing with Tunable Polydiacetylene Vesicles. BIOSENSORS 2025; 15:27. [PMID: 39852078 PMCID: PMC11763271 DOI: 10.3390/bios15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
Polydiacetylenes (PDAs) are conjugated polymers that are well known for their colorimetric transition from blue to red with the application of energetic stimulus. Sensing platforms based on polymerized diacetylene surfactant vesicles and other structures have been widely demonstrated for various colorimetric biosensing applications. Although less studied and utilized, the transition also results in a change from a non-fluorescent to a highly fluorescent state, making polydiacetylenes useful for both colorimetric and fluorogenic sensing applications. Here, we focus on the characterization and optimization of polydiacetylene vesicles to tune their sensitivity for fluorogenic sensing applications. Particularly, we look at how the structure of the diacetylene (DA) hydrocarbon tail and headgroup affect the self-assembled vesicle size and stability, polymerization kinetics, and the fluorogenic, blue to red phase transition. Longer DA acyl tails generally resulted in smaller and more stable vesicles. The polymerization kinetics and the blue to red transition were a function of both the DA acyl tail length and structure of the headgroup. Decreasing the acyl tail length generally led to vesicles that were more sensitive to energetic stimuli. Headgroup modifications had different effects depending on the structure of the headgroup. Ethanolamine headgroups resulted in vesicles with potentially increased stimuli responsivity. The lower energy stimulus to induce the chromatic transition was attributed to an increase in headgroup hydrogen bonding and polymer backbone strain. Boronic-acid headgroup functionalization led to vesicles that were generally unstable, only weakly polymerized, and unable to fully transform to the red phase due to strong polar, aromatic headgroup interactions. This work presents the design of PDA vesicles in the context of biosensing platforms and includes a discussion of the past, present, and future of PDA biosensing.
Collapse
Affiliation(s)
- John S. Miller
- Department of Materials Science and Engineering, University of California Davis, Davis, CA 95616, USA;
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, USA; (T.J.F.)
| | - Tanner J. Finney
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, USA; (T.J.F.)
- Materials Synthesis and Integrated Devices Group, Los Alamos National Laboratory, Materials Physics and Applications Division, Los Alamos, NM 87545, USA
| | - Ethan Ilagan
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, USA; (T.J.F.)
| | - Skye Frank
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, USA; (T.J.F.)
| | - Ye Chen-Izu
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA;
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
- Department of Internal Medicine/Cardiology, University of California Davis, Davis, CA 95616, USA
| | - Keishi Suga
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Miyagi, Japan
| | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, USA; (T.J.F.)
| |
Collapse
|
3
|
Cheng Y, Guan W, Tang L, Huang Y, Yang W. Cationic Amphiphilic Comb-Shaped Polymer Emulsifier for Fabricating Avermectin Nanoemulsion with Exceptional Leaf Behaviors and Multidimensional Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51318-51332. [PMID: 39276181 DOI: 10.1021/acsami.4c09540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The development of intelligent multifunctional nanopesticides featuring enhanced foliage affinity and hierarchical target release is increasingly pivotal in modern agriculture. In this study, a novel cationic amphiphilic comb-shaped polymer, termed PEI-TA, was prepared via a one-step Michael addition between low-molecular-weight biodegradable polyethylenimine (PEI) and tetradecyl acrylate (TA), followed by neutralization with acetic acid. Using the emulsifier PEI-TA, a positively charged avermectin (AVM) nanoemulsion was prepared via a phase inversion emulsification process. Under optimal formulation, the obtained AVM nanoemulsion (defined as AVM@PEI-TA) demonstrated exceptional properties, including small size (as low as 67.6 nm), high encapsulation efficiency (up to 87.96%), and high stability toward shearing, storage, dilution, and UV irradiation. The emulsifier endowed AVM@PEI-TA with a pronounced thixotropy, so that the droplets exhibited no splash and bounce when they were sprayed on the cabbage leaf. Owing to the electrostatic attraction between the emulsifier and the leaf, AVM@PEI-TA showed improved leaf adhesion, better deposition, and higher washing resistance in contrast to both its negatively charged counterpart and AVM emulsifiable concentrate (AVM-EC). Compared to the large-sized particles, the small-sized particles of the AVM nanoemulsion more effectively traveled long distances through the vascular system of veins after entering the leaf apoplast. Moreover, the nanoparticles lost stability when exposed to multidimensional stimuli, including pH, temperature, esterase, and ursolic acid individually or simultaneously, thereby promoting the release of AVM. The release mechanisms were discussed for understanding the important role of the emulsifier in nanopesticides.
Collapse
Affiliation(s)
- Yuxin Cheng
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenxun Guan
- Railway Engineering Research Institute, China Academy of Railway Sciences Co. Ltd, Beijing 100081, People's Republic of China
| | - Liming Tang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yanbin Huang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wantai Yang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
4
|
Saymung R, Potai R, Papadakis CM, Traiphol N, Traiphol R. Acid-responsive polydiacetylene-Na + assemblies with unique red-to-blue color transition. Heliyon 2024; 10:e27574. [PMID: 38486762 PMCID: PMC10937839 DOI: 10.1016/j.heliyon.2024.e27574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Polydiacetylenes (PDAs), conjugated and stimuli-responsive polymers, are of interest for colorimetric sensing technologies. Commercially available PDAs with carboxylic headgroup do not show any colorimetric response to acid. To achieve acid-responsive property, the headgroups of PDAs are often modified with some functional moieties, involving complicated synthetic processes. This contribution presents a facile approach to develop acid-responsive materials via co-assembly of PDA and excess sodium hydroxide (NaOH). After low-temperature incubation and photopolymerization, the mixtures of 10,12-tricosadiynoic acid (TCDA) and NaOH develop into red-phase poly (TCDA-Na+) assemblies. A unique red-to-blue color transition occurs when the poly (TCDA-Na+) assemblies are exposed to hydrogen chloride (HCl) acid both in aqueous solution and gas phase. Increasing the concentrations of NaOH and TCDA monomer during the self-assembly process affects the molecular organization and morphologies of the resultant poly (TCDA-Na+) assemblies, which in turn govern the sensitivity to acid. The results of this study offer a simple and inexpensive method for developing acid-responsive PDAs, extending their colorimetric sensing applications.
Collapse
Affiliation(s)
- Rungarune Saymung
- Laboratory of Advanced Polymers and Nanomaterials, School of Materials Science and Innovation, Faculty of Science, Mahidol University at Salaya, Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Ruttayapon Potai
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Christine M. Papadakis
- Technical University of Munich, TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748, Garching, Germany
| | - Nisanart Traiphol
- Laboratory of Advanced Chromic Materials, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rakchart Traiphol
- Laboratory of Advanced Polymers and Nanomaterials, School of Materials Science and Innovation, Faculty of Science, Mahidol University at Salaya, Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
5
|
Beliktay G, Shaikh T, Koca E, Cingil HE. Effect of UV Irradiation Time and Headgroup Interactions on the Reversible Colorimetric pH Response of Polydiacetylene Assemblies. ACS OMEGA 2023; 8:37213-37224. [PMID: 37841112 PMCID: PMC10568583 DOI: 10.1021/acsomega.3c04845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Polydiacetylenes are chromatic conjugated polymers formed upon the photopolymerization of self-assembled diacetylenes. They exhibit conformation-dependent colorimetric responses, usually irreversible, to external triggers. Here, we presented an approach to obtain a reversible colorimetric response to a pH change through structural modifications on the monomer and extended photopolymerization time. Both factors, enhanced hydrogen bond forming headgroups and longer UV exposure, impacted the rotational freedom of polydiacetylene conformation. Such a restricted conformation state reduced colorimetric response efficiency but enabled reversible colorimetric response to a pH change. These results highlight the possibility of obtaining a reversible colorimetric pH response of polydiacetylenes for customized sensing applications through monomer-level tailoring combined with tuning the photopolymerization time.
Collapse
Affiliation(s)
- Gizem Beliktay
- Sabanci
University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkiye
| | - Tayyaba Shaikh
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkiye
| | - Emirhan Koca
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkiye
| | - Hande E. Cingil
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkiye
| |
Collapse
|
6
|
Zheng J, Jo S, Chen J, Das B, Juhasz L, Cabral H, Sugihara K. Dual Nanofriction Force Microscopy/Fluorescence Microscopy Imaging Reveals the Enhanced Force Sensitivity of Polydiacetylene by pH and NaCl. Anal Chem 2023. [PMID: 37465896 DOI: 10.1021/acs.analchem.3c01433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Polydiacetylene (PDA) is a popular mechanochromic material often used in biosensing. The effect of its headgroup-headgroup interactions on thermochromism such as pH or salt concentration dependency has been extensively studied before; however, their effect on mechanochromism at the nanoscale is left unstudied. In this work, nanofriction force microscopy and fluorescence microscopy were combined to study the effect of pH and ionic strength on the polydiacetylene (PDA) force sensitivity at the nanoscale. We found that the increase in pH from 5.7 to 8.2 caused an 8-fold enhancement in force sensitivity. The elevation of NaCl concentration from 10 to 200 mM also made the PDA 5 times more force-sensitive. These results suggest that the PDA force sensitivity at the nanoscale can be conveniently enhanced by "pre-stimulation" with pH or ionic strength.
Collapse
Affiliation(s)
- Jianlu Zheng
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Seiko Jo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Jiali Chen
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Bratati Das
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Levente Juhasz
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kaori Sugihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
7
|
Song S, Jang H, Jeong W, Shim J, Kim SM, Jeon TJ. Thermohypersensitive polydiacetylene vesicles embedded in calcium-alginate hydrogel beads. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Finney TJ, Frank SL, Bull MR, Guy RD, Kuhl TL. Tracking Mechanical Stress and Cell Migration with Inexpensive Polymer Thin-Film Sensors. ADVANCED MATERIALS INTERFACES 2023; 10:2201808. [PMID: 36817827 PMCID: PMC9937716 DOI: 10.1002/admi.202201808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Polydiacetylene (PDA) Langmuir films are well known for their blue to red chromatic transitions in response to a variety of stimuli, including UV light, heat, bio-molecule bindings and mechanical stress. In this work, we detail the ability to tune PDA Langmuir films to exhibit discrete chromatic transitions in response to applied mechanical stress. Normal and shear-induced transitions were quantified using the Surface Forces Apparatus and established to be binary and tunable as a function of film formation conditions. Both monomer alkyl tail length and metal cations were used to manipulate the chromatic transition force threshold to enable discrete force sensing from ~50 to ~500 nN μm-2 for normal loading and ~2 to ~40 nN μm-2 for shear-induced transitions, which are appropriate for biological cells. The utility of PDA thin-film sensors was demonstrated with the slime mold Physarum polycephalum. The fluorescence readout of the films enabled: the area explored by Physarum to be visualized, the forces involved in locomotion to be quantified, and revealed novel puncta formation potentially associated with Physarum sampling its environment.
Collapse
Affiliation(s)
- Tanner J Finney
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| | - Skye L Frank
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| | - Michael R Bull
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| | - Robert D Guy
- Department of Mathematics, University of California, Davis, CA 95616, United States
| | - Tonya L Kuhl
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| |
Collapse
|
9
|
Colorimetric detection of acid-base in organic solvents, water, and food products using polydiacetylene/Zn2+/ZnO nanocomposites with tunable sensitivity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Rueangsuwan J, Theerasilp M, Crespy D, Traiphol N, Traiphol R. Facile route for large-scale synthesis of reversible thermochromic polydiacetylene/zinc(II) assemblies: The effect of zinc(II) precursors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Sagong HY, Son MH, Park SW, Kim JS, Li T, Jung YK. Dual-signal optical detection of Lead(II) ions (Pb2+) using galloyl group-functionalized polydiacetylene. Anal Chim Acta 2022; 1230:340403. [DOI: 10.1016/j.aca.2022.340403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/01/2022]
|
12
|
Andina RI, Kingchok S, Laohhasurayotin K, Traiphol N, Traiphol R. Multi-reversible thermochromic polydiacetylene-CuZnFe2O4 magnetic nanocomposites with tunable colorimetric response to acid-base. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Siribunbandal P, Kim YH, Osotchan T, Zhu Z, Jaisutti R. Quantitative Colorimetric Detection of Dissolved Ammonia Using Polydiacetylene Sensors Enabled by Machine Learning Classifiers. ACS OMEGA 2022; 7:18714-18721. [PMID: 35694520 PMCID: PMC9178764 DOI: 10.1021/acsomega.2c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Easy-to-use and on-site detection of dissolved ammonia are essential for managing aquatic ecosystems and aquaculture products since low levels of ammonia can cause serious health risks and harm aquatic life. This work demonstrates quantitative naked eye detection of dissolved ammonia based on polydiacetylene (PDA) sensors with machine learning classifiers. PDA vesicles were assembled from diacetylene monomers through a facile green chemical synthesis which exhibited a blue-to-red color transition upon exposure to dissolved ammonia and was detectable by the naked eye. The quantitative color change was studied by UV-vis spectroscopy, and it was found that the absorption peak at 640 nm gradually decreased, and the absorption peak at 540 nm increased with increasing ammonia concentration. The fabricated PDA sensor exhibited a detection limit of ammonia below 10 ppm with a response time of 20 min. Also, the PDA sensor could be stably operated for up to 60 days by storing in a refrigerator. Furthermore, the quantitative on-site monitoring of dissolved ammonia was investigated using colorimetric images with machine learning classifiers. Using a support vector machine for the machine learning model, the classification of ammonia concentration was possible with a high accuracy of 100 and 95.1% using color RGB images captured by a scanner and a smartphone, respectively. These results indicate that using the developed PDA sensor, a simple naked eye detection for dissolved ammonia is possible with higher accuracy and on-site detection enabled by the smartphone and machine learning processes.
Collapse
Affiliation(s)
- Papaorn Siribunbandal
- Department
of Physics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand
- Research
Unit in Innovative Sensors and Nanoelectronic Devices, Thammasat University, Pathumthani 12121, Thailand
| | - Yong-Hoon Kim
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Tanakorn Osotchan
- Department
of Physics, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Zhigang Zhu
- School
of Health Science and Engineering, University
of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rawat Jaisutti
- Department
of Physics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand
- Research
Unit in Innovative Sensors and Nanoelectronic Devices, Thammasat University, Pathumthani 12121, Thailand
| |
Collapse
|
14
|
Colorimetric detection of poly(methyl methacrylate) using polydiacetylene/zinc(II)/zinc oxide nanocomposites. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Liu Y, Lin Y, Cao Y, Zhi A, Chen J, Li W, Demir B, Searles DJ, Whittaker AK, Zhang A. Dendronized polydiacetylenes via photo-polymerization of supramolecular assemblies showing thermally tunable chirality. Chem Commun (Camb) 2021; 57:12780-12783. [PMID: 34781324 DOI: 10.1039/d1cc05358b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transformation of supramolecular chiral assemblies into covalent polymers integrates characteristics of supramolecular chemistry together with covalent entities, leading to fabrication of covalent chiral materials through versatile supramolecular chiral assemblies. Here, we report supramolecular assembly of an amphiphilic dendronized 10,12-pentacosadiynoic amide (PCDA) in aqueous solutions to form twisted ribbons, which were transferred into covalent dendronized polydiacetylenes (PDAs) via photopolymerization. These supramolecular dendronized PCDA and the corresponding covalent dendronized PDAs showed unprecedent thermoresponsive properties. The thermally-induced dehydration and aggregations tuned reversibly their chiralities, which can be visually inspected through colour changes.
Collapse
Affiliation(s)
- Yanjun Liu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, China.
| | - Yaodong Lin
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, China.
| | - Yuexin Cao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, China.
| | - Aomiao Zhi
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, China.
| | - Jiabei Chen
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, China.
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, China.
| | - Baris Demir
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Qld 4072, Australia
| | - Debra J Searles
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Qld 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Qld 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, China.
| |
Collapse
|
16
|
Saymung R, Traiphol N, Traiphol R. Promoting self-assembly and synthesis of color-responsive polydiacetylenes using mixed water-organic solvents: Effects of solvent composition, structure, and incubation temperature. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Structures and strategies for enhanced sensitivity of polydiacetylene(PDA) based biosensor platforms. Biosens Bioelectron 2021; 181:113120. [PMID: 33714858 DOI: 10.1016/j.bios.2021.113120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Polydiacetylene (PDA) is a versatile polymer that has been studied in numerous fields because of its unique optical properties derived from alternating multiple bonds in the polymer backbone. The conjugated structure in the polymer backbone enables PDA to possess the ability of blue-red colorimetric transition when π-π interactions in the PDA backbone chain are disturbed by the external environment. The chromatic property of PDA disturbed by external stimuli can also emit fluorescence in the red region. Owing to the unique characteristics of PDA, it has been widely studied in facile and label-free sensing applications based on colorimetric or fluorescence signals for several decades. Among the various PDA structures, membrane structures assembled by amphiphilic molecules are widely used as a versatile platform because facile modification of the synthetic membrane provides extensive applications, such as receptor-ligand interactions, resulting in potent biosensors. To use PDA as a sensory material, several methods have been studied to endow the specificity to PDA molecules and to amplify the signal from PDA supramolecules. This is because selective and sensitive detection of target materials is required at an appropriate level corresponding to each material for applicable sensor applications. This review focuses on factors that affect the sensitivity of PDA composites and several strategies to enhance the sensitivity of the PDA sensor to various structures. Owing to these strategies, the PDA sensor system has achieved a higher level of sensitivity and selectivity, enabling it to detect multiple target materials for a full field of application.
Collapse
|
18
|
Tjandra AD, Weston M, Tang J, Kuchel RP, Chandrawati R. Solvent injection for polydiacetylene particle synthesis – Effects of varying solvent, injection rate, monomers and needle size on polydiacetylene properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Synthesis of color-responsive polydiacetylene assemblies and polydiacetylene/zinc(II) ion/zinc oxide nanocomposites in water, toluene and mixed solvents: Toward large-scale production. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Chanakul A, Saymung R, Seetha S, Traiphol R, Traiphol N. Solution-mixing method for large-scale production of reversible thermochromic and acid/base-colorimetric sensors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Digital analysis of polydiacetylene quality tags for contactless monitoring of milk. Anal Chim Acta 2021; 1148:238190. [PMID: 33516381 DOI: 10.1016/j.aca.2020.12.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022]
Abstract
The incorporation of colorimetric sensors as quality indicators in food packaging is an exciting new area of research that could improve food management. The standard approach, however, demands a reliable interface between the sensor and the food and risks food contamination which is a significant consumer concern. To overcome this challenge, herein, we develop a polydiacetylene/phospholipid agarose-based sensor that encapsulates milk in the hydrogel matrix during synthesis. The chemical recognition of free fatty acids, a product of microbial spoilage of the encapsulated milk, induces a gradual blue to red color change in the sensor. We demonstrate that the new composite material exhibits the same spoilage kinetics as regular liquid milk (digital colorimetric response 28 ± 1% and 27 ± 3% respectively), indicating the agarose does not preserve the milk ingredients nor inhibit the detection mechanism of the polydiacetylene sensors. As a result, this sensor can be attached to the external surface of food packaging to provide an indirect indication of food quality without the need for contact with the milk product. The quality tags we present can be "switched" on and off using dehydration and rehydration, removing the need for in situ manufacturing and allowing storage before use. We show that the quality tags produce a similar digital colorimetric response of 21 ± 2% to indicate milk spoilage after rehydration. The color change of the quality tags could not be analyzed using absorption spectroscopy, the standard technique for polydiacetylenes, due to the opacity that milk imparts on the sample. To solve this problem, we develop digital colorimetric analysis software using the Python programming language to describe the extent of color change in polydiacetylene materials and develop a new metric termed the Digital Colorimetric Response that describes polydiacetylene response with excellent linearity (R2 = 0.96). The software is programmed to employ statistical cleaning techniques that automatically remove image noise and outliers based on a pixel's grayscale Z-score. This new approach to sensor design increases practicality and could be extended to the contactless quality monitoring of other foods, medicines and other products whose safety or quality is jeopardized with direct sensor contact.
Collapse
|
22
|
Kingchok S, Nontasorn P, Laohhasurayotin K, Traiphol N, Traiphol R. Reversible thermochromic polydiacetylene/zinc-aluminium layered double hydroxides nanocomposites for smart paints and colorimetric sensors: The crucial role of zinc ions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Suklabaidya S, Chakraborty S, Saha J, Dey B, Sarkar S, Bhattacharjee D, Hussain SA. Study of polydiacetylenes and rhodamine-800 mixed film at air–water interface and onto solid support: Trace of fluorescence resonance energy transfer (FRET). Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03102-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Pankaew A, Traiphol N, Traiphol R. Tuning the sensitivity of polydiacetylene-based colorimetric sensors to UV light and cationic surfactant by co-assembling with various polymers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Khanantong C, Charoenthai N, Wacharasindhu S, Sukwattanasinitt M, Yimkaew W, Traiphol N, Traiphol R. Achieving reversible thermochromism of bisdiynamide polydiacetylene via self-assembling in selected solvents. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Nguyen LH, Oveissi F, Chandrawati R, Dehghani F, Naficy S. Naked-Eye Detection of Ethylene Using Thiol-Functionalized Polydiacetylene-Based Flexible Sensors. ACS Sens 2020; 5:1921-1928. [PMID: 32551585 DOI: 10.1021/acssensors.0c00117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ethylene is a hormone that plays a critical role in many phases of plant growth and fruit ripening. Currently, detection of ethylene heavily relies on sophisticated and time-consuming conventional assays such as chromatography, spectroscopy, and electrochemical methods. Herein, we develop a polydiacetylene-based sensor for the detection of ethylene via color change. The sensors are prepared through the reaction between polydiacetylene and Lawesson's reagent that results in decorating polydiacetylene with terminal thiol groups. Upon exposure to ethylene, the sensor changes color from blue to red which is visible to the naked eye. Our device shows a limit of detection for ethylene at 600 ppm in air and can be applied for monitoring ethylene released during the fruit-ripening process. Such easy-to-use ethylene sensors may find applications in plant biology, agriculture, and food industry.
Collapse
Affiliation(s)
- Long H. Nguyen
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Farshad Oveissi
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
27
|
Nuck J, Sugihara K. Mechanism of Polydiacetylene Blue-to-Red Transformation Induced by Antimicrobial Peptides. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Johann Nuck
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Kaori Sugihara
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
28
|
Pattanatornchai T, Rueangsuwan J, Phonchai N, Traiphol N, Traiphol R. Reversible thermochromic polydiacetylene/Zn(II) ion assemblies prepared via co-assembling in aqueous phase: The essential role of pH. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Phonchai N, Khanantong C, Kielar F, Traiphol R, Traiphol N. Enhancing thermal and chemical sensitivity of polydiacetylene colorimetric sensors: The opposite effect of zinc oxide nanoparticles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Weston M, Tjandra AD, Chandrawati R. Tuning chromatic response, sensitivity, and specificity of polydiacetylene-based sensors. Polym Chem 2020. [DOI: 10.1039/c9py00949c] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we provide an overview of six major techniques to tune the sensitivity and specificity of polydiacetylene-based sensors.
Collapse
Affiliation(s)
- Max Weston
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN)
- The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| | - Angie Davina Tjandra
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN)
- The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN)
- The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| |
Collapse
|
31
|
Seetha S, Saymung R, Traiphol R, Traiphol N. Controlling self-assembling and color-transition of polydiacetylene/zinc(II) ion/zinc oxide nanocomposites by varying pH: Effects of surface charge and head group dissociation. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Influences of bulky aromatic head group on morphology, structure and color-transition behaviors of polydiacetylene assemblies upon exposure to thermal and chemical stimuli. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|