1
|
Tsolaki E, Healy AM, Ferguson S. Development of polymer-encapsulated microparticles of a lipophilic API-IL and its lipid based formulations for enhanced solubilisation. Int J Pharm 2024; 667:124878. [PMID: 39491654 DOI: 10.1016/j.ijpharm.2024.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Active Pharmaceutical Ingredient-Ionic liquids (API-ILs) have the potential to improve the bioavailability of BCS Class IV Drugs. However, the problematic physical handling properties of room temperature API-ILs have impaired clinical and commercial exploitation to date. Lipid-based formulations (LBFs) are used to improve the absorption of drugs with limited bioavailability. Nonetheless, LBFs face limitations such as low drug loading capacity and sub-par physical stability. A platform for transforming API-ILs into solid forms at high loadings via spray encapsulation with polymers has been developed and previously demonstrated for hydrophilic API-ILs. The current work demonstrates that this platform technology can be applied to a lipophilic API-IL of the BCS Class IV API, chlorpromazine, and to multi-component solutions comprising API-IL and a LBF. Furthermore, solidification of a type IIIB, liquid LBF was achieved via spray encapsulation with cellulose- and methacrylate- based polymers for the first time. The spray-encapsulated formulations had excellent physical handling properties, and successfully eluted the API-IL in aqueous media. The chlorpromazine release profiles from the API-IL, the API-IL containing LBF, and the solidified formulations, were evaluated in vitro using phosphate buffer (pH 6.8) and fasted state simulated intestinal fluid (FaSSIF). Spray-encapsulated formulations exhibited improved release profiles compared to the liquid formulations. Overall, these findings indicate that phase-separated, polymeric, solid formulations of liquid API forms represent a promising platform technology for developing oral solid dosage forms of poorly bioavailable drugs.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland.
| | - Anne Marie Healy
- EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; National Institute for Bioprocessing Research and Training, 24 Foster's Ave, Belfield, Blackrock, Co. Dublin A94 X099, Ireland.
| |
Collapse
|
2
|
Ranna R, Uner B, Ustundag Okur N, Tas C. Improvement of dissolution profile of eplerenone with solidified self-emulsifying drug delivery systems (S-SEDDS). Drug Dev Ind Pharm 2023:1-11. [PMID: 37133297 DOI: 10.1080/03639045.2023.2209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Eplerenone is a member of antihypertensives used individually or in combination with other medicines. Eplerenone exhibits poor solubility and is considered a class II drug. OBJECTIVE Increasing the solubility of eplerenone by using both liquid and solid self-emulsifying drug delivery system as an alternative to its marketed tablet product. METHODS Solubility studies of eplerenone were done with different oils, surfactants, and co-surfactants to determine which one has the highest solubility for eplerenone and determine the preference in the formulations of liquid self-emulsifying drug delivery system. The solidification process was carried out with the adsorption to solid carrier method. Optimal ratios of components were specified with pseudo-ternary phase diagram technique. Self-emulsifying drug delivery system formulations were characterized in terms of chemical interaction, droplet size/distribution, crystallization behaviors, and rheological evaluation. In vitro drug release studies were conducted and compared to pure drug and marketed product. RESULTS The solubility screening results showed high solubility of EPL in triacetin (11.99 mg/mL) as oil, Kolliphor®EL (≈ 2.65 mg/mL), and Tween®80 (≈ 1.91 mg/mL) as surfactant and polyethylene glycol 200 (PEG200) (≈ 8.50 mg/mL), dimethyl sulfoxide (≈ 7.57 mg/mL), Transcutol®P (≈ 6.03 mg/mL) as co-surfactant, respectively. Rheology studies revealed that liquid self-emulsifying drug delivery formulations exhibited non-Newtonian pseudoplastic flow. CONCLUSION Solid self-emulsifying drug delivery systems prepared with Aerosil and Neusilin have shown tremendous improvement in terms of eplerenone dissolution by releasing the entire dose with boosted effect within 5 and 30 minutes respectively compared to the marketed product and pure eplerenone (p < 0.05).
Collapse
Affiliation(s)
- Rawan Ranna
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Burcu Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA
| | - Neslihan Ustundag Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Cetin Tas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
3
|
Ranna R, Uner B, Ustundag Okur N, Tas C. Improvement of dissolution profile of eplerenone with solidified self-emulsifying drug delivery systems (S-SEDDS). Drug Dev Ind Pharm 2023; 49:305-315. [DOI: 19.https:/doi.org/10.1080/03639045.2023.2209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 03/30/2025]
Affiliation(s)
- Rawan Ranna
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Burcu Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA
| | - Neslihan Ustundag Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Cetin Tas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
4
|
Ranna R, Uner B, Ustundag Okur N, Tas C. Improvement of dissolution profile of eplerenone with solidified self-emulsifying drug delivery systems (S-SEDDS). Drug Dev Ind Pharm 2023; 49:305-315. [DOI: 10.1080/03639045.2023.2209636 doi:10.1016/j.jddst.2023.104468 doi:10.1016/j.ejpb.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 03/30/2025]
Affiliation(s)
- Rawan Ranna
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Burcu Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA
| | - Neslihan Ustundag Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Cetin Tas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
5
|
Gao Y, Zhang Y, Hong Y, Wu F, Shen L, Wang Y, Lin X. Multifunctional Role of Silica in Pharmaceutical Formulations. AAPS PharmSciTech 2022; 23:90. [PMID: 35296944 DOI: 10.1208/s12249-022-02237-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
Due to the high surface area, adjustable surface and pore structures, and excellent biocompatibility, nano- and micro-sized silica have certainly attracted the attention of many researchers in the medical fields. This review focuses on the multifunctional roles of silica in different pharmaceutical formulations including solid preparations, liquid drugs, and advanced drug delivery systems. For traditional solid preparations, it can improve compactibility and flowability, promote disintegration, adjust hygroscopicity, and prevent excessive adhesion. As for liquid drugs and preparations, like volatile oil, ethers, vitamins, and self-emulsifying drug delivery systems, silica with adjustable pore structures is a good adsorbent for solidification. Also, silica with various particle sizes, surface characteristics, pore structure, and surface modification controlled by different synthesis methods has gained wide attention owing to its unparalleled advantages for drug delivery and disease diagnosis. We also collate the latest pharmaceutical applications of silica sorted out by formulations. Finally, we point out the thorny issues for application and survey future trends pertaining to silica in an effort to provide a comprehensive overview of its future development in the medical fields. Graphical Abstract.
Collapse
|
6
|
Mandić J, Kosmač I, Kovačević M, Hodnik B, Hodnik Ž, Vrečer F, Gašperlin M, Perissutti B, Zvonar Pobirk A. Evaluation of solid carvedilol-loaded SMEDDS produced by the spray drying method and a study of related substances. Int J Pharm 2021; 605:120783. [PMID: 34111547 DOI: 10.1016/j.ijpharm.2021.120783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/16/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
In this study, various formulations of solidified carvedilol-loaded SMEDDS with high SMEDDS loading (up to 67% w/w) were produced with the spray drying process using various porous silica-based carriers. The process yield was improved with higher atomization gas flow rate during the spray drying process and with prolonged mixing time of dispersion of liquid SMEDDS and solid porous carriers prior to the spray drying process. Depending on the choice of the carrier and the SMEDDS:carrier ratio in solid SMEDDS, different drug loading, self-microemulsifying properties, drug release rates, and released drug fractions were obtained. The products exhibited fast drug release due to preserved self-microemulsifying properties and the absence of crystalline carvedilol, which was confirmed with XRD and Raman mapping. A decrease in drug content during the stability study was observed and investigated. This was at least partially attributed to the chemical degradation of the drug. Key degradation products determined by the LC-MS method were amides formed by in situ reaction of carvedilol with fatty acids present in the oily phase of SMEDDS.
Collapse
Affiliation(s)
- J Mandić
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - I Kosmač
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - M Kovačević
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - B Hodnik
- Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - Ž Hodnik
- Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - F Vrečer
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - M Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - B Perissutti
- University of Trieste, Dept. of Chemical and Pharmaceutical Sciences, P.le Europa 1, Trieste, Italy
| | - A Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Zhang N, Zhang F, Xu S, Yun K, Wu W, Pan W. Formulation and evaluation of luteolin supersaturatable self-nanoemulsifying drug delivery system (S-SNEDDS) for enhanced oral bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Mandić J, Pirnat V, Luštrik M, German Ilić I, Vrečer F, Gašperlin M, Zvonar Pobirk A. Solidification of SMEDDS by fluid bed granulation and manufacturing of fast drug release tablets. Int J Pharm 2020; 583:119377. [PMID: 32339633 DOI: 10.1016/j.ijpharm.2020.119377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Abstract
Solidification of self-microemulsifying drug delivery systems (SMEDDS) is a rising experimental field with important potential for pharmaceutical industry, however fluid-bed granulation with SMEDDS is yet an unexplored solidification technique. The aim of the study was to solidify carvedilol-loaded SMEDDS utilizing fluid bed granulation process and to investigate how the formulation variables (type of solid carrier, optimization of granulation dispersion) and fluid-bed granulation process variables can be optimized in order to achieve suitable agglomeration process, high drug loading and appropriate product characteristics. Obtained granulates exhibited complete drug release, comparable to liquid SMEDDS and superior to crystalline carvedilol, nevertheless compromise between large SMEDDS loading and appropriate flow properties of the granules has to be made. Representative granulates with highest drug loading were further compressed into tablets. It was shown that the optimal excipient selection of compression mixture and compression force can lead to fast carvedilol release even from the tablets. Selfmicroemulsifying properties were not impaired neither after the solidification process and nor after the compression of solid SMEDDS into tablets. This suggests that fluid-bed granulation with SMEDDS offers a perspective alternative for solidification of the SMEDDS, enabling preservation of self-microemulsifying properties, acceptable drug loading and complete drug release.
Collapse
Affiliation(s)
- Jelena Mandić
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d., Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - Vesna Pirnat
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matevž Luštrik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Ilija German Ilić
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Franc Vrečer
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d., Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|