1
|
Li A, Nicolas J, Mura S. Unlocking the Potential of Hybrid Nanocomposite Hydrogels: Design, Mechanical Properties and Biomedical Performances. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202409670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 01/06/2025]
Abstract
AbstractHybrid nanocomposite hydrogels consist of the homogeneous incorporation of nano‐objects in a hydrogel matrix. The latter, whether made of natural or synthetic materials, possesses a microporous, soft structure that makes it an ideal host for a variety of polymer and lipid‐based nano‐objects as well as metal‐ and silica‐based ones. By carefully choosing the composition and the proportions of the different constituents, hybrid hydrogels can display a wide array of properties, from simple enhancement of mechanical characteristics to specific bioactivity. This review aims to provide an overview of the state of the art in hybrid hydrogels highlighting key aspects that make them a promising choice for a variety of biomedical applications. Strategies for the preparation of hybrid hydrogels are discussed by covering the selection of individual components. The review will also explore the physico‐chemical and rheological characterization of these materials, which is essential for understanding their structure and function, ultimately satisfying specifications for the intended use. Successful examples of biomedical applications will also be presented, and the main challenges to be met will be discussed, with the aim of stimulating the research community to exploit the full potential of these materials.
Collapse
Affiliation(s)
- Anqi Li
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Julien Nicolas
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Simona Mura
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| |
Collapse
|
2
|
Zhao J, Yue Y, Li X, Li D, Zhao P, Tian X. Antioxidative hydrogel based on hyaluronic acid/polyethylene glycol loaded with shikonin-coated flexible liposome and evaluation of its therapeutic effect on eczema. Int J Biol Macromol 2024; 283:137727. [PMID: 39551300 DOI: 10.1016/j.ijbiomac.2024.137727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Eczema, a common skin condition, is gaining attention due to its increasing annual prevalence and severe influence on both bodily and mental health. Existing treatments for this disease often have significant side effects and safety concerns. Comfrey, a traditional Chinese herbal remedy, is commonly used to treat skin conditions. Shikonin, the primary active compound in comfrey, has demonstrated efficacy in treating eczema. Herein, a flexible liposome-containing SHI was dispersed in hydrogels based on hyaluronic acid (HA) and polyethylene glycol(PEG) for the treatment of eczema. The hydrogel performed well in delaying drug release. SHI-F-Gel demonstrated notable antioxidant properties, effectively eliminating over 80 % of free radicals. Compared to the SHI solution, SHI-F-Gel significantly increased drug skin retention by 312.9 %. In animal studies, SHI-F-Gel administration reduced epidermal thickness in the affected area by approximately 36.8 % and increased collagen deposition by 90.23 %. Additionally, SHI-F-Gel inhibited the expression of pro-inflammatory cytokines interleukin-4 (IL-4) and IL-17. This observed reduction in inflammation suggests that the treatment is effective. In conclusion, the flexible SHI-based liposome hydrogel demonstrates excellent adhesion and biocompatibility, making it a promising candidate for enhancing eczema treatment.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yajuan Yue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Xina Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Danli Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Pengyuan Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China.
| |
Collapse
|
3
|
Shariat Razavi F, Kouchak M, Sistani Karampour N, Mahdavinia M, Nazari Khorasgani Z, Rezaie A, Rahbar N. AS1411aptamer conjugated liposomes for targeted delivery of arsenic trioxide in mouse xenograft model of melanoma cancer. J Liposome Res 2024; 34:288-302. [PMID: 37843918 DOI: 10.1080/08982104.2023.2271046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Development of AS1411aptamer-conjugated liposomes for targeted delivery of arsenic trioxide is the primary goal of this study. AS1411aptamer was used as ligand to target nucleolin, which is highly expressed on the surface of melanoma cancer cells. The targeted liposomes were constructed by the thin film method, and arsenic trioxide was loaded as cobalt (II) hydrogen arsenite (CHA) to increase the loading efficiency and stability of the liposomes. The liposomal structure was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and field emission scanning electron microscopy (FESEM). In addition, particle sizes and zeta potential of the CHA-loaded liposomes (CHAL) and aptamer-functionalized CHA-loaded liposomes (AP-CHAL) were determined. In vitro cytotoxicity of CHAL and AP-CHAL were evaluated using MTT assay in murine melanoma (B16) and mouse embryonic fibroblast (MEF) cell lines. The encapsulation efficiency of CHAL and AP-CHAL was reported as 60.2 ± 6.5% and 58.7 ± 4.2%, respectively. In vivo antitumor activity of CHAL and AP-CHAL in the B16 tumor-xenograft mouse model was dramatically observed. All mice of both groups survived until the end of treatment and showed body weight gain. The tumor protrusion completely disappeared in 50% of the mice in these groups. Furthermore, histopathology studies demonstrated that CHAL and AP-CHAL did not induce significant toxicity in healthy mice tissues. However, unlike the CHAL group, which showed an initial increase in tumor volume, a specific antitumor effect was observed in the AP-CHAL group from the beginning of treatment. The results showed that AP-CHAL can be used as an effective drug delivery system with high potential in the treatment of solid tumors.
Collapse
Affiliation(s)
- Fatemeh Shariat Razavi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Sistani Karampour
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Nazari Khorasgani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Annahita Rezaie
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Safarpour F, Kharaziha M, Mokhtari H, Emadi R, Bakhsheshi-Rad HR, Ramakrishna S. Kappa-carrageenan based hybrid hydrogel for soft tissue engineering applications. Biomed Mater 2023; 18:055005. [PMID: 37348489 DOI: 10.1088/1748-605x/ace0ec] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Biological materials such as cell-derived membrane vesicles have emerged as alternative sources for molecular delivery systems, owing to multicomponent features, the inherent functionalities and signaling networks, and easy-to-carry therapeutic agents with various properties. Herein, red blood cell membrane (RBCM) vesicle-laden methacrylate kappa-carrageenan (KaMA) composite hydrogel is introduced for soft tissue engineering. Results revealed that the characteristics of hybrid hydrogels were significantly modulated by changing the RBCM vesicle content. For instance, the incorporation of 20% (v/v) RBCM significantly enhanced compressive strength from 103 ± 26 kPa to 257 ± 18 kPa and improved toughness under the cyclic loading from 1.0 ± 0.4 kJ m-3to 4.0 ± 0.5 kJ m-3after the 5thcycle. RBCM vesicles were also used for the encapsulation of curcumin (CUR) as a hydrophobic drug molecule. Results showed a controlled release of CUR over three days of immersion in PBS solution. The RBCM vesicles laden KaMA hydrogels also supportedin vitrofibroblast cell growth and proliferation. In summary, this research sheds light on KaMA/RBCM hydrogels, that could reveal fine-tuned properties and hydrophobic drug release in a controlled manner.
Collapse
Affiliation(s)
- F Safarpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H Mokhtari
- Division of Polymer Chemistry, Department of Chemistry-Ångstrom Laboratory, Uppsala University, Uppsala 75121, Sweden
| | - R Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H R Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative, National University of Singapore, 9 Engineering Drive 1, Singapore 1157, Singapore
| |
Collapse
|
5
|
Chen M, Li R, Lu X, Dai Y, Chen T, Xing Y, Xue L, Duan Z, Zhou W, Li J. Fabrication and characterization of l-ascorbyl palmitate and phospholipid-based hybrid liposomes and their impacts on the stability of loaded hydrophobic polyphenols. Food Chem 2023; 398:133953. [DOI: 10.1016/j.foodchem.2022.133953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
|
6
|
|
7
|
El-Senduny FF, Altouhamy M, Zayed G, Harsha C, Jalaja R, Somappa SB, Nair MS, Kunnumakkara AB, Alsharif FM, Badria FA. Azadiradione-loaded liposomes with improved bioavailability and anticancer efficacy against triple negative breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Hou L, Sun X, Pan L, Gu K. Effects of Phytosterol Butyrate Ester on the Characteristics of Soybean Phosphatidylcholine Liposomes. J Oleo Sci 2021; 70:1295-1306. [PMID: 34373401 DOI: 10.5650/jos.ess21033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nutritional and structural properties of phytosterols (PS)/phytosterol esters (PEs) facilitate their use as substitutes for cholesterol in liposome encapsulation systems designed for oral drugs and health products. The purpose of this study was to determine the effect of phytosterol butyrate ester (PBE) on the properties of liposomes. PBE was encapsulated within liposomes (approximately 60 nm) prepared using soybean phosphatidylcholine using the thin-film hydration method. There was no significant change in the average particle diameter and zeta potential of these liposomal vesicles corresponding to the increasing amounts of encapsulated PBE. The incorporation of PBE increased the polydispersity index (PDI) independent of concentration. Additionally, we observed that the storage stability of PBE liposomes with uniform particle size and approximately spherical shape vesicle was better at low concentration. The results of Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy showed that PBE was positioned at the water interface, which increased the order of hydrophobic alkyl chains in the lipid membranes. The incorporation of PBE led to an increase in the trans conformation of hydrophobic alkyl chain and consequently, the thermal stability of liposomes, which was confirmed by differential scanning calorimetry (DSC). The results of powder X-ray diffraction (XRD) analysis confirmed that PBE was present in an amorphous form in the liposomes. Additionally, the incorporation of PBE reduced the micropolarity of the lipid membrane. Thus, when preparing liposomes using thin-film hydration, the presence of PBE affected the characteristics of liposomes.
Collapse
Affiliation(s)
- Lifen Hou
- Lipid Research Laboratory, College of Chemistry and Chemical Engineering, Henan University of Technology
| | - Xiangyang Sun
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy
| | - Li Pan
- College of Food Science and Technology, Henan University of Technology
| | - Keren Gu
- Lipid Research Laboratory, College of Chemistry and Chemical Engineering, Henan University of Technology
| |
Collapse
|
9
|
de Andrade ARB, de Siqueira Ferraz-Carvalho R, Gibson VP, Kishishita J, de Britto Lira Nogueira MC, Santos-Magalhães NS, Leal LB, de Santana DP. Levobupivacaine-Loaded Liposome Associated with Thermogel for Prolonged Analgesia. AAPS PharmSciTech 2021; 22:104. [PMID: 33718986 DOI: 10.1208/s12249-021-01942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022] Open
Abstract
Pain is a phenomenon present in the majority of the population, affecting, among others, the elderly, overweight people, and especially recently operated patients, analgesia being necessary. In the specific case of relief of postoperative pain, different kinds of anesthetics are being used, among them bupivacaine, a widely used drug which promotes long-lasting analgesic effects. However, cardiotoxicity and neurotoxicity are related to its repetitive use. To overcome these shortcomings, Novabupi® (a racemic mixture) was developed and is marketed as an injectable solution. This formulation contains an enantiomeric excess of the levogyre isomer, which has reduced toxicity effects. Seeking to rationalize its use by extending the duration of effect and reducing the number of applications, the objectives of this work were to develop and evaluate liposomes containing Novabupi (LBPV), followed by incorporation into thermogel. Liposomes were prepared using the lipid hydration method, followed by size reduction using sonication, and the developed formulations were characterized by hydrodynamic diameter, polydispersity index (PDI), surface zeta potential, and encapsulation efficiency. The selected optimal liposomal formulation was successfully incorporated into a thermogel without loss of thermoresponsive properties, being suitable for administration as a subcutaneous injection. In the ex vivo permeation studies with fresh rodent skin, the thermogel with liposomes loaded with 0.5% LBPV (T-gel formulation 3) showed higher permeation rates compared to the starting formulation, thermogel with 0.5% LBPV (T-Gel 1), which will probably translate into better therapeutic benefits for treatment of postoperative analgesia, especially with regard to the number of doses applied.
Collapse
|
10
|
Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021; 13:357. [PMID: 33800402 PMCID: PMC7999964 DOI: 10.3390/pharmaceutics13030357] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
The popularity of hydrogels as biomaterials lies in their tunable physical properties, ability to encapsulate small molecules and macromolecular drugs, water holding capacity, flexibility, and controllable degradability. Functionalization strategies to overcome the deficiencies of conventional hydrogels and expand the role of advanced hydrogels such as DNA hydrogels are extensively discussed in this review. Different types of cross-linking techniques, materials utilized, procedures, advantages, and disadvantages covering hydrogels are tabulated. The application of hydrogels, particularly in buccal, oral, vaginal, and transdermal drug delivery systems, are described. The review also focuses on composite hydrogels with enhanced properties that are being developed to meet the diverse demand of wound dressing materials. The unique advantages of hydrogel nanoparticles in targeted and intracellular delivery of various therapeutic agents are explained. Furthermore, different types of hydrogel-based materials utilized for tissue engineering applications and fabrication of contact lens are discussed. The article also provides an overview of selected examples of commercial products launched particularly in the area of oral and ocular drug delivery systems and wound dressing materials. Hydrogels can be prepared with a wide variety of properties, achieving biostable, bioresorbable, and biodegradable polymer matrices, whose mechanical properties and degree of swelling are tailored with a specific application. These unique features give them a promising future in the fields of drug delivery systems and applied biomedicine.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana 133203, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
11
|
|
12
|
|
13
|
Abdollahiyan P, Baradaran B, de la Guardia M, Oroojalian F, Mokhtarzadeh A. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today. J Control Release 2020; 328:514-531. [PMID: 32956710 DOI: 10.1016/j.jconrel.2020.09.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
The field of tissue engineering has numerous potential for modified therapeutic results and has been inspired by enhancements in bioengineering at the recent decades. The techniques of regenerating tissues and assembling functional paradigms that are responsible for repairing, maintaining, and revitalizing lost organs and tissues have affected the entire spectrum of health care studies. Strategies to combine bioactive molecules, biocompatible materials and cells are important for progressing the renewal of damaged tissues. Hydrogels have been utilized as one of the most popular cell substrate/carrier in tissue engineering since previous decades, respect to their potential to retain a 3D structure, to protect the embedded cells, and to mimic the native ECM. The hydrophilic nature of hydrogels can provide an ideal milieu for cell viability and structure, which simulate the native tissues. Hydrogel systems have been applied as a favorable matrix for growth factor delivery and cell immobilization. This study reviews a brief explanation of the structure, characters, applications, fabrication methods, and future outlooks of stimuli responsive hydrogels in tissue engineering and, in particular, 3D bioprinting.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, Valencia 46100, Spain
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Yang M, Lu X, Tang L, Fu Y, Yang P. Thermosensitive nanocomposite gel loaded zinc phthalocyanine for photodynamic therapy. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02253-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Keshavarz AH, Montazer M, Soleimani N. In situ synthesis of polyamidoamine/β-cyclodextrin/silver nanocomposites on polyester fabric tailoring drug delivery and antimicrobial properties. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Zhu P, Chen Y, Shi J. Piezocatalytic Tumor Therapy by Ultrasound-Triggered and BaTiO 3 -Mediated Piezoelectricity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001976. [PMID: 32537778 DOI: 10.1002/adma.202001976] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/28/2020] [Indexed: 05/18/2023]
Abstract
Ultrasound theranostics features non-invasiveness, minor energy attenuation, and high tissue-penetrating capability, and is playing ever-important roles in the diagnosis and therapy of diseases in clinics. Herein, ultrasound is employed as a microscopic pressure resource to generate reactive oxygen species (ROS) for piezocatalytic tumor therapy under catalytic mediation by piezoelectric tetragonal BaTiO3 (T-BTO). Under the ultrasonic vibration, the electrons and holes are unpaired and they are separated by the piezoelectricity, resulting in the establishment of a strong built-in electric field, which subsequently catalyzes the generation of ROS such as toxic hydroxyl (• OH) and superoxide radicals (• O2 - ) in situ for tumor eradication. This modality shows intriguing advantages over typical sonoluminescence-activated sonodynamic therapy, such as more stable sensitizers and dynamical control of redox reaction outcomes. Furthermore, according to the finite element modeling simulation, the built-in electric field is capable of modulating the band alignment to make the toxic ROS generation energetically favorable. Both detailed in vitro cellular level evaluation and in vivo tumor xenograft assessment have demonstrated that an injectable T-BTO-nanoparticles-embedded thermosensitive hydrogel will substantially induce ultrasound irradiation-triggered cytotoxicity and piezocatalytic tumor eradication, accompanied by high therapeutic biosafety in vivo.
Collapse
Affiliation(s)
- Piao Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
17
|
Novel strategy for encapsulation and targeted delivery of poorly water‐soluble active substances. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Wang H, Jia L, Cong L, Yu H, Wang X. Enzymatically mediated, physiologically triggered N-palmitoyl chitosan hydrogels with temporally modulated high injectability. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Yang M, Xing R, Shen G, Yuan C, Yan X. A versatile cyclic dipeptide hydrogelator: Self-assembly and rheology in various physiological conditions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|