1
|
Rasera F, Gresham IJ, Tinti A, Neto C, Giacomello A. Molecular Origin of Slippery Behavior in Tethered Liquid Layers. ACS NANO 2025; 19:8020-8029. [PMID: 39964795 DOI: 10.1021/acsnano.4c15843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Slippery covalently attached liquid surfaces (SCALS) are a family of nanothin polymer layers with ultralow static droplet friction, characterized by a low contact angle hysteresis (CAH < 5°), which makes them ideally suited for self-cleaning, water harvesting, and antifouling applications. Recently, a Goldilocks zone of lowest CAH has been identified for polydimethylsiloxane (PDMS) SCALS of intermediate thickness (≈4 nm); yet, molecular-level insights are missing to reveal the underlying physical mechanism of this elusive, slippery optimum. In this work, the agreement between coarse-grained molecular dynamics simulations and atomic force microscopy data shows that nanoscale defects, as well as deformation for thicker layers, are key to explaining the existence of this "just right" regime. At low thickness values, insufficient substrate coverage gives rise to chemical patchiness; at large thickness values, two features appear: (1) a waviness due to a previously overlooked lateral microphase separation occurring in polydisperse brushes, and (2) layer deformation due to the contact line being larger than in thinner layers. The most pronounced slippery behavior occurs for smooth PDMS layers that do not exhibit nanoscale waviness. The converging insights from simulations, experiments, and a CAH theory provide design guidelines for tethered polymer layers with ultralow CAH.
Collapse
Affiliation(s)
- Fabio Rasera
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| | - Isaac J Gresham
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Antonio Tinti
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| | - Chiara Neto
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| |
Collapse
|
2
|
Leppin C, Pomorska A, Morga M, Pomastowski P, Fijałkowski P, Michna A, Johannsmann D. Swelling Degree of Polyelectrolyte Layers Determined by an Electrochemical Quartz Crystal Microbalance. Biomacromolecules 2025; 26:914-928. [PMID: 39838519 PMCID: PMC11815823 DOI: 10.1021/acs.biomac.4c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Various polycations and polyanions were sequentially adsorbed onto the gold electrode of a quartz crystal microbalance with dissipation monitoring. The study focused on determining the adsorption kinetics, viscoelastic properties, and electroresponsivity of polyelectrolyte layers. For the first time, it was demonstrated that the structure (compact or expanded) of the layers can be determined by electroresponsivity. Viscoelastic modeling alone did not provide a conclusive answer as to whether the layers were compact or expanded. The study was further enriched by streaming potential and contact angle measurements, where polyelectrolyte multilayers were formed on mica. It was found that successive adsorption of layers led to periodic inversion of the zeta potential. Systematic differences were observed between the different top layers, which were explained by intermixing between layers. The presence or absence of interpenetration, as determined by the measurements of streaming potential and contact angles, correlated well with electroresponsivity.
Collapse
Affiliation(s)
- Christian Leppin
- Institute
of Physical Chemistry, Clausthal University
of Technology, Arnold-Sommerfeld-Str.
4, 38678 Clausthal-Zellerfeld, Germany
| | - Agata Pomorska
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Morga
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Pawel Pomastowski
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87 100 Torun, Poland
- Department
of Inorganic and Coordination Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland
| | - Piotr Fijałkowski
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87 100 Torun, Poland
| | - Aneta Michna
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | | |
Collapse
|
3
|
Huang TE, Lu Y, Wei Z, Li D, Li QY, Wang Z, Takahashi K, Orejon D, Zhang P. Ultrahigh Subcooling Dropwise Condensation Heat Transfer on Slippery Liquid-like Monolayer Grafted Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53285-53298. [PMID: 39295174 DOI: 10.1021/acsami.4c12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Rapid and continuous droplet shedding is crucial for many applications, including thermal management, water harvesting, and microfluidics, among others. Superhydrophobic surfaces, though effective, suffer from droplet pinning at high subcooling temperature (Tsub). Conversely, slippery liquid-like surfaces covalently bonded with flexible hydrophobic molecules show high stability and low droplet adhesion attributed to their dense and ultrasmooth water repellent polymer chains, enhancing dropwise condensation and rapid shedding. In this work, linear poly(dimethylsiloxane) chains of various viscosities are covalently bonded onto silicon substrates to form thin and smooth monolayer coated surfaces. The formation of the monolayer is characterized by cryogenic transmission electron microscopy. On these surfaces a very low contact angle hysteresis is reported within wide surface temperature ranges as well as continuous dropwise condensation at ultrahigh Tsub of 60 K. In particular, one of the highest condensation heat fluxes of 1392.60 kW·m-2 and a heat transfer coefficient of 23.21 kW·m-2·K-1 at ultrahigh Tsub of 60 K is reported. The experimental heat transfer performance is further compared to the theoretical heat transfer via the individual droplets with the droplet distribution elucidated via both macroscopic observations as well as environmental scanning electron microscopy. Finally, only a mild decrease in the heat transfer coefficient of 20.3% after 100 h of condensation test at Tsub of 60 K is reported. Slippery liquid-like surfaces promote droplet shedding and sustain dropwise condensation at high Tsub without flooding empowered by the lower frictional forces, addressing challenges in heat transfer performance and durability.
Collapse
Affiliation(s)
- Ting-En Huang
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yisheng Lu
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaozhuo Wei
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Dawei Li
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Qin-Yi Li
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Zhenying Wang
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Daniel Orejon
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD Scotland, United Kingdom
| | - Peng Zhang
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Cheng X, Zhao R, Wang S, Meng J. Liquid-Like Surfaces with Enhanced De-Wettability and Durability: From Structural Designs to Potential Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407315. [PMID: 39058238 DOI: 10.1002/adma.202407315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Liquid-like surfaces (LLSs) with dynamic repellency toward various pollutants (e.g., bacteria, oil, and ice), have shown enormous potential in the fields of biology, environment, and energy. However, most of the reported LLSs cannot meet the demands for practical applications, particularly in terms of de-wettability and durability. To solve these problems, considerable progress has been made in enhancing the de-wettability and durability of LLSs in complex environments. Therefore, this review mainly focuses on the recent progress in LLSs, encompassing designed structures and repellent capabilities, as well as their diverse applications, offering greater insights for the targeted design of desired LLSs. First, a detailed overview of the development of LLSs from the perspective of their molecular structural evolution is provided. Then highlight recent approaches for enhancing the dynamic de-wettability and durability of LLSs by optimizing their structural designs, including linear, looped, crosslinked, and hybrid structures. Later, the diverse applications and unique advantages of recently developed LLSs, including repellency (e.g., liquid anti-adhesion/transportation/condensation, anti-icing/scaling/waxing, and biofouling repellency) are summarized. Finally, Perspectives on potential innovative advancements and the promotion of technology selection to advance this exciting field are offered.
Collapse
Affiliation(s)
- Xiaopeng Cheng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, P. R. China
| | - Ran Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Kazaryan PS, Stamer KS, Kondratenko MS. Pinning Forces on the Omniphobic Dry, Liquid-Infused, and Liquid-Attached Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17190-17211. [PMID: 39119801 DOI: 10.1021/acs.langmuir.4c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Omniphobic coatings effectively repelling water, oils, and other liquids are of great interest and have a broad number of applications including self-cleaning, anti-icing surfaces, biofouling protection, selective filtration, etc. To create such coatings, one should minimize the pinning force that resists droplet motion and causes contact angle hysteresis. The minimization of the free surface energy by means of the chemical modification of the solid surface is not enough to obtain a nonsticky slippery omniphobic surface. One should minimize the contact between the solid and the droplet. Besides coating the surface with flat polymer films, among the major approaches to create omniphobic coatings, one can reveal "lotus effect" textured coatings, slippery liquid-infused porous surfaces (SLIPS), and slippery omniphobic covalently attached liquid (SOCAL) coatings. It is possible to turn one surface type into other by texturizing, impregnating with liquids, or grafting flexible liquid-like polymer chains. There are a number of models describing the pinning force on surfaces, but the transitions between states with different wetting regimes remain poorly understood. At the same time, such studies can significantly broaden existing ideas about the physics of wetting, help to design coatings, and also contribute to the development of generalized models of the pinning force. Here we review the existing pinning force (contact angle hysteresis) models on various omniphobic substrates. Also, we discuss the current studies of the pinning force in the transitions between different wetting regimes.
Collapse
Affiliation(s)
- Polina S Kazaryan
- M. V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1-2, Moscow 119992, Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991, Russian Federation
| | - Katerina S Stamer
- M. V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1-2, Moscow 119992, Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991, Russian Federation
| | - Mikhail S Kondratenko
- M. V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1-2, Moscow 119992, Russian Federation
| |
Collapse
|
6
|
Hauer L, Naga A, Badr RGM, Pham JT, Wong WSY, Vollmer D. Wetting on silicone surfaces. SOFT MATTER 2024; 20:5273-5295. [PMID: 38952198 DOI: 10.1039/d4sm00346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Silicone is frequently used as a model system to investigate and tune wetting on soft materials. Silicone is biocompatible and shows excellent thermal, chemical, and UV stability. Moreover, the mechanical properties of the surface can be easily varied by several orders of magnitude in a controlled manner. Polydimethylsiloxane (PDMS) is a popular choice for coating applications such as lubrication, self-cleaning, and drag reduction, facilitated by low surface energy. Aiming to understand the underlying interactions and forces, motivated numerous and detailed investigations of the static and dynamic wetting behavior of drops on PDMS-based surfaces. Here, we recognize the three most prevalent PDMS surface variants, namely liquid-infused (SLIPS/LIS), elastomeric, and liquid-like (SOCAL) surfaces. To understand, optimize, and tune the wetting properties of these PDMS surfaces, we review and compare their similarities and differences by discussing (i) the chemical and molecular structure, and (ii) the static and dynamic wetting behavior. We also provide (iii) an overview of methods and techniques to characterize PDMS-based surfaces and their wetting behavior. The static and dynamic wetting ridge is given particular attention, as it dominates energy dissipation, adhesion, and friction of sliding drops and influences the durability of the surfaces. We also discuss special features such as cloaking and wetting-induced phase separation. Key challenges and opportunities of these three surface variants are outlined.
Collapse
Affiliation(s)
- Lukas Hauer
- Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Abhinav Naga
- Department of Physics, Durham University, DH1 3LE, UK
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Rodrique G M Badr
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55099 Mainz, Germany
| | - Jonathan T Pham
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, 45221 OH, USA
| | - William S Y Wong
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Doris Vollmer
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
7
|
Zhou X, Wang Y, Li X, Sudersan P, Amann-Winkel K, Koynov K, Nagata Y, Berger R, Butt HJ. Thickness of Nanoscale Poly(Dimethylsiloxane) Layers Determines the Motion of Sliding Water Drops. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311470. [PMID: 38760007 DOI: 10.1002/adma.202311470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Layers of nanometer thick polydimethylsiloxane (PDMS) are applied as hydrophobic coatings because of their environmentally friendly and chemically inert properties. In applications such as heat exchangers or fog harvesting, low water drop friction on surfaces is required. While the onset of motion (static friction) has been studied, the knowledge of dynamic friction needs to be improved. To minimize drop friction, it is essential to understand which processes lead to energy dissipation and cause dynamic friction? Here, the dynamic friction of drops on PDMS brushes of different thicknesses is measured, covering the whole available velocity regime. The brush thickness L turns out to be a predictor for drop friction. 4-5 nm thick PDMS brush shows the lowest dynamic friction. A certain minimal thickness is necessary to form homogeneous surfaces and reduce the attractive van der Waals interaction between water and the substrate. The increase in dynamic friction above L = 5 nm is also attributed to the increasing viscoelastic dissipation of the capillary ridge formed at the contact line. The height of the ridge is related to the brush thickness. Fluorescence correlation spectroscopy and atomic force measurements support this interpretation. Sum-frequency generation further indicates a maximum order at the PDMS-water interface at intermediate thickness.
Collapse
Affiliation(s)
- Xiaoteng Zhou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yongkang Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiaomei Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Pranav Sudersan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katrin Amann-Winkel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute for Physics, Johannes Gutenberg University Mainz, Staudingerweg 10, 55128, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
8
|
Hartmann S, Diekmann J, Greve D, Thiele U. Drops on Polymer Brushes: Advances in Thin-Film Modeling of Adaptive Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4001-4021. [PMID: 38358424 DOI: 10.1021/acs.langmuir.3c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We briefly review recent advances in the hydrodynamic modeling of the dynamics of droplets on adaptive substrates, in particular, solids that are covered by polymer brushes. Thereby, the focus is on long-wave and full-curvature variants of mesoscopic hydrodynamic models in gradient dynamics form. After introducing the approach for films/drops of nonvolatile simple liquids on a rigid smooth solid substrate, it is first expanded to an arbitrary number of coupled degrees of freedom before considering the specific case of drops of volatile liquids on brush-covered solids. After presenting the model, its usage is illustrated by briefly considering the natural and forced spreading of drops of nonvolatile liquids on a horizontal brush-covered substrate, stick-slip motion of advancing contact lines as well as drops sliding down a brush-covered incline. Finally, volatile liquids are also considered.
Collapse
Affiliation(s)
- Simon Hartmann
- Institut für Theoretische Physik, Universität Münster, Wilhelm Klemm Str. 9, D-48149 Münster, Germany
| | - Jan Diekmann
- Institut für Theoretische Physik, Universität Münster, Wilhelm Klemm Str. 9, D-48149 Münster, Germany
| | - Daniel Greve
- Institut für Theoretische Physik, Universität Münster, Wilhelm Klemm Str. 9, D-48149 Münster, Germany
| | - Uwe Thiele
- Institut für Theoretische Physik, Universität Münster, Wilhelm Klemm Str. 9, D-48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), Universität Münster, Corrensstr. 2, 48149 Münster, Germany
| |
Collapse
|
9
|
Gresham IJ, Lilley SG, Nelson ARJ, Koynov K, Neto C. Nanostructure Explains the Behavior of Slippery Covalently Attached Liquid Surfaces. Angew Chem Int Ed Engl 2023; 62:e202308008. [PMID: 37550243 DOI: 10.1002/anie.202308008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Slippery covalently-attached liquid surfaces (SCALS) with low contact angle hysteresis (CAH, <5°) and nanoscale thickness display impressive anti-adhesive properties, similar to lubricant-infused surfaces. Their efficacy is generally attributed to the liquid-like mobility of the constituent tethered chains. However, the precise physico-chemical properties that facilitate this mobility are unknown, hindering rational design. This work quantifies the chain length, grafting density, and microviscosity of a range of polydimethylsiloxane (PDMS) SCALS, elucidating the nanostructure responsible for their properties. Three prominent methods are used to produce SCALS, with characterization carried out via single-molecule force measurements, neutron reflectometry, and fluorescence correlation spectroscopy. CO2 snow-jet cleaning was also shown to reduce the CAH of SCALS via a modification of their grafting density. SCALS behavior can be predicted by reduced grafting density, Σ, with the lowest water CAH achieved at Σ≈2. This study provides the first direct examination of SCALS grafting density, chain length, and microviscosity and supports the hypothesis that SCALS properties stem from a balance of layer uniformity and mobility.
Collapse
Affiliation(s)
- Isaac J Gresham
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Seamus G Lilley
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Andrew R J Nelson
- Australian Center for Neutron Scattering, ANSTO, Sydney, NSW, Australia
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Chiara Neto
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Sudersan P, Müller M, Hormozi M, Li S, Butt HJ, Kappl M. Method to Measure Surface Tension of Microdroplets Using Standard AFM Cantilever Tips. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37466052 PMCID: PMC10399288 DOI: 10.1021/acs.langmuir.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Surface tension is a physical property that is central to our understanding of wetting phenomena. One could easily measure liquid surface tension using commercially available tensiometers (e.g., Wilhelmy plate method) or by optical imaging (e.g., pendant drop method). However, such instruments are designed for bulk liquid volumes on the order of milliliters. In order to perform similar measurements on extremely small sample volumes in the range of femtoliters, atomic force microscope (AFM) is considered as a promising tool. It was previously reported that by fabricating a special "nanoneedle"-shaped cantilever probe, a Wilhelmy-like experiment can be performed with AFM. By measuring the capillary force between such special probes and a liquid surface, surface tension could be calculated. Here, we carried out measurements on microscopic droplets with AFM, but instead, using standard pyramidal cantilever tips. The cantilevers were coated with a hydrophilic polyethylene glycol-based polymer brush in a simple one-step process, which reduced its contact angle hysteresis for most liquids. Numerical simulations of a liquid drop interacting with a pyramidal or conical geometry were used to calculate surface tension from the experimentally measured force. The results on micrometer-sized drops agree well with bulk tensiometer measurement of three test liquids (mineral oil, ionic liquid, and glycerol), within a maximum error of 10%. Our method eliminates the need for specially fabricated "nanoneedle" tips, thus reducing the complexity and cost of measurement.
Collapse
Affiliation(s)
- Pranav Sudersan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maren Müller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mohammad Hormozi
- Technical University of Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Shuai Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
11
|
Rostami P, Hormozi MA, Soltwedel O, Azizmalayeri R, von Klitzing R, Auernhammer GK. Dynamic wetting properties of PDMS pseudo-brushes: Four-phase contact point dynamics case. J Chem Phys 2023; 158:2890469. [PMID: 37184008 DOI: 10.1063/5.0142821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023] Open
Abstract
We investigate the wetting properties of PDMS (Polydimethylsiloxane) pseudo-brush anchored on glass substrates. These PDMS pseudo-brushes exhibit a significantly lower contact angle hysteresis compared to hydrophobic silanized substrates. The effect of different molar masses of the used PDMS on the wetting properties seems negligible. The surface roughness and thickness of the PDMS pseudo-brush are measured by atomic force microscopy and x-ray reflectivity. The outcome shows that these surfaces are extremely smooth (topologically and chemically), which explains the reduction in contact angle hysteresis. These special features make this kind of surfaces very useful for wetting experiments. Here, the dynamics of the four-phase contact point are studied on these surfaces. The four-phase contact point dynamics on PDMS pseudo-brushes deviate substantially from its dynamics on other substrates. These changes depend only a little on the molar mass of the used PDMS. In general, PDMS pseudo-brushes increase the traveling speed of four-phase contact point on the surface and change the associated power law of position vs time.
Collapse
Affiliation(s)
- Peyman Rostami
- Abteilung Polymergrenzflächen, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Mohammad Ali Hormozi
- Soft Matter at Interfaces, Department of Physics, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Olaf Soltwedel
- Soft Matter at Interfaces, Department of Physics, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Reza Azizmalayeri
- Abteilung Polymergrenzflächen, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Regine von Klitzing
- Soft Matter at Interfaces, Department of Physics, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Günter K Auernhammer
- Abteilung Polymergrenzflächen, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| |
Collapse
|
12
|
Gresham IJ, Neto C. Advances and challenges in slippery covalently-attached liquid surfaces. Adv Colloid Interface Sci 2023; 315:102906. [PMID: 37099851 DOI: 10.1016/j.cis.2023.102906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Over the past decade, a new class of slippery, anti-adhesive surfaces known as slippery covalently-attached liquid surfaces (SCALS) has emerged, characterized by low values of contact angle hysteresis (CAH, less than 5°) with water and most solvents. Despite their nanoscale thickness (1 to 5 nm), SCALS exhibit behavior similar to lubricant-infused surfaces, including high droplet mobility and the ability to prevent icing, scaling, and fouling. To date, SCALS have primarily been obtained using grafted polydimethylsiloxane (PDMS), though there are also examples of polyethylene oxide (PEO), perfluorinated polyether (PFPE), and short-chain alkane SCALS. Importantly, the precise physico-chemical characteristics that enable ultra-low CAH are unknown, making rational design of these systems impossible. In this review, we conduct a quantitative and comparative analysis of reported values of CAH, molecular weight, grafting density, and layer thickness for a range of SCALS. We find that CAH does not scale monotonically with any reported parameter; instead, the CAH minimum is found at intermediate values. For PDMS, optimal behavior is observed at advancing contact angle of 106°, molecular weight between 2 and 10 kg mol-1, and grafting density of around 0.5 nm-2. CAH on SCALS is lowest for layers created from end-grafted chains and increases with the number of binding sites, and can generally be improved by increasing the chemical homogeneity of the surface through the capping of residual silanols. We review the existing literature on SCALS, including both synthetic and functional aspects of current preparative methods. The properties of reported SCALS are quantitatively analyzed, revealing trends in the existing data and highlighting areas for future experimental study.
Collapse
Affiliation(s)
- Isaac J Gresham
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, NSW Australia, Sydney 2006, NSW, Australia.
| | - Chiara Neto
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, NSW Australia, Sydney 2006, NSW, Australia.
| |
Collapse
|
13
|
Abstract
Liquid-repellent surfaces, especially smooth solid surfaces with covalently grafted flexible polymer brushes or alkyl monolayers, are the focus of an expanding research area. Surface-tethered flexible species are highly mobile at room temperature, giving solid surfaces a unique liquid-like quality and unprecedented dynamical repellency towards various liquids regardless of their surface tension. Omniphobic liquid-like surfaces (LLSs) are a promising alternative to air-mediated superhydrophobic or superoleophobic surfaces and lubricant-mediated slippery surfaces, avoiding fabrication complexity and air/lubricant loss issues. More importantly, the liquid-like molecular layer controls many important interface properties, such as slip, friction and adhesion, which may enable novel functions and applications that are inaccessible with conventional solid coatings. In this Review, we introduce LLSs and their inherent dynamic omniphobic mechanisms. Particular emphasis is given to the fundamental principles of surface design and the consequences of the liquid-like nature for task-specific applications. We also provide an overview of the key challenges and opportunities for omniphobic LLSs.
Collapse
Affiliation(s)
- Liwei Chen
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shilin Huang
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China
| | - Robin H A Ras
- Department of Applied Physics, Aalto University School of Science, Espoo, Finland.
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland.
| | - Xuelin Tian
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
14
|
Qiao Z, Guo Y, Wang Z. A multi-functional rinsing model based on cake properties for predicting rinsing efficiency and calculating energy consumption in MBR. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Petek ES, Katsumata R. Thickness Dependence of Contact Angles in Multilayered Ultrathin Polymer Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evon S. Petek
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Dr, Amherst, Massachusetts 01003, United States
| | - Reika Katsumata
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Dr, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Poisson J, Hudson ZM. Luminescent Surface‐Tethered Polymer Brush Materials. Chemistry 2022; 28:e202200552. [DOI: 10.1002/chem.202200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jade Poisson
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Zachary M. Hudson
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
17
|
Butt HJ, Liu J, Koynov K, Straub B, Hinduja C, Roismann I, Berger R, Li X, Vollmer D, Steffen W, Kappl M. Contact angle hysteresis. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Slip transition in dynamic wetting for a generalized Navier boundary condition. J Colloid Interface Sci 2021; 583:448-458. [PMID: 33017692 DOI: 10.1016/j.jcis.2020.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS Computer fluid dynamics simulations of dynamic wetting are often performed using a slip model on the substrate. In previous studies, the generalized Navier boundary condition (GNBC) has shown promising results and could help clear the gap between molecular and continuum scales, but lacks quantitative comparisons to experiments. We seek to investigate the dependence between the contact-line velocity and the slip length in a GNBC, by confronting numerical simulations to experimental data. EXPERIMENTS The physical properties of a molten polymer (polyethylene glycol) were assessed thoroughly. Its dynamic contact angle on a cellulosic substrate was measured carefully using the Wilhelmy method. The experiment was reproduced in a finite elements model using a GNBC. It was repeated for capillary numbers between 10-6 and 10-1, and slip lengths ranging from 1 μm to 1 mm. FINDINGS A realistic value of the slip length was selected by matching the dynamic contact angles issued from numerical simulations and their experimental counterparts. The slip length behavior as a function of contact line velocity displayed a clear transition. The model also reproduced a dynamic wetting transition between frictional and viscous dissipations, which seems to be linked to an increasing difference between microscopic and macroscopic contact angles.
Collapse
|
19
|
Bey R, Coasne B, Picard C. Probing the concept of line tension down to the nanoscale. J Chem Phys 2020; 152:094707. [PMID: 33480734 DOI: 10.1063/1.5143201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel mechanical approach is developed to explore by means of atom-scale simulation the concept of line tension at a solid-liquid-vapor contact line as well as its dependence on temperature, confinement, and solid/fluid interactions. More precisely, by estimating the stresses exerted along and normal to a straight contact line formed within a partially wet pore, the line tension can be estimated while avoiding the pitfalls inherent to the geometrical scaling methodology based on hemispherical drops. The line tension for Lennard-Jones fluids is found to follow a generic behavior with temperature and chemical potential effects that are all included in a simple contact angle parameterization. Former discrepancies between theoretical modeling and molecular simulation are resolved, and the line tension concept is shown to be robust down to molecular confinements. The same qualitative behavior is observed for water, but the line tension at the wetting transition diverges or converges toward a finite value depending on the range of solid/fluid interactions at play.
Collapse
Affiliation(s)
- Romain Bey
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Benoit Coasne
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Cyril Picard
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
20
|
Peppou-Chapman S, Hong JK, Waterhouse A, Neto C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem Soc Rev 2020; 49:3688-3715. [DOI: 10.1039/d0cs00036a] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We review the rational choice, the analysis, the depletion and the properties imparted by the liquid layer in liquid-infused surfaces – a new class of low-adhesion surface.
Collapse
Affiliation(s)
- Sam Peppou-Chapman
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- The University of Sydney Nano Institute
- The University of Sydney
- Australia
- Central Clinical School
- Faculty of Medicine and Health
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| |
Collapse
|