1
|
Oladzadabbasabadi N, Dheyab MA, Nafchi AM, Ghasemlou M, Ivanova EP, Adhikari B. Turning food waste into value-added carbon dots for sustainable food packaging application: A review. Adv Colloid Interface Sci 2023; 321:103020. [PMID: 37871382 DOI: 10.1016/j.cis.2023.103020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Carbon dots (CDs) are a recent addition to the nanocarbon family, encompassing both crystalline and amorphous phases. They have sparked significant research interest due to their unique electrical and optical properties, remarkable biocompatibility, outstanding mechanical characteristics, customizable surface chemistry, and negligible cytotoxicity. Their current applications are mainly limited to flexible photonic and biomedical devices, but they have also garnered attention for their potential use in intelligent packaging. The conversion of food waste into CDs further contributes to the concept of the circular economy. It provides a comprehensive overview of emerging green technologies, energy-saving reactions, and cost-effective starting materials involved in the synthesis of CDs. It also highlights the unique properties of biomass-derived CDs, focusing on their structural performance, cellular toxicity, and functional characteristics. The application of CDs in the food industry, including food packaging, is summarized in a concise manner. This paper sheds light on the current challenges and prospects of utilizing CDs in the packaging industry. It aims to provide researchers with a roadmap to tailor the properties of CDs to suit specific applications in the food industry, particularly in food packaging.
Collapse
Affiliation(s)
| | - Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia; Department of Physics, College of Science, University of Anbar, 31001 Ramadi, Iraq
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia.
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3001., Australia
| |
Collapse
|
2
|
Rahman MM, Ahmed L, Anika F, Riya AA, Kali SK, Rauf A, Sharma R. Bioinorganic Nanoparticles for the Remediation of Environmental Pollution: Critical Appraisal and Potential Avenues. Bioinorg Chem Appl 2023; 2023:2409642. [PMID: 37077203 PMCID: PMC10110382 DOI: 10.1155/2023/2409642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Nowadays, environmental pollution has become a critical issue for both developed and developing countries. Because of excessive industrialization, burning of fossil fuels, mining and exploration, extensive agricultural activities, and plastics, the environment is being contaminated rapidly through soil, air, and water. There are a variety of approaches for treating environmental toxins, but each has its own set of restrictions. As a result, various therapies are accessible, and approaches that are effective, long-lasting, less harmful, and have a superior outcome are extensively demanded. Modern research advances focus more on polymer-based nanoparticles, which are frequently used in drug design, drug delivery systems, environmental remediation, power storage, transformations, and other fields. Bioinorganic nanomaterials could be a better candidate to control contaminants in the environment. In this article, we focused on their synthesis, characterization, photocatalytic process, and contributions to environmental remediation against numerous ecological hazards. In this review article, we also tried to explore their recent advancements and futuristic contributions to control and prevent various pollutants in the environment.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Anha Akter Riya
- Department of Pharmacy, East-West University, Aftabnagar, Dhaka 1212, Bangladesh
| | - Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Mathew S, Thara CR, John N, Mathew B. Carbon dots from green sources as efficient sensor and as anticancer agent. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Wang S, Jiang X, Sun C, Kong XZ. Full Green Detection of Antibiotic Tetracyclines Using Fluorescent Poly(ethylene glycol) as the Sensor and the Mechanism Study. ACS Biomater Sci Eng 2022; 8:3957-3968. [PMID: 35976991 DOI: 10.1021/acsbiomaterials.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetracyclines are well-known antibiotics and widely used against a variety of bacterial infections. Their monitoring and detection have been an important issue. To this end, a vast number of methods have been developed; fluorescence sensing is one of the most reported. However, most of the reported sensors are made from transition metals with sophisticated multiprocesses; polymers are hardly seen for this purpose, particularly biocompatible ones. Herein, an aqueous solution of poly(ethylene glycol) (PEG), well known for being biocompatible, is shown to emit under excitation of 280 nm, while the solutions of selected tetracyclines, namely, doxycycline (DOX) and tetracycline (TC), are non-emissive under the same conditions. In the binary solutions of PEG-DOX or PEG-TC, PEG emission is sharply quenched with high sensitivity and selectivity. PEG was then used as a sensor for DOX and TC detections in water with high performance compared to reported studies. The same tests were also done by DOX spiking in milk and tap water, demonstrating that DOX was practically fully recovered. The quenching mechanism was ascribed to the interaction between the O atoms of PEG in clusters and specific heteroatom groups on tetracycline molecules through hydrogen bonding, elucidated from FTIR and NMR analyses. Therefore, this work provides a novel, fully green, easy to operate, low cost, and reliable protocol for tetracycline monitoring and detection and opens new potential application for PEG.
Collapse
Affiliation(s)
- Suisui Wang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chunqi Sun
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
5
|
M P A, Pardhiya S, Rajamani P. Carbon Dots: An Excellent Fluorescent Probe for Contaminant Sensing and Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105579. [PMID: 35001502 DOI: 10.1002/smll.202105579] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Pollution-induced degradation of the environment is a serious problem for both developing and developed countries. Existing remediation methods are restricted, necessitating the development of novel remediation technologies. Nanomaterials with unique characteristics have recently been developed for remediation. Quantum dots (QDs) are semiconductor nanoparticles (1-10 nm) with optical and electrical characteristics that differ from bigger particles owing to quantum mechanics, making them intriguing for sensing and remediation applications. Carbon dots (CDs) offer better characteristics than typical QDs, such as, CdSe QDs in terms of contaminant sensing and remediation. Non-toxicity, chemical inertness, photo-induced electron transfer, good biocompatibility, and adjustable photoluminescence behavior are all characteristics of CDs. CDs are frequently made from sustainable raw materials as they are cost-effective, environmentally compactable, and excellent in reducing waste generation. The goal of this review article is to briefly describe CDs fabrication methods, to deeply investigate the criteria and properties of CDs that make them suitable for sensing and remediation of contaminants, and also to highlight recent advances in their use in sensing and remediation of contaminants.
Collapse
Affiliation(s)
- Ajith M P
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
6
|
Liu Z, Ling Q, Cai Y, Xu L, Su J, Yu K, Wu X, Xu J, Hu B, Wang X. Synthesis of carbon-based nanomaterials and their application in pollution management. NANOSCALE ADVANCES 2022; 4:1246-1262. [PMID: 36133685 PMCID: PMC9419251 DOI: 10.1039/d1na00843a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
With the fast development of industry, large amounts of organic and inorganic pollutants are inevitably released into the natural environment, which results in the pollution of the environment and are thereby dangerous to human health. The efficient elimination of these pollutants is crucial to environment protection and human health. The high sorption capacity of carbon-based materials and high photocatalytic ability of carbon-based composites result in the application of carbon-based materials in environmental pollution cleanup. In this review article, we summarized recent studies on the synthesis of carbon-based materials, and their application in the sorption of organic and inorganic pollutants, the photocatalytic degradation of organic pollutants, and the in situ photocatalytic reduction-solidification of heavy metal ions. The sorption method is useful to remove pollutants from aqueous solutions. The sorption-photocatalytic degradation of organic pollutants is applicable, especially at low concentrations, whereas the catalytic reduction of metal ions is the best method for the in situ immobilization of high valent metal ions under complicated conditions. The interaction mechanism is discussed using advanced spectroscopy analysis and theoretical calculations, and at the end the challenges in the future are described.
Collapse
Affiliation(s)
- Zhixin Liu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Qian Ling
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Yawen Cai
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Linfeng Xu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Jiahao Su
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Kuai Yu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Xinyi Wu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Jiayi Xu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Baowei Hu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Xiangke Wang
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| |
Collapse
|
7
|
Liu F, Wang M, He Y, Song G, Zhao J. Smartphone-assisted ratiometric fluorescence sensing platform for the detection of doxycycline based on BCNO QDs and calcium ion. Mikrochim Acta 2022; 189:113. [PMID: 35190913 DOI: 10.1007/s00604-022-05224-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
A novel colorimetric and ratiometric fluorescence sensor has been established based on boron carbon oxynitride quantum dots (BCNO QDs) and Ca2+ for the detection of doxycycline (DOX). BCNO QDs were synthesized by microwave-assisted method with boric acid and ethylenediamine. The fluorescence of BCNO QDs at 425 nm was quenched due to the electrostatic interaction and inner filter effect with doxycycline. Meanwhile, doxycycline was combined with Ca2+ to form a fluorescence complex, which generated a new fluorescence peak at 520 nm. The fluorescence intensity ratio (F520/F425) has a good linear relationship with doxycycline concentration, and the detection limit is 25 nM. Moreover, the fluorescence of the reaction solution showed a concentration-dependent visual color change from blue to green. In order to facilitate further application, a portable fluorescent test paper which is easy to store was prepared. The RGB values of the reaction solution and corresponding test paper were identified by smartphone, and the visual detection of doxycycline was performed by digital image colorimetric analysis. The application of smartphone and fluorescent test paper can effectively shorten the detection time and simplified the operation, providing an effective scheme for quantitative detection of doxycycline in actual samples. Overall, this work provides a method for the detection of doxycycline and shows that the BCNO QDs have great potential application in food safety.
Collapse
Affiliation(s)
- Fang Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yu He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Gongwu Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Junjian Zhao
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei, China
| |
Collapse
|
8
|
Liang YM, Yang H, Zhou B, Chen Y, Yang M, Wei KS, Yan XF, Kang C. Waste tobacco leaves derived carbon dots for tetracycline detection: Improving quantitative accuracy with the aid of chemometric model. Anal Chim Acta 2022; 1191:339269. [PMID: 35033278 DOI: 10.1016/j.aca.2021.339269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
The recycling and reutilization of biomass wastes are significant for environmental protection and sustainable development. Recently, there have many studies on utilizing biomass wastes to produce carbon dots. Whereas, the spectrum shift effect that occurs in the quantitative application of carbon dots as fluorescent probes limits the accuracy of the quantitative analysis. In this work, waste tobacco leaves were used as the carbon source for synthesizing a novel carbon dots (CDs(WTL)) through a facile hydrothermal method. The CDs(WTL) possess a series of excellent properties, including good water solubility, well stability, and high fluorescence quantum yield. The fluorescent intensity of the CDs(WTL) can be quenched by tetracycline (TC) obviously, but there is a spectrum shift. In order to use the CDs(WTL) as fluorescent probes to quantify TC with higher accuracy, a quantification fluorescence model (QFM) was introduced to overcome this spectrum shift effect that often occurs. The coefficient of determination (R2) of traditional quantification model (TQ), partial least squares (PLS), and QFM are 0.9672, 0.9834, and 0.9991, respectively; the average relative predictive error (ARPE) of TQ, PLS, and QFM are 8.8%, 4.5%, and 3.9% for the spiked water samples, and 21.9%, 22.0%, and 2.9% for spiked tablet samples, respectively. The obtained results suggest that QFM is more accurate than PLS and TQ for the TC detection. By utilizing QFM, the spike recoveries (mean ± standard deviation) in three kinds of real tablet samples produced by different manufacturers are 98.9 ± 3.6%, 102.5 ± 6.2%, and 98.5 ± 2.7%, respectively; the spike recovery in river water samples is 99.4 ± 5.0%. In addition, high performance liquid chromatography (HPLC) was used as a reference method, the F and t tests suggest that there are no significant differences on the precision and accuracy between QFM and HPLC methods.
Collapse
Affiliation(s)
- Yan-Mei Liang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Hui Yang
- Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Bo Zhou
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Yang Chen
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Min Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Ke-Su Wei
- Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Xiu-Fang Yan
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Tobacco Quality Research of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Zhuang Y, Lin B, Yu Y, Wang Y, Zhang L, Cao Y, Guo M. A ratiometric fluorescent probe based on sulfur quantum dots and calcium ion for sensitive and visual detection of doxycycline in food. Food Chem 2021; 356:129720. [PMID: 33831834 DOI: 10.1016/j.foodchem.2021.129720] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
The residue of doxycycline in food can cause harm to human. Therefore, the detection of doxycycline residue is necessary. Herein, a ratiometric fluorescent probe was designed based on sulfur quantum dots (S dots) and Ca2+. Due to static quenching and inter filter effect between doxycycline and S dots, doxycycline quenched fluorescence of S dots at 450 nm. Meanwhile, doxycycline and Ca2+ formed fluorescent complex through coordination to produce new peak at 520 nm. The ratio of fluorescence intensity (F520/F450) and doxycycline concentration showed good linear relationship with detection limit of 0.19 μM. The fluorescence color of S dots/Ca2+ changed from blue to light green with increasing doxycycline concentration, which was applied for visual semi-quantitative detection of doxycycline. Moreover, the method was used for detecting doxycycline in milk and fish samples with recoveries in the range of 91%-110%. The method showed good application potential in detection of doxycycline in food samples.
Collapse
Affiliation(s)
- Yuerui Zhuang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Bixia Lin
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| | - Ying Yu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| | - Yumin Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Li Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
10
|
Cohen EN, Kondiah PPD, Choonara YE, du Toit LC, Pillay V. Carbon Dots as Nanotherapeutics for Biomedical Application. Curr Pharm Des 2020; 26:2207-2221. [PMID: 32238132 DOI: 10.2174/1381612826666200402102308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/10/2020] [Indexed: 02/01/2023]
Abstract
Carbon nanodots are zero-dimensional spherical allotropes of carbon and are less than 10nm in size (ranging from 2-8nm). Based on their biocompatibility, remarkable water solubility, eco- friendliness, conductivity, desirable optical properties and low toxicity, carbon dots have revolutionized the biomedical field. In addition, they have intrinsic photo-luminesce to facilitate bio-imaging, bio-sensing and theranostics. Carbon dots are also ideal for targeted drug delivery. Through functionalization of their surfaces for attachment of receptor-specific ligands, they ultimately result in improved drug efficacy and a decrease in side-effects. This feature may be ideal for effective chemo-, gene- and antibiotic-therapy. Carbon dots also comply with green chemistry principles with regard to their safe, rapid and eco-friendly synthesis. Carbon dots thus, have significantly enhanced drug delivery and exhibit much promise for future biomedical applications. The purpose of this review is to elucidate the various applications of carbon dots in biomedical fields. In doing so, this review highlights the synthesis, surface functionalization and applicability of biodegradable polymers for the synthesis of carbon dots. It further highlights a myriad of biodegradable, biocompatible and cost-effective polymers that can be utilized for the fabrication of carbon dots. The limitations of these polymers are illustrated as well. Additionally, this review discusses the application of carbon dots in theranostics, chemo-sensing and targeted drug delivery systems. This review also serves to discuss the various properties of carbon dots which allow chemotherapy and gene therapy to be safer and more target-specific, resulting in the reduction of side effects experienced by patients and also the overall increase in patient compliance and quality of life.
Collapse
Affiliation(s)
- Eemaan N Cohen
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
11
|
Ang WL, Boon Mee CAL, Sambudi NS, Mohammad AW, Leo CP, Mahmoudi E, Ba-Abbad M, Benamor A. Microwave-assisted conversion of palm kernel shell biomass waste to photoluminescent carbon dots. Sci Rep 2020; 10:21199. [PMID: 33273663 PMCID: PMC7712893 DOI: 10.1038/s41598-020-78322-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
In the present work, palm kernel shell (PKS) biomass waste has been used as a low-cost and easily available precursor to prepare carbon dots (CDs) via microwave irradiation method. The impacts of the reacting medium: water and diethylene glycol (DEG), and irradiation period, as well as the presence of chitosan on the CDs properties, have been investigated. The synthesized CDs were characterized by several physical and optical analyses. The performance of the CDs in terms of bacteria cell imaging and copper (II) ions sensing and removal were also explored. All the CDs possessed a size of 6-7 nm in diameter and the presence of hydroxyl and alkene functional groups indicated the successful transformation of PKS into CDs with carbon core consisting of C = C elementary unit. The highest quantum yield (44.0%) obtained was from the CDs synthesised with DEG as the reacting medium at irradiation period of 1 min. It was postulated that the high boiling point of DEG resulted in a complete carbonisation of PKS into CDs. Subsequently, the absorbance intensity and photoluminescence intensity were also much higher compared to other precursor formulation. All the CDs fluoresced in the bacteria culture, and fluorescence quenching occurred in the presence of heavy metal ions. These showed the potential of CDs synthesised from PKS could be used for cellular imaging and detection as well as removal of heavy metal ions.
Collapse
Affiliation(s)
- Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Cheldclos A L Boon Mee
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Center for Advanced Integrated Membrane System (AIMS), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Choe Peng Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Muneer Ba-Abbad
- Gas Processing Centre, Qatar University, P.O. Box 2713, Doha, Qatar
| | | |
Collapse
|
12
|
The effects of rose pigments extracted by different methods on the optical properties of carbon quantum dots and its efficacy in the determination of Diazinon. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105232] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Shi W, Lu X, Zhang S, Li H, Liu M, Dong B. C N based PAMAM polymer dots: Fluorescent property and Cu2+ sensing application. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Ganguly S, Das P, Das S, Ghorai U, Bose M, Ghosh S, Mondal M, Das AK, Banerjee S, Das NC. Microwave assisted green synthesis of Zwitterionic photolumenescent N-doped carbon dots: An efficient ‘on-off’ chemosensor for tracer Cr(+6) considering the inner filter effect and nano drug-delivery vector. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123604] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
The synthesis of fluorescent carbon dots from mango peel and their multiple applications. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.073] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|