1
|
Sharma B, Pérez-García L, Chaudhary GR, Kaur G. Innovative approaches to cationic and anionic (catanionic) amphiphiles self-assemblies: Synthesis, properties, and industrial applications. Adv Colloid Interface Sci 2025; 337:103380. [PMID: 39732047 DOI: 10.1016/j.cis.2024.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/30/2024]
Abstract
Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements. Catanionic self-assemblies possess high stability, adjustable surface charge, and low critical aggregation concentration. This comprehensive review article distinguishes between cationic/anionic non-equimolar and equimolar ratio mixing formation of high-salt catanionic self-assemblies known as catanionic mixture and salt-free counterparts, termed ion-pair amphiphiles, respectively. It explores diverse synthesis techniques, emphasizing the roles of solvents, salts, and pH conditions and covers both experimental and theoretical aspects of state-of-the-art catanionic self-assemblies. Additionally, the review investigates the development of multi-responsive catanionic self-assemblies using light, pH, temperature, and redox, responsive cationic/anionic amphiphiles. It provides an in-depth exploration of potential synergistic interactions and properties, underscoring their practical importance in a wide range of industrial applications. The review explores challenges like precipitation, stability and identifies knowledge gaps, creating opportunities in the dynamic catanionic self-assembly field. It aims to offer insights into the journey of catanionic self-assemblies, from inception to current status, appealing to a broad audience invested in their scientific and industrial potential.
Collapse
Affiliation(s)
- Bunty Sharma
- Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India; Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Avda. Joan XXIII 27-31, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia UB (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India; Sophisticated Analytical Instrumentation Facility (SAIF)/Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India.
| | - Gurpreet Kaur
- Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Lu J, Guo T, Fan Y, Li Z, He Z, Yin S, Feng N. Recent Developments in the Principles, Modification and Application Prospects of Functionalized Ethosomes for Topical Delivery. Curr Drug Deliv 2021; 18:570-582. [DOI: 10.2174/1567201817666200826093102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022]
Abstract
Transdermal drug delivery helps to circumvent the first-pass effect of drugs and to avoid
drug-induced gastrointestinal tract irritation, compared with oral administration. With the extensive
application of ethosomes in transdermal delivery, the shortages of them have been noticed continuously.
Due to the high concentration of volatile ethanol in ethosomes, there are problems of drug leakage, system
instability, and ethosome-induced skin irritation. Thus, there is a growing interest in the development
of new generations of ethosomal systems. Functionalized ethosomes have the advantages of increased
stability, improved transdermal performances, an extended prolonged drug release profile and
site-specific delivery, due to their functional materials. To comprehensively understand this novel carrier,
this review summarizes the properties of functionalized ethosomes, their mechanism through the
skin and their modifications with different materials, validating their potential as promising transdermal
drug delivery carriers. Although functionalized ethosomes have presented a greater role for enhanced
topical delivery, challenges regarding their design and future perspectives are also discussed.
Collapse
Affiliation(s)
- Jianying Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunlong Fan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuo Yin
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Richard C, Cassel S, Blanzat M. Vesicular systems for dermal and transdermal drug delivery. RSC Adv 2020; 11:442-451. [PMID: 35423006 PMCID: PMC8691109 DOI: 10.1039/d0ra09561c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/12/2020] [Indexed: 11/21/2022] Open
Abstract
Dermal/transdermal drug delivery continues to grow in importance as a means of enhancing treatment activity while reducing toxicity by avoiding the systemic absorption of the drug. At the same time, this has led to the adjustment of a wide diversity of drug carriers. This paper begins with a review of the skin, including its structure and the parameters that influence drug diffusion, followed by strategies to improve dermal drug delivery. Of the multitude of existing carriers, we will focus on the most advanced vectors in dermal/transdermal delivery, and in particular, on vesicular systems. This review will present the state of the art as well as the new trends in this domain. Through the description of these systems, we will try to obtain information on the ideal properties that the carrier must have in order to improve the cutaneous and transcutaneous penetration of the drug.
Collapse
Affiliation(s)
- Claire Richard
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623, Université Paul Sabatier 31062 Toulouse Cedex 4 France
| | - Stéphanie Cassel
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623, Université Paul Sabatier 31062 Toulouse Cedex 4 France
| | - Muriel Blanzat
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623, Université Paul Sabatier 31062 Toulouse Cedex 4 France
| |
Collapse
|
4
|
Pinazo A, Pons R, Marqués A, Farfan M, da Silva A, Perez L. Biocompatible Catanionic Vesicles from Arginine-Based Surfactants: A New Strategy to Tune the Antimicrobial Activity and Cytotoxicity of Vesicular Systems. Pharmaceutics 2020; 12:E857. [PMID: 32916921 PMCID: PMC7557587 DOI: 10.3390/pharmaceutics12090857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 01/30/2023] Open
Abstract
Their stability and low cost make catanionic vesicles suitable for application as drug delivery systems. In this work we prepared catanionic vesicles using biocompatible surfactants: two cationic arginine-based surfactants (the monocatenary Nα-lauroyl-arginine methyl ester-LAM and the gemini Nα,Nϖ-bis(Nα-lauroylarginine) α, ϖ-propylendiamide-C3(CA)2) and three anionic amphiphiles (the single chain sodium dodecanoate, sodium myristate, and the double chain 8-SH). The critical aggregation concentration, colloidal stability, size, and charge density of these systems were comprehensively studied for the first time. These catanionic vesicles, which form spontaneously after mixing two aqueous solutions of oppositely charged surfactants, exhibited a monodisperse population of medium-size aggregates and good stability. The antimicrobial and hemolytic activity of the vesicles can be modulated by changing the cationic/anionic surfactant ratio. Vesicles with a positive charge efficiently killed Gram-negative and Gram-positive bacteria as well as yeasts; the antibacterial activity declined with the decrease of the cationic charge density. The catanionic systems also effectively eradicated MRSA (Methicillin-resistant Staphylococcus Aureus) and Pseudomonas aeruginosa biofilms. Interestingly, the incorporation of cholesterol in the catanionic mixtures improved the stability of these colloidal systems and considerably reduced their cytotoxicity without affecting their antimicrobial activity. Additionally, these catanionic vesicles showed good DNA affinity. Their antimicrobial efficiency and low hemolytic activity render these catanionic vesicles very promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Aurora Pinazo
- Department of Surfactant and Nanobiotecnnology, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain; (A.P.); (R.P.); (A.d.S.)
| | - Ramon Pons
- Department of Surfactant and Nanobiotecnnology, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain; (A.P.); (R.P.); (A.d.S.)
| | - Ana Marqués
- Department of Biology, Healthcare and the Environment, Section Microbiology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain; (A.M.); (M.F.)
| | - Maribel Farfan
- Department of Biology, Healthcare and the Environment, Section Microbiology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain; (A.M.); (M.F.)
| | - Anderson da Silva
- Department of Surfactant and Nanobiotecnnology, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain; (A.P.); (R.P.); (A.d.S.)
| | - Lourdes Perez
- Department of Surfactant and Nanobiotecnnology, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain; (A.P.); (R.P.); (A.d.S.)
| |
Collapse
|