1
|
Liu JY, Sayes CM. Lung surfactant as a biophysical assay for inhalation toxicology. Curr Res Toxicol 2022; 4:100101. [PMID: 36687216 PMCID: PMC9849875 DOI: 10.1016/j.crtox.2022.100101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/21/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Lung surfactant (LS) is a mixture of lipids and proteins that forms a thin film at the gas-exchange surfaces of the alveoli. The components and ultrastructure of LS contribute to its biophysical and biochemical functions in the respiratory system, most notably the lowering of surface tension to facilitate breathing mechanics. LS inhibition can be caused by metabolic deficiencies or the intrusion of endogenous or exogenous substances. While LS has been sourced from animals or synthesized for clinical therapeutics, the biofluid mixture has also gained recent interest as a biophysical model for inhalation toxicity. Various methods can be used to evaluate LS function quantitatively or qualitatively after exposure to potential toxicants. A narrative review of the recent literature was conducted. Studies focused whether LS was inhibited by various environmental contaminants, nanoparticles, or manufactured products. A review is also conducted on synthetic lung surfactants (SLS), which have emerged as a promising alternative to conventional animal-sourced LS. The intrinsic advantages and recent advances of SLS make a strong case for more widespread usage in LS-based toxicological assays.
Collapse
Affiliation(s)
- James Y. Liu
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
2
|
Li D, Chen X, Huang Y, Zhang G, Zhou D, Xiao B. Selective catalytic oxidation of formaldehyde on single V- and Cr-atom decorated magnetic C 4N 3 substrate: A first principles study. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129608. [PMID: 35872455 DOI: 10.1016/j.jhazmat.2022.129608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde (HCHO) is the most common indoor hazardous pollutant and has attracted great concern because its long-term exposure has adverse health effects on humans. Retention and catalytic oxidation of highly hazardous HCHO is an efficient and environmentally friendly method to use for air remediation, but a major obstacle to this procedure is the lack of an appropriate catalyst. Herein, two-dimensional magnetic C4N3 material with a 3d-transition metal as activate sites was systemically investigated in HCHO oxidation using density functional theory calculations. The results show that V-C4N3 and Cr-C4N3 have high structural stability and shallow activation barriers for O2 decomposition; these characteristics provide the necessary precursors for the subsequent oxidation reaction. Moreover, the V-C4N3 and Cr-C4N3 catalysts have unique selective adsorption and catalysis toward HCHO in a mixture of some typical in-door volatile organic compounds (VOCs) and air. The corresponding dynamic barrier for each reaction step was investigated and the mechanism involved in HCHO oxidation was revealed in detail. Aggregation of metal atoms in the V-C4N3 and Cr-C4N3 catalysts is prevented by enormous diffusion resistance, and this is further confirmed by AIMD simulations. These results provide insightful guidance for developing advanced magnetic catalysts for HCHO oxidation to improve the remediation of air contaminants.
Collapse
Affiliation(s)
- Deqiao Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xianfei Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China.
| | - Yi Huang
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China.
| | - Guanru Zhang
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China
| | - Dan Zhou
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
3
|
The lung surfactant activity probed with molecular dynamics simulations. Adv Colloid Interface Sci 2022; 304:102659. [PMID: 35421637 DOI: 10.1016/j.cis.2022.102659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 01/17/2023]
Abstract
The surface of pulmonary alveolar subphase is covered with a mixture of lipids and proteins. This lung surfactant plays a crucial role in lung functioning. It shows a complex phase behavior which can be altered by the interaction with third molecules such as drugs or pollutants. For studying multicomponent biological systems, it is of interest to couple experimental approach with computational modelling yielding atomic-scale information. Simple two, three, or four-component model systems showed to be useful for getting more insight in the interaction between lipids, lipids and proteins or lipids and proteins with drugs and impurities. These systems were studied theoretically using molecular dynamic simulations and experimentally by means of the Langmuir technique. A better understanding of the structure and behavior of lung surfactants obtained from this research is relevant for developing new synthetic surfactants for efficient therapies, and may contribute to public health protection.
Collapse
|
4
|
Abstract
In order to investigate the seasonal variation in chemical characteristics of VOCs in the urban and suburban areas of southwest China, we used SUMMA canister sampling in Jinghong city from October 2016 to June 2017. Forty-eight VOC species concentrations were analyzed using atmospheric preconcentration gas chromatography–mass spectrometry (GC–MS), Then, regional VOC pollution characteristics, ozone formation potentials (OFP), source identity, and health risk assessments were studied. The results showed that the average concentration of total mass was 144.34 μg·m−3 in the urban area and 47.81 μg·m−3 in the suburban area. Alkanes accounted for the highest proportion of VOC groups at 38.11%, followed by olefins (36.60%) and aromatic hydrocarbons (25.28%). Propane and isoprene were the species with the highest mass concentrations in urban and suburban sampling sites. The calculation of OFP showed that the contributions of olefins and aromatic hydrocarbons were higher than those of alkanes. Through the ratio of specific species, the VOCs were mainly affected by motor vehicle exhaust emissions, fuel volatilization, vegetation emissions, and biomass combustion. Combined with the analysis of the backward trajectory model, biomass burning activities in Myanmar influenced the concentration of VOCs in Jinghong. Health risk assessments have shown that the noncarcinogenic risk and hazard index of atmospheric VOCs in Jinghong were low (less than 1). However, the value of the benzene cancer risk to the human body was higher than the safety threshold of 1 × 10−6, showing that benzene has carcinogenic risk. This study provides effective support for local governments formulating air pollution control policies.
Collapse
|
5
|
Liu X, Wu H, Qin Y, Lu Q, Chen L, Sun Y. Effects of Nitrobenzene's mass transfer at water-air interface. ENVIRONMENTAL TECHNOLOGY 2022:1-9. [PMID: 35249448 DOI: 10.1080/09593330.2022.2050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
As a volatile organic compound, nitrobenzene has high vapor pressure and low boiling point, and it is very volatile when it enters the water body and enters the air. The mass transfer of VOCs at the water-air interface is a complex process of transboundary transport. In this paper, the effects of water temperature, interface turbulence, surfactant concentration, and humic acid concentration on the volatilization of nitrobenzene at the water-air interface were investigated. Under the influence of temperature, the volatilization of nitrobenzene accorded with the first-order kinetic equation. When the temperature increased from 5 ℃ to 25 ℃, the volatilization rate of nitrobenzene increased by 2.03 times. Temperature for volatilization rate constant was in accordance with the Arrhenius equation. The water-gas distribution of volatile organic compounds was in accordance with the Boltzman equation. Under the same temperature conditions, when the agitating intensity increased from 0 r/min to 250 r/min, the volatilization rate constant of nitrobenzene increased by 1.51 times. When the surfactant is greater than the critical micelle concentration, the volatilization rate constant of nitrobenzene decreases with the increase of surfactant. When the concentration of humic acid increased from 100 mg/L to 500 mg/L, the half-life increased by 1.14 h, and the volatilization rate decreased by 1.14 h, reduced by 17%. The results showed that the increase of temperature and the intensification of stirring had a significant promoting effect on the volatilization of nitrobenzene, while the surfactant and humic acid both played an inhibitory effect on the volatilization of nitrobenzene.
Collapse
Affiliation(s)
- Xuewei Liu
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Huifang Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yu Qin
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qimiao Lu
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Liping Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yi Sun
- Architects & Engineers Co.,Ltd of Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Emission Characteristics and Ozone Formation Potential Assessment of VOCs from Typical Metal Packaging Plants. ATMOSPHERE 2021. [DOI: 10.3390/atmos13010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the rapid development of metal packaging, volatile organic compounds (VOCs) emissions from the packaging processes are also increasing gradually. It is necessary to research the characteristics of VOCs emissions from such important industrial source and its impact on the possible ozone formation. In this research, three typical metal packaging plants were selected, VOCs emission characteristics were investigated, and their ozone formation potential were evaluated by using maximum incremental reactivity (MIR) coefficient method. The results showed that the VOCs emission characteristics of the selected targets were obviously different. VOCs emitted from plant A and B were mainly oxygenated hydrocarbons, which accounted for 85.02% and 43.17%, respectively. Olefins (62.75%) were the main species of plant C. 2-butanone (82.67%), methylene chloride (23.00%) and ethylene (36.67%) were the major species of plant A, plant B and plant C, respectively. The OFP (ozone formation potential) value of plant B (120.49 mg/m3) was much higher than those values of plant A (643.05 mg/m3) and plant C (3311.73 mg/m3), in which para-xylene, meta-xylene, acetaldehyde and ethylene were the main contributors. The difference in OFP values indicated that water-based ink and water-based coatings should be recommended for large scale application due to less VOCs emission and low ozone formation contribution.
Collapse
|
7
|
Li B, Mi C. Atomistic Insights on the Adsorption of Long-Chain Undecane Molecules on Hydroxyl-Functionalized Carbon Nanotubes. SSRN ELECTRONIC JOURNAL 2021. [DOI: 10.2139/ssrn.3994486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Fidalgo Rodríguez JL, Dynarowicz-Latka P, Miñones Conde J. How unsaturated fatty acids and plant stanols affect sterols plasma level and cellular membranes? Review on model studies involving the Langmuir monolayer technique. Chem Phys Lipids 2020; 232:104968. [PMID: 32896519 DOI: 10.1016/j.chemphyslip.2020.104968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022]
Abstract
The Langmuir monolayer technique has long been known for its usefulness to study the interaction between molecules and mimic cellular membranes to understand the mechanism of action of biologically relevant molecules. In this review we summarize the results that provided insight into the potential mechanism for lowering the plasma level of cholesterol by hypocholesterolemic substances (unsaturated fatty acids (UFAs) and phytocompounds) - in the aspect of prevention of atherosclerosis - and their effects on model biomembranes. The results on UFAs/cholesterol (oxysterols) interactions indicate that these systems are miscible and strongly interacting, contrary to immiscible systems containing saturated fatty acids. Lowering of cholesterol plasma level by UFAs was attributed to the strong affinity between UFAs and sterols, resulting in the formation of high stability complexes, in which sterols were bound and eliminated from the body. Studies on the effect of UFAs and plant sterols/stanols on simplified biomembranes (modeled as cholesterol/DPPC system) indicated that the studied hypocholesterolemic substances modify the biophysical properties of model membrane, affecting its fluidity and interactions between membrane components. Both UFAs and plant sterols/stanols were found to loosen interactions between DPPC and cholesterol and decrease membrane rigidity caused by the excess cholesterol in biomembrane, thus compensating strong condensing effect of cholesterol and restoring proper membrane fluidity, which is of utmost importance for normal cells functioning. The agreement between model - in vitro - studies and biological results prove the usefulness of the Langmuir monolayer technique, which helps in understanding the mode of action of biologically relevant substances.
Collapse
Affiliation(s)
- J L Fidalgo Rodríguez
- Department of Physical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain.
| | - P Dynarowicz-Latka
- Department of General Chemistry Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - J Miñones Conde
- Department of Physical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| |
Collapse
|
9
|
Dynamic properties and relaxation processes in surface layer of pulmonary surfactant solutions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Detection of Volatile Organic Compounds Using Surface Acoustic Wave Sensor Based on Nanoparticles Incorporated in Polymer. COATINGS 2019. [DOI: 10.3390/coatings9060373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, surface acoustic wave (SAW) sensors with two types of polymer sensing films, polyethyleneimine (PEI) and polydimethylsiloxane (PDMS), containing embedded ZnO, TiO2, and WO3 nanoparticles (NPs) for detecting volatile organic compounds (VOCs) were produced and studied. The NPs were obtained using the pulsed laser ablation method, with the same deposition conditions used for all three materials studied. After incorporation of the NPs into the polymer, the suspension obtained was deposited using the airbrush method onto the quartz substrate of the sensor. Sensors were tested for four types of VOCs: Ethanol, toluene, acetone, and dichloroethane. Those based on PEI-sensitive films showed a superior sensitivity to those with PDMS. It was also found that the sensors with WO3 NPs had the best results for ethanol, acetone, and dichloroethane. The limit of detection (LOD) of the PEI/WO3 sensor was 6 ppm for ethanol, 15 ppm for acetone, and 9 ppm for dichloroethane. For toluene, the best response was obtained using the PEI/ZnO sensor, which produced a LOD of 9 ppm.
Collapse
|
11
|
Maitlo HA, Kim KH, Khan A, Szulejko JE, Kim JC, Song HN, Ahn WS. Competitive adsorption of gaseous aromatic hydrocarbons in a binary mixture on nanoporous covalent organic polymers at various partial pressures. ENVIRONMENTAL RESEARCH 2019; 173:1-11. [PMID: 30884433 DOI: 10.1016/j.envres.2019.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/08/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Covalent-organic polymers (COPs) are recognized for their great potential for treating diverse pollutants via adsorption. In this study, the sorption behavior of benzene and toluene was investigated both individually and in a binary mixture against two types of COPs possessing different -NH2 functionalities. Namely, the potential of COPs was tested against benzene and toluene in a low inlet partial pressure range (0.5-20 Pa) using carbonyl-incorporated aromatic polymer (CBAP)-1-based diethylenediamine (EDA) [CD] and ethylenetriamine (DETA) [CE]. The maximum adsorption capacity and breakthrough values of both COPs showed dynamic changes with increases in the partial pressures of benzene and toluene. The maximum adsorption capacities (Amax) of benzene (as the sole component in N2 under atmospheric conditions) on CD and CE were in the range of 24-36 and 33-75 mg g-1, respectively. In contrast, with benzene and toluene in a binary mixture, the benzene Amax decreased more than two-fold (range of 2.7-15 and 6-39 mg g-1, respectively) due to competition with toluene for sorption sites. In contrast, the toluene Amax values remained consistent, reflecting its competitive dominance over benzene. The adsorption behavior of the targeted compounds (i.e., benzene and toluene) was explained by fitting the adsorption data by diverse isotherm models (e.g., Langmuir, Freundlich, Elovich, and Dubinin-Radushkevich). The current research would be helpful for acquiring a better understanding of the factors affecting competitive adsorption between different VOCs in relation to a given sorbent and across varying partial pressures.
Collapse
Affiliation(s)
- Hubdar Ali Maitlo
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| | - Azmatullah Khan
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, 04763, Republic of Korea; Department of Civil Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Jan E Szulejko
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Jo Chun Kim
- Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul, 05029, South Korea
| | - Hee Nam Song
- ACEN Co., Ltd, Yeongtong-Gu Dukyong Dearo 1556-16, Suwon-Si, Gyeonggi-Do, 16670, South Korea
| | - Wha-Seung Ahn
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, South Korea
| |
Collapse
|
12
|
Zhao Q, Li Y, Chai X, Xu L, Zhang L, Ning P, Huang J, Tian S. Interaction of inhalable volatile organic compounds and pulmonary surfactant: Potential hazards of VOCs exposure to lung. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:512-520. [PMID: 30807991 DOI: 10.1016/j.jhazmat.2019.01.104] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 05/21/2023]
Abstract
Exposure of volatile organic compounds (VOCs) towards lung leads to pulmonary dysfunctions and various lung diseases. However, the interaction of VOCs with pulmonary surfactant (PS) that directly comes into contact with inhaled VOCs is unknown. Here, simulated PS extracted from porcine lungs (EPS) was used to study the interaction with BTEX (i.e., benzene, toluene, ethylbenzene, and p-xylene) as representatives of VOCs. Surface pressure-area (π-A) isotherms showed that in the presence of individual BTEX, EPS monolayer's phase conversion from gas to liquid expanded phase was dramatically influenced and its collapse pressure decreased greatly compared to those of EPS alone, which was attributed to the alteration of EPS monolayer's microstructure characterized by atomic force microscopy and Brewster angle microscopy. Solubilization experiments manifested that EPS and its major components (dipalmitoyl phosphatidylcholine, DPPC; bovine serum albumin, BSA) exhibited obvious solubilization effects on individual BTEX. The solubilization capacity followed an order: EPS > DPPC > BSA, which was positively correlated with hydrophobicity of individual BTEX. Synergistic solubilization test unveiled that the mixed phospholipid components were largely responsible for the solubilization capacity of EPS. These findings indicate that VOCs exposure may induce potential pulmonary health risk due to the alteration of gas-liquid interfacial properties of PS.
Collapse
Affiliation(s)
- Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Xiaolong Chai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Linzhen Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|