1
|
Du M, Xu Z, Xue Y, Li F, Bi J, Liu J, Wang S, Guo X, Zhang P, Yuan J. Application Prospect of Ion-Imprinted Polymers in Harmless Treatment of Heavy Metal Wastewater. Molecules 2024; 29:3160. [PMID: 38999112 PMCID: PMC11243660 DOI: 10.3390/molecules29133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.
Collapse
Affiliation(s)
- Mengzhen Du
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Zihao Xu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Yingru Xue
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Fei Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jingtao Bi
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jie Liu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Shizhao Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Xiaofu Guo
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Junsheng Yuan
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| |
Collapse
|
2
|
Wang X, Qi F, Xiong J, Zhao J, Zhang G, Afzal S, Gu X, Li Q, Luo S, Mo H. Synthesis of a Novel Dithiocarbamate Surfactant Derivative Adsorbent for Efficient Removal of Heavy Metal Ions. ACS OMEGA 2023; 8:41512-41522. [PMID: 37970007 PMCID: PMC10633955 DOI: 10.1021/acsomega.3c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 11/17/2023]
Abstract
In this work, a novel heavy metal chelating agent (DTC-SDS) containing dithiocarbamate (DTC) was synthesized using sodium dodecyl sulfate (SDS), formaldehyde, and carbon disulfide. DTC-SDS has excellent trapping performance under pH 1-7 and initial concentrations 100-500 mg/L. With the increase in adsorbent dose, the adsorption amount of DTC-SDS increases and then decreases, and the optimized dosage of DTC-SDS is 0.02 g. The DTC-SDS adsorbent exhibits superior adsorption capacity (191.01, 111.7, and 79.14 mg/g) and high removal rates (97.99%, 98.48%, and 99.91%) for Mn2+, Zn2+, and Pb2+ respectively, in wastewater. Such remarkable adsorption performance could be attributed to the strong trapping effect on heavy metal ions by the C-S bond of DTC-SDS. The liquid adsorbent was in full contact with heavy metal ions, which further enhanced the complexation of heavy metal ions. The adsorption isothermal model showed that the adsorption process was typical of Langmuir monomolecular layer adsorption. Kinetic studies showed that the pseudo-second-order kinetic model fits the experimental adsorption data better than the pseudo-first-order kinetic model. In the ternary metal species system (Mn2+, Zn2+, and Pb2+), DTC-SDS preferentially adsorbed Pb2+ due to its highest covalent index. The main controlling step is the chemical interaction between the active groups of DTC-SDS and the heavy metal ions. This work provides valuable insights into the adsorption of heavy metal ions onto dithiocarbamate, which could guide the development of other heavy metal chelating agents and be beneficial for developing novel treatments of wastewater contaminated with heavy metals.
Collapse
Affiliation(s)
- Xingmin Wang
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Feilan Qi
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Jie Xiong
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Jujiao Zhao
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Guizhi Zhang
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Shahzad Afzal
- Department
of Environmental Engineering, China Jiliang
University, Hangzhou Zhejiang 310018, P.R. China
| | - Xingxing Gu
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Qiudong Li
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Shiyang Luo
- School
of Environment and Resources, Chongqing
Technology and Business University, Chongqing 400067, P.R. China
| | - Hongbo Mo
- Chongqing
Academy of Metrology and Quality Inspection Chongqing, Chongqing, CN 400047, China
| |
Collapse
|
3
|
Amini MH, Beyki MH. Construction of 1, 10-phenanthroline functionalized magnetic starch as a lead (II) tagged surface imprinted biopolymer for highly selective targeting of toxic lead ions. Int J Biol Macromol 2023:124996. [PMID: 37236569 DOI: 10.1016/j.ijbiomac.2023.124996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
In this research 1, 10 - phenanthroline functionalized CaFe2O4 - starch was employed as a magnetic ion-imprinted polymer (IIP) for highly selective targeting toxic Pb2+ ions from aqueous media. VSM analysis revealed that the sorbent has magnetic saturation of 10 emu g-1 which is appropriate for magnetic separation. Moreover, TEM analysis confirmed that the adsorbent is composed of particles with a mean diameter of 10 nm. According to XPS analysis, lead coordination with phenanthroline is the main adsorption mechanism that is along with electrostatic interaction. A maximum adsorption capacity of 120 mg g-1 was obtained within 10 min at a pH of 6 and an adsorbent dosage of 20 mg. Kinetic and isotherm studies showed that lead adsorption followed the pseudo-second-order and Freundlich models, respectively. The selectivity coefficient of Pb (II) relative to Cu(II), Co(II), Ni(II), Zn(II), Mn(II), and Cd(II) was 4.7, 14, 20, 36, 13 and 25, respectively. Moreover, the IIP represents the imprinting factor of 1.32. The sorbent showed good regeneration after five cycles of the sorption/desorption process with an efficiency of >93 %. Finally represented IIP was used for lead preconcentration from various matrices i.e., water, vegetable, and fish samples.
Collapse
Affiliation(s)
| | - Mostafa Hossein Beyki
- School of Chemistry, University College of Science, university of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Xia T, Yang X, Zhang R, Huang A, Hu K, Hao F, Liu Y, Deng Q, Yang S, Wen X. Simultaneous determination of Co and Pb in P. polyphylla var. yunnanensis by ICP-OES after GO-TiO 2-DES-based dispersive micro solid phase extraction. Talanta 2023; 256:124316. [PMID: 36758504 DOI: 10.1016/j.talanta.2023.124316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
In this work, deep eutectic solvent (DES) was used to modify GO-TiO2 to synthesize new adsorption material GO-TiO2-DES nanocomposites. It was first used for dispersive micro solid phase extraction (DMSPE) and combined with inductively coupled plasma optical emission spectrometry (ICP-OES) for simultaneous determination of trace cobalt (Co) and lead (Pb) in natural medicine P. polyphylla var. yunnanensis. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and the Brunauer-Emmett-Teller (BET) specific surface area were used to characterize. The results showed that GO-TiO2-DES nanocomposites were successfully prepared and had better adsorption effect on metal ions. The factors affecting the extraction and elution of Co and Pb were optimized, including the type of DES, pH, adsorption time, amount of adsorbent, adsorption temperature, and elution time. Under the optimum conditions, the enhancement factors (EFs) of Co and Pb were 31 and 28, the limits of detection (LODs) were 0.11 and 0.24 μg L-1, and the limits of quantification (LOQs) were 0.36 and 0.82 μg L-1, respectively. The results of Co and Pb determined by the established method were in good agreement with those of inductively coupled plasma mass spectrometry (ICP-MS), which verified the accuracy and reliability of the method.
Collapse
Affiliation(s)
- Ting Xia
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Xiaofang Yang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Zhang
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Anqi Huang
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Kan Hu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Fangfang Hao
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Qingwen Deng
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Shengchun Yang
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| | - Xiaodong Wen
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
5
|
Barzkar M, Ghiasvand A, Safdarian M. A simple and cost-effective synthesis route using itaconic acid to prepare a magnetic ion-imprinted polymer for preconcentration of Pb (II) from aqueous media. Talanta 2023; 259:124501. [PMID: 37031540 DOI: 10.1016/j.talanta.2023.124501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
A new Pb (II) magnetic ion-imprinted polymer (Pb-MIIP) was successfully investigated for the selective extraction of Pb (II) from an aqueous solution. MIIP nanostructures were developed using itaconic acid-coated iron oxide nanoparticles (Fe3O4@ITA) as a novel magnetic core, ITA as a functional monomer and chelating agent, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and 2,2-azobisisobutyronitrile (AIBN) as an initiator. The triple application of ITA in the synthesis and reduction of the number of compounds in the preparation of the MIIP, in addition to being economical, reduces the possibility of side reactions. The synthesized products were followed and confirmed in each step by instrumental and microscopic methods. The limit of detection of the Pb (II)-MIIP method was 0.21 μg L-1. Under the optimal conditions, the recovery (R%) was >90% with a relative standard deviation (RSD%) of <4.9%. The synthesized MIIP was reusable and successfully used to extract Pb (II) from tap water samples.
Collapse
Affiliation(s)
- Minoo Barzkar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Ghiasvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Mehdi Safdarian
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Bao Y, Zhao Y, Qin G, Wang J, Li K, Zhu X. Histidine-mediated dendritic mesoporous magnetic ion-imprinted polymer toward effective and recoverable cadmium removal. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Kamyab H, Chelliapan S, Tavakkoli O, Mesbah M, Bhutto JK, Khademi T, Kirpichnikova I, Ahmad A, ALJohani AA. A review on carbon-based molecularly-imprinted polymers (CBMIP) for detection of hazardous pollutants in aqueous solutions. CHEMOSPHERE 2022; 308:136471. [PMID: 36126738 DOI: 10.1016/j.chemosphere.2022.136471] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
This article discusses the unique properties and performance of carbon-based molecularly-imprinted polymers (MIPs) for detecting hazardous pollutants in aqueous solutions. Although MIPs have several advantages such as specific recognition sites, selectivity, and stability, they suffer from a series of drawbacks, including loss of conductivity, electrocatalytic activity, and cost, which limit their use in various fields. Carbon-based MIPs, which utilize carbon electrodes, carbon nanoparticles, carbon dots, carbon nanotubes, and graphene substrates, have been the focus of research in recent years to enhance their properties and remove their weaknesses as much as possible. These carbon-based nanomaterials have excellent sensitivity and specificity for molecular identification. As a result, they have been widely used in various applications, such as assessing the environmental, biological, and food samples. This article examines the growth of carbon-based MIPs and their environmental applications.
Collapse
Affiliation(s)
- Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Department of Electric Power Stations, Network and Supply Systems, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Omid Tavakkoli
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Mohsen Mesbah
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Tayebeh Khademi
- Azman Hashim International Business School (AHIBS), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Irina Kirpichnikova
- Department of Electric Power Stations, Network and Supply Systems, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation
| | - Akil Ahmad
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Anas Ayesh ALJohani
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Experimental and density functional theory studies of laminar double-oxidized graphene oxide nanofiltration membranes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Zhou L, Yi Y, Fang Z. Nanoscale zero-valent iron immobilized by ZIF-8 metal-organic frameworks for enhanced removal of hexavalent chromium. CHEMOSPHERE 2022; 306:135456. [PMID: 35798160 DOI: 10.1016/j.chemosphere.2022.135456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
nZVI is considered to be a promising material for environmental remediation. However, the drawbacks of easy agglomeration and low activity severely limit its application. In this work, nZVI/ZIF-8 was obtained by in-situ reduction of nZVI in the presence of performed ZIF-8. The reactivity of the as-obtained nZVI/ZIF-8 nanocomposites was investigated by removing hexavalent chromium (Cr(VI)) from wastewater. The as-obtained nZVI/ZIF-8 nanocomposites showed a superior activity for Cr(VI) removal, with an optimum activity (91.27%) achieved over 0.25 nZVI/ZIF-8 (i e., the mass ratio of ZIF-8 to nZVI was 0.25), higher than that of nZVI (64.55%), and this could be owned to the excellent dispersion of nZVI in nZVI/ZIF-8 and the high specific surface area as compared with the bare nZVI. The results of XPS characterization, quenching experiment analysis and kinetics fitting indicated that the Cr(VI) elimination was a surface-dominated chemical reduction process. Besides, more than 99.00% Cd(II), Cu(II), Cr(VI) and Pb(II) was removed from wastewater over nZVI/ZIF-8 nanocomposites, and negligible zinc ion was detected in the aqueous solutions. The results of our finding demonstrate that the introduction of MOFs is an effective strategy in developing a highly efficient nZVI-based nanocomposites system, and also highlight the promising role of using nZVI/MOFs in heavy metal treatment for practical wastewater.
Collapse
Affiliation(s)
- Long Zhou
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China
| | - Yunqiang Yi
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Gao Y, Zhou RY, Yao L, Wang Y, Yue Q, Yu L, Yu JX, Yin W. Selective capture of Pd(II) from aqueous media by ion-imprinted dendritic mesoporous silica nanoparticles and re-utilization of the spent adsorbent for Suzuki reaction in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129249. [PMID: 35739768 DOI: 10.1016/j.jhazmat.2022.129249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The development of highly efficient adsorptive material for the selective capture of Pd(II), and re-utilization of spent Pd(II)-loaded adsorbent as an efficient catalyst for organic synthesis are of great significance, but challenging. Particularly, the heterogeneous palladium-catalyzed Suzuki reaction in aqueous media is much more challenging than that of homogeneous. Herein, several novel Pd(II) ion-imprinted polymers (PIIPs) based on dendritic fibrous silica particles are constructed by surface ion imprinting technology (SIIT), using Schiff base and pyridine groups functionalized organosilicon as functional monomer. The PIIP-3 prepared by 3 g of functional monomer exhibits the best adsorption performance, and shows ultrafast (10 min) and selective capture of Pd(II) with high uptake capacity (382.5 mg/g). Moreover, the waste Pd(II) loaded PIIP-3 (PIIP-3-Pd) can serve as a catalyst towards the Suzuki reaction in water, affording 94.2 % yield of the desired product. Interestingly, the PIIP-3-Pd can be reused 12 times without an appreciable decrease in catalytic activity, which is probably due to the imprinted cavity and specific recognition site of PIIP-3 can match and recapture Pd active species in a complex catalytic environment. Thus, this work demonstrates huge potentials of SIIT to enhance the selectivity of adsorption process and increase the lifetime of catalysts.
Collapse
Affiliation(s)
- Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Ru-Yi Zhou
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China; Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Lifeng Yao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yi Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China; Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Lan Yu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jun-Xia Yu
- Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
12
|
Ismail AS, Ishak N, Kamarudin Q, Hui VES, Mustapa NB, Nasir AM. Synthesis of graphite‐based ion‐imprinted polymer for the selective removal of nitrate ions. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Anis Syahirah Ismail
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Noorhidayah Ishak
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Qasrina Kamarudin
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Vivian Ewe Shin Hui
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Nur Bahijah Mustapa
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Azalina Mohamed Nasir
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| |
Collapse
|
13
|
Yu JX, Li HX, Zhou RY, Li XD, Wu HJ, Xiao CQ, Chi RA. Surface ion imprinted bagasse for selective removal of Cu (II) from the leaching solution of electroplating sludge. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Ding C, Deng Y, Merchant A, Su J, Zeng G, Long X, Zhong ME, Yang L, Gong D, Bai L, Zhou X, Liu X. Insights into Surface Ion-imprinted Materials for Heavy Metal Ion Treatment: Challenges and Opportunities. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2044352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chunxia Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yaocheng Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Jiaying Su
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Guangyong Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
| | - Xiuyu Long
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
| | - Mei-E Zhong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
| | - Lihua Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Daoxin Gong
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Xiangying Liu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
15
|
Lv M, Du Y, Zhang T, Du X, Yin X. Cassava Starch-Based Thermo-Responsive Pb(II)-Imprinted Material: Preparation and Adsorption Performance on Pb(II). Polymers (Basel) 2022; 14:828. [PMID: 35215742 PMCID: PMC8963116 DOI: 10.3390/polym14040828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Heavy metal pollution is currently an increasing threat to the ecological environment, and the development of novel absorbents with remarkable adsorption performance and cost-effectiveness are highly desired. In this study, a cassava starch-based Pb(II)-imprinted thermo-responsive hydrogel (CPIT) had been prepared by using cassava starch as the bio-substrate, N-isopropyl acrylamide (NIPAM) as the thermo-responsive monomer, and Pb(II) as the template ions. Later, a variety of modern techniques including FTIR, DSC, SEM, and TGA were employed to comprehensively analyze the characteristic functional groups, thermo-responsibility, morphology, and thermal stability of CPIT. The obtained material exhibited superior performance in adsorption of Pb(II) and its maximum adsorption capacity was high-up to 114.6 mg/g under optimized conditions. Notably, the subsequent desorption (regeneration) process was fairly convenient by simply rinsing with cold deionized water and the highest desorption efficiency could be achieved as 93.8%. More importantly, the adsorption capacity of regenerated CPIT still maintained 88.2% of the value of starting material even after 10 recyclings. In addition, the excellence of CPIT in selective adsorption of Pb(II) should also be highlighted as its superior adsorption ability (97.9 mg/g) over the other seven interfering metal ions.
Collapse
Affiliation(s)
| | | | | | - Xueyu Du
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (M.L.); (Y.D.); (T.Z.)
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (M.L.); (Y.D.); (T.Z.)
| |
Collapse
|
16
|
Xiong Y, Xie L, Zhu L, Wang Y, Shan W, Lou Z, Cui J, Yu H. Superior adsorption of Re(VII) by anionic imprinted chitosan-silica composite: Adsorption performance, selectivity and mechanism study. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Zhang L, Liu W, Zhang Y, Mu C, Zhong L, Wang Y, Zhang X, Xue J. Carbon‐Coated Magnetic Fly Ash Modified with Guanylthiourea and Polydopamine for Simultaneous Removal of Cu(II) and Pb(II) in Acidic Aqueous Solutions. ChemistrySelect 2021. [DOI: 10.1002/slct.202102545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liang Zhang
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an Shaanxi 710055 China
- Shanxi Provincial Key Laboratory of Gold and Resource Xi'an University of Architecture and Technology Xi'an Shaanxi 710055 China
| | - Wenwen Liu
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an Shaanxi 710055 China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an Shaanxi 710055 China
| | - Chaoqun Mu
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an Shaanxi 710055 China
| | - Lvling Zhong
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an Shaanxi 710055 China
| | - Yao Wang
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an Shaanxi 710055 China
| | - Xiaomin Zhang
- School of Resources Engineering Xi'an University of Architecture and Technology Xi'an Shaanxi 710055 China
| | - Juanqin Xue
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an Shaanxi 710055 China
| |
Collapse
|
18
|
Erdem Yayayürük A, Yayayürük O, Tukenmez E, Karagoz B. Multidentate amine ligand decorated hairy brushes on PS-DVB microbeads for Cd(II) removal from water samples. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1813776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Onur Yayayürük
- Faculty of Science, Department of Chemistry, Ege University, İzmir, Turkey
| | - Ece Tukenmez
- Department of Chemistry, Istanbul Technical University, İstanbul, Turkey
| | - Bunyamin Karagoz
- Department of Chemistry, Istanbul Technical University, İstanbul, Turkey
| |
Collapse
|
19
|
Fabrication of recoverable magnetic surface ion-imprinted polymer based on graphene oxide for fast and selective removal of lead ions from aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Jiang Y, Tang B, Zhao P, Xi M, Li Y. Synthesis of Copper and Lead Ion Imprinted Polymer Submicron Spheres to Remove Cu2+ and Pb2+. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02065-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Experimental and DFT studies on highly selective separation of indium ions using silica gel/graphene oxide based ion-imprinted composites as a sorbent. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Modified mesoporous zeolite-A/reduced graphene oxide nanocomposite for dual removal of methylene blue and Pb2+ ions from wastewater. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Wang Y, Yang K, Wang J, Yu H, Cui J, Xiong Y. Preparation of Porous Mo(VI)-Imprinted Algae for Recognizing Molybdenum(VI). SOLVENT EXTRACTION AND ION EXCHANGE 2021. [DOI: 10.1080/07366299.2021.1876985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuejiao Wang
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang, China
| | - Kun Yang
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang, China
| | - Jing Wang
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang, China
| | - Haibiao Yu
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang, China
| | - Junshuo Cui
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang, China
| | - Ying Xiong
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang, China
| |
Collapse
|
24
|
Roudbari R, Keramati N, Ghorbani M. Porous nanocomposite based on metal-organic framework: Antibacterial activity and efficient removal of Ni(II) heavy metal ion. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Applications of Chitosan in Molecularly and Ion Imprinted Polymers. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s42250-020-00177-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN. A Critical Review on the Synthesis and Application of Ion-Imprinted Polymers for Selective Preconcentration, Speciation, Removal and Determination of Trace and Essential Metals from Different Matrices. Crit Rev Anal Chem 2020; 52:314-326. [PMID: 32723191 DOI: 10.1080/10408347.2020.1798210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The presence of toxic trace metals and high concentrations of essential elements in the environment presents a serious threat to living organism. Various methods have been used for the detection, preconcentration and remediation of these metals from biological, environmental and food matrices. Owing to the complexicity of samples, methods with high selectivity have been used for detection, preconcentration and remediation of these trace metals. These methods are achieved by the use of ion-imprinted polymers (IIPs) due to their impressive properties such as selectivity, high extraction efficiency, speciation capability and reusability. Because of the increase of toxic trace and essential metals in the environment, IIPs have attracted great use in analytical chemistry. This review, provide a brief background on IIPs and polymerization method that are used for their preparation. Recent applications of IIPs as adsorbents for preconcentration, removal, speciation and electrochemical detection of trace and essential metal is also discussed.
Collapse
Affiliation(s)
- Silindokuhle Jakavula
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - N Raphael Biata
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| | - K Mogolodi Dimpe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Vusumzi E Pakade
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
27
|
Xie C, Huang X, Wei S, Xiao C, Cao J, Wang Z. Novel dual-template magnetic ion imprinted polymer for separation and analysis of Cd2+ and Pb2+ in soil and food. JOURNAL OF CLEANER PRODUCTION 2020; 262:121387. [DOI: 10.1016/j.jclepro.2020.121387] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
28
|
Kongasseri A, Sompalli NK, Modak VA, Mohanty A, Nagarajan S, Rao CB, Deivasigamani P, Mohan AM. Solid-state ion recognition strategy using 2D hexagonal mesophase silica monolithic platform: a smart two-in-one approach for rapid and selective sensing of Cd2+ and Hg2+ ions. Mikrochim Acta 2020; 187:403. [DOI: 10.1007/s00604-020-04363-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/31/2020] [Indexed: 11/29/2022]
|
29
|
Zhou L, Li N, Jin X, Owens G, Chen Z. A new nFe@ZIF-8 for the removal of Pb(II) from wastewater by selective adsorption and reduction. J Colloid Interface Sci 2020; 565:167-176. [DOI: 10.1016/j.jcis.2020.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
|
30
|
Preparation of thermo-sensitive surface ion-imprinted polymers based on multi-walled carbon nanotube composites for selective adsorption of lead(II) ion. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124139] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Adsorptive removal of Pb(II) ions from aqueous solutions by multi-walled carbon nanotubes functionalised by selenophosphoryl groups: Kinetic, mechanism, and thermodynamic studies. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Francisco JE, Feiteira FN, da Silva WA, Pacheco WF. Synthesis and application of ion-imprinted polymer for the determination of mercury II in water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19588-19597. [PMID: 31077054 DOI: 10.1007/s11356-019-05178-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
In this study, an innovative analytical methodology capable of selectively identifying and quantifying mercury contamination by the association of solid-phase extraction using ion-imprinted polymers as a sorbent phase and differential pulse anodic stripping voltammetry is proposed. To this end, the ion-imprinted polymers were synthesized and characterized by infrared spectroscopy and atomic force microscopy. The sorption capacities and the selectivity of the ion-imprinted polymers were compared to the ones related to the non-imprinted ones. Next, the experimental parameters of this solid-phase extraction method (IIP-SPE) were evaluated univariately. The selectivity of this polymeric matrix against other cations (Cd II, Pb II, and Cu II) was also evaluated. Limits of detection (LOD) and quantification (LOQ) obtained for the here proposed methodology were 0.322 μg L-1 and 1.08 μg L-1, respectively. Also, the precision of 4.0% was achieved. The method was finally applied to three water samples from different sources: for the Piratininga and Itaipu Lagoon waters, Hg II concentrations were below the LOQ and for Vargem River waters a concentration equal to 1.35 ± 0.07 mg L-1 was determined. These results were confirmed by recovery tests, resulting in a recovery of 96.2 ± 4.0%, and by comparison with flame atomic absorption spectrometry, resulting in statistical conformity between the two methods at 95% confidence level.
Collapse
Affiliation(s)
| | | | - Wanderson A da Silva
- UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
- CEFET/RJ - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Petrópolis, RJ, Brazil
| | | |
Collapse
|
33
|
Younes AA, El-Maghrabi HH. Removal of lead ions from wastewater using novel Schiff-base functionalized solid-phase adsorbent. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1604758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ahmed A. Younes
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Heba H. El-Maghrabi
- Petroleum Refining Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| |
Collapse
|