1
|
Barua H, Cookman J, Svärd M, Rasmuson Å, Hudson SP. The influence of solute concentration and filtration on mesoscale clusters of flufenamic acid, a typical pharmaceutical compound, in ethanol. J Colloid Interface Sci 2025; 683:622-631. [PMID: 39742743 DOI: 10.1016/j.jcis.2024.12.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
HYPOTHESIS It is hypothesised in this work that mesoscale clusters will be present in both undersaturated and supersaturated solutions of organic pharmaceutical molecules. These clusters, being loose aggregates, could be sensitive to shear forces experienced during filtration. Thus, comparing the behaviour of these clusters alongside nanoparticles during filtration-an important sample treatment parameter during crystallization-will elucidate qualitative differences from solid, crystalline nanoparticles of similar size. EXPERIMENTS The impact of filtration with different pore sizes and membranes on (i) mesoscale clusters of flufenamic acid (FFA) ethanol solutions and (ii) aqueous FFA nanosuspensions was studied with dynamic light scattering and nanoparticle tracking analysis. FINDINGS FFA solutions, ranging from undersaturated to supersaturated, were found to form mesoscale clusters, where the cluster size and number concentration were independent of solute concentration. Under filtration stress, irrespective of pore size and membrane used, the mesoscale cluster peak disappeared from the size distribution with no detectable change in concentration. In contrast, similarly sized FFA nanoparticles were removed by filtration, causing a significant change in solute concentration and size distribution. Mesoscale clusters of FFA in ethanol constitute only a tiny fraction of the total solute concentration and possess poor light scattering properties, lower mass density than solid particles of similar size, and no clear phase boundary.
Collapse
Affiliation(s)
- Harsh Barua
- Department of Chemical Sciences, SSPC, the Research Ireland Centre for Pharmaceuticals, Bernal Institute, University of Limerick, V94 T9PX, Ireland
| | - Jennifer Cookman
- Department of Chemical Sciences, SSPC, the Research Ireland Centre for Pharmaceuticals, Bernal Institute, University of Limerick, V94 T9PX, Ireland
| | - Michael Svärd
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Åke Rasmuson
- Department of Chemical Sciences, SSPC, the Research Ireland Centre for Pharmaceuticals, Bernal Institute, University of Limerick, V94 T9PX, Ireland; Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC, the Research Ireland Centre for Pharmaceuticals, Bernal Institute, University of Limerick, V94 T9PX, Ireland.
| |
Collapse
|
2
|
Liao Z, Das A, Robb CG, Beveridge R, Wynne K. Amorphous aggregates with a very wide size distribution play a central role in crystal nucleation. Chem Sci 2024; 15:12420-12430. [PMID: 39118639 PMCID: PMC11304771 DOI: 10.1039/d4sc00452c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
There is mounting evidence that crystal nucleation from supersaturated solution involves the formation and reorganization of prenucleation clusters, contradicting classical nucleation theory. One of the key unresolved issues pertains to the origin, composition, and structure of these clusters. Here, a range of amino acids and peptides is investigated using light scattering, mass spectrometry, and in situ terahertz Raman spectroscopy, showing that the presence of amorphous aggregates is a general phenomenon in supersaturated solutions. Significantly, these aggregates are found on a vast range of length scales from dimers to 30-mers to the nanometre and even micrometre scale, implying a continuous distribution throughout this range. Larger amorphous aggregates are sites of spontaneous crystal nucleation and act as intermediates for laser-induced crystal nucleation. These results are shown to be consistent with a nonclassical nucleation model in which barrierless (homogeneous) nucleation of amorphous aggregates is followed by the nucleation of crystals from solute-enriched aggregates. This provides a novel perspective on crystal nucleation and the role of nonclassical pathways.
Collapse
Affiliation(s)
- Zhiyu Liao
- School of Chemistry, University of Glasgow G12 8QQ UK
| | - Ankita Das
- School of Chemistry, University of Glasgow G12 8QQ UK
| | - Christina Glen Robb
- Dept. of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Rebecca Beveridge
- Dept. of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Klaas Wynne
- School of Chemistry, University of Glasgow G12 8QQ UK
| |
Collapse
|
3
|
Barua H, Svärd M, Rasmuson ÅC, Hudson SP, Cookman J. Mesoscale Clusters in the Crystallisation of Organic Molecules. Angew Chem Int Ed Engl 2024; 63:e202312100. [PMID: 38055699 DOI: 10.1002/anie.202312100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
The early stages of the molecular self-assembly pathway leading to crystal nucleation have a significant influence on the properties and purity of organic materials. This mini review collates the work on organic mesoscale clusters and discusses their importance in nucleation processes, with a particular focus on their critical properties and susceptibility to sample treatment parameters. This is accomplished by a review of detection methods, including dynamic light scattering, nanoparticle tracking analysis, small angle X-ray scattering, and transmission electron microscopy. Considering the challenges associated with crystallisation of flexible and large-molecule active pharmaceutical ingredients, the dynamic nature of mesoscale clusters has the potential to expand the discovery of novel crystal forms. By collating literature on mesoscale clusters for organic molecules, a more comprehensive understanding of their role in nucleation will evolve and can guide further research efforts.
Collapse
Affiliation(s)
- Harsh Barua
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
| | - Michael Svärd
- KTH Royal Institute of Technology, Department of Chemical Engineering, 10044, Stockholm, Sweden
| | - Åke C Rasmuson
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
- KTH Royal Institute of Technology, Department of Chemical Engineering, 10044, Stockholm, Sweden
| | - Sarah P Hudson
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
| | - Jennifer Cookman
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
| |
Collapse
|
4
|
Cruz-Simbron RL, Picasso G, Cerda-Hernández J. Amino acid chiral amplification using Monte Carlo dynamic. J Chem Phys 2024; 160:084502. [PMID: 38407289 DOI: 10.1063/5.0190089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/21/2024] [Indexed: 02/27/2024] Open
Abstract
This study investigates the stability of chiral-molecule solution phases, with a specific focus on amino acids. The model framework is based on a two-dimensional square lattice model, where individual sites may be occupied by oriented chiral molecules or structureless solvent particles. Utilizing the Glauber dynamics and statistical mechanical formalism, as previously introduced and examined by Lombardo et al., we explore the influence of temperature, amino acid concentration, enantiomeric excess, and homochiral interaction strength on nucleation mechanisms, equilibrium phase behavior, and crystal composition. Our findings offer thermodynamic insights into the chiral amplification process of amino acids, contributing to a deeper understanding of the underlying processes.
Collapse
Affiliation(s)
- Romulo Leoncio Cruz-Simbron
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima, Peru
| | - Gino Picasso
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima, Peru
| | - José Cerda-Hernández
- Econometric Modelling and Data Science Research Group, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima, Peru
| |
Collapse
|
5
|
Afify N, Ferreiro-Rangel CA, Sweatman MB. Molecular Dynamics Investigation of Giant Clustering in Small-Molecule Solutions: The Case of Aqueous PEHA. J Phys Chem B 2022; 126:8882-8891. [PMID: 36282173 PMCID: PMC9639140 DOI: 10.1021/acs.jpcb.2c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Indexed: 01/11/2023]
Abstract
The importance of the formation of giant clusters in solution, in nature and industry, is increasingly recognized. However, relatively little attention has been paid to the formation of giant clusters in solutions of small, relatively soluble but nonamphiphilic molecules. In this work, we present a general methodology based on molecular dynamics that can be used to investigate such systems. As a case study, we focus on the formation of apparently stable clusters of pentaethylenehexamine (PEHA) in water. These clusters have been used as templates for the construction of bioinspired silica nanoparticles. To better understand clustering in this system, we study the effect of PEHA protonation state (neutral, +1, and +2) and counterion type (chloride or acetate) on PEHA clustering in dilute aqueous solutions (200 and 400 mM) using large-scale classical molecular dynamics. We find that large stable clusters are formed by singly charged PEHA with chloride or acetate as the counterion, although it is not clear for the case with acetate whether bulk phase separation, that might lead to precipitation, would eventually occur. Large clusters also appear to be stable for doubly charged PEHA with acetate, the less soluble counterion. We attribute this behavior to a form of complex coacervation, observed here for relatively small and highly soluble molecules (PEHA + counterion) rather than the large polyions usually found to form such coacervates. We discuss whether this behavior might also be described by an effective SALR (short-range attraction, long-range repulsion) interaction. This work might help future studies of additives for the design of novel bioinspired templated nanomaterials and of giant clustering in small-molecule solutions more generally.
Collapse
Affiliation(s)
- Nasser
D. Afify
- School of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson Building,
Mayfield Road, Edinburgh EH9 3JL, United Kingdom
| | - Carlos A. Ferreiro-Rangel
- School of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson Building,
Mayfield Road, Edinburgh EH9 3JL, United Kingdom
| | - Martin B. Sweatman
- School of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson Building,
Mayfield Road, Edinburgh EH9 3JL, United Kingdom
| |
Collapse
|
6
|
McKechnie D, Mulheran PA, Sefcik J, Johnston K. Tuning Interfacial Concentration Enhancement through Dispersion Interactions to Facilitate Heterogeneous Nucleation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:16387-16400. [PMID: 36203494 PMCID: PMC9527751 DOI: 10.1021/acs.jpcc.2c04410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Classical molecular dynamics simulations were used to investigate how dispersion (van der Waals) interactions between non-polar, hydrophobic surfaces and aqueous glycine solutions affect the solution composition, molecular orientation, and dynamics at the interface. Simulations revealed that dispersion interactions lead to a major increase in the concentration of glycine at the interface in comparison with the bulk solution, resulting from a competition between solute and solvent molecules to be or not to be near the interface. This can then lead to kinetic and/or structural effects facilitating heterogeneous nucleation of glycine at non-polar surfaces, in agreement with recent observations for tridecane, graphene, and polytetrafluoroethylene. A novel parameterization process was developed to map a model surface with tunable dispersion interactions to heptane, tridecane, and graphite materials. The model surface was capable of reproducing the solution structure observed in fully atomistic simulations with excellent agreement and also provided good agreement for dynamic properties, at a significantly reduced computational cost. This approach can be used as an effective tool for screening materials for heterogeneous nucleation enhancement or suppression, based on non-specific dispersion interactions based on bulk material molecular properties, rather than interfacial functional groups, templating or confinement effects.
Collapse
Affiliation(s)
- David McKechnie
- Department
of Chemical and Process Engineering, University
of Strathclyde, Glasgow G1 1XJ, U.K.
- Doctoral
Training Centre in Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow G1 1RD, U.K.
| | - Paul A. Mulheran
- Department
of Chemical and Process Engineering, University
of Strathclyde, Glasgow G1 1XJ, U.K.
| | - Jan Sefcik
- Department
of Chemical and Process Engineering, University
of Strathclyde, Glasgow G1 1XJ, U.K.
- EPSRC
Future Manufacturing Research Hub in Continuous Manufacturing and
Advanced Crystallisation, University of
Strathclyde, Glasgow G1 1RD, U.K.
| | - Karen Johnston
- Department
of Chemical and Process Engineering, University
of Strathclyde, Glasgow G1 1XJ, U.K.
| |
Collapse
|
7
|
Sweatman MB, Afify ND, Ferreiro-Rangel CA, Jorge M, Sefcik J. Molecular Dynamics Investigation of Clustering in Aqueous Glycine Solutions. J Phys Chem B 2022; 126:4711-4722. [PMID: 35729500 PMCID: PMC9251761 DOI: 10.1021/acs.jpcb.2c01975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/30/2022] [Indexed: 12/23/2022]
Abstract
Recent experiments with undersaturated aqueous glycine solutions have repeatedly exhibited the presence of giant liquid-like clusters or nanodroplets around 100 nm in diameter. These nanodroplets re-appear even after careful efforts for their removal and purification of the glycine solution. The composition of these clusters is not clear, although it has been suggested that they are mainly composed of glycine, a small and very soluble amino acid. To gain insights into this phenomenon, we study the aggregation of glycine in aqueous solutions at concentrations below the experimental solubility limit using large-scale molecular dynamics simulations under ambient conditions. Three protonation states of glycine (zwitterion = GLZ, anion = GLA, and cation = GLC) are simulated using molecular force fields based on the 1.14*CM1A partial charge scheme, which incorporates the OPLS all-atom force field and TIP3P water. When initiated from dispersed states, we find that giant clusters do not form in our simulations unless salt impurities are present. Moreover, if simulations are initiated from giant cluster states, we find that they tend to dissolve in the absence of salt impurities. Therefore, the simulation results provide little support for the possibility that the giant clusters seen in experiments are composed purely of glycine (and water). Considering that strenuous efforts are made in experiments to remove impurities such as salt, we propose that the giant clusters observed might instead result from the aggregation of reaction products of aqueous glycine, such as diketopiperazine or other oligoglycines which may be difficult to separate from glycine using conventional methods, or their co-aggregation with glycine.
Collapse
Affiliation(s)
- Martin B. Sweatman
- School
of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson
Building, Mayfield Road, Edinburgh EH9 3JL, U.K.
| | - Nasser D. Afify
- School
of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson
Building, Mayfield Road, Edinburgh EH9 3JL, U.K.
| | - Carlos A. Ferreiro-Rangel
- School
of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson
Building, Mayfield Road, Edinburgh EH9 3JL, U.K.
| | - Miguel Jorge
- Department
of Chemical and Process Engineering, Faculty of Engineering, University of Strathclyde, James Weir Building, Montrose Street, Glasgow G1 1XJ, U.K.
| | - Jan Sefcik
- Department
of Chemical and Process Engineering, Faculty of Engineering, University of Strathclyde, James Weir Building, Montrose Street, Glasgow G1 1XJ, U.K.
| |
Collapse
|
8
|
Villa AM, Doglia SM, De Gioia L, Natalello A, Bertini L. Fluorescence of KCl Aqueous Solution: A Possible Spectroscopic Signature of Nucleation. J Phys Chem B 2022; 126:2564-2572. [PMID: 35344657 PMCID: PMC8996234 DOI: 10.1021/acs.jpcb.2c01496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Ion pairing
in water solutions alters both the water hydrogen-bond network and
ion solvation, modifying the dynamics and properties of electrolyte
water solutions. Here, we report an anomalous intrinsic fluorescence
of KCl aqueous solution at room temperature and show that its intensity
increases with the salt concentration. From the ab initio density
functional theory (DFT) and time-dependent DFT modeling, we propose
that the fluorescence emission could originate from the stiffening
of the hydrogen bond network in the hydration shell of solvated ion-pairs
that suppresses the fast nonradiative decay and allows the slower
radiative channel to become a possible decay pathway. Because computations
suggest that the fluorophores are the local ion-water structures present
in the prenucleation phase, this band could be the signature of the
incoming salt precipitation.
Collapse
Affiliation(s)
- Anna Maria Villa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
9
|
Svärd M. Mesoscale clusters of organic solutes in solution and their role in crystal nucleation. CrystEngComm 2022. [DOI: 10.1039/d2ce00718e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is becoming evident that primary nucleation of crystals of organic molecules from solution is often anything but ‘classical’ in its complexity. It is also becoming increasingly clear that mesoscopic...
Collapse
|
10
|
Affiliation(s)
- Elena Boldyreva
- Novosibirsk State University ul. Pirogova, 2 Novosibirsk 630090 Russian Federation
- Boreskov Institute of Catalysis Siberian Branch of Russian Academy of Sciences Lavrentieva ave., 5 Novosibirsk 630090 Russian Federation
| |
Collapse
|
11
|
Morris L, Simone E, Glover ZJ, Powell H, Marty-Terrade S, Francis M, Povey MJ. Dynamic monitoring of glycine crystallisation with low power ultrasound reflection spectroscopy. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
|