1
|
Duan M, Xu Y, Fang S, Zhang C, Li J, Deng M, Hao Y. Preparation of Janus Polymer Nanosheets and Corresponding Oil Displacement Properties at Ultralow Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6298-6310. [PMID: 40025730 DOI: 10.1021/acs.langmuir.5c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Conventional methods for preparing Janus nanosheets, including graphene oxide-based nanosheets, molybdenum disulfide-based nanosheets, and silicon dioxide-based nanosheets, as well as polymer-based nanosheets, involve complicated procedures, poor repeatability, and difficulty in imparting Janus properties, which hinder further application. Here, the present authors develop a facile modified suspension polymerization method for preparing Janus polymer nanosheets, in which deep eutectic solvents completely replace water as the continuous phase. Janus polymer nanosheets can be fabricated using common hydrophobic and hydrophilic monomers, such as styrene (St), butyl acrylate (BA), acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), acryloyloxyethyl trimethylammonium chloride (DAC), and maleic anhydride (MAH). Additionally, the thickness of the Janus polymer nanosheets can be precisely controlled in a range from 40 to 100 nm by adjusting the volume ratio of higher alkanes to the hydrophobic monomer. Subsequently, the emulsification properties of polystyrene-based nanosheets were evaluated, showing better performance at concentrations ranging from 1 to 50 mg/L compared with higher concentrations. This observation aligns with the corresponding reduction in interfacial tension and changes in the moduli of the interfacial film. Moreover, the adsorption of the nanosheets onto the core alters its wettability, changing it from a water-wettable state to an oil-wettable state. Consequently, a series of core flooding tests reveal that the poly(St-co-AM), poly(St-co-MAH), and poly(St-co-AMPS) nanosheets enhance oil recovery and reduce injection pressure at ultralow concentrations (50 mg/L).
Collapse
Affiliation(s)
- Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Yinan Xu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Shenwen Fang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Chunpeng Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Jiaxue Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Min Deng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Ye Hao
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
2
|
Kusz J, Boissiere C, Bretonnière Y, Sanchez C, Parola S. Pyrene monomer-excimer dynamics to reveal molecular organization in mesoporous hybrid silica films. NANOSCALE 2024; 16:18918-18932. [PMID: 39267607 DOI: 10.1039/d4nr02987a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Self-assembly and characteristics of hybrid mesoporous silica film templates remain a subject of inquiry. The short time scale of the inorganic condensation and formation of micelles makes our understanding of this process insufficient. To provide an insight into the evaporation-induced self-assembly of such films, we synthesized an efficient molecular probe of the triethoxysilane precursor bearing a pyrene derivative. The probe was introduced into the porous film at the synthesis stage through the sol-gel co-condensation method. At different synthesis stages, the emission of pyrene moieties was measured by fluorescence spectroscopy, revealing the placement of probes within the film. We also report dynamic excimer formation upon template removal. Moreover, we evaluate the influence of several parameters on the pyrene excimer formation phenomenon. The pore geometry, probe concentration, and the presence of another organosilane precursor are investigated in this work.
Collapse
Affiliation(s)
- Jakub Kusz
- École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France.
| | - Cédric Boissiere
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France.
| | - Yann Bretonnière
- École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France.
| | - Clément Sanchez
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France.
| | - Stephane Parola
- École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France.
| |
Collapse
|
3
|
Kumar V, Mitchell-Koch KR, Marapureddy SG, Verma R, Thareja P, Kuperkar K, Bahadur P. Self-Assembly and Micellar Transition in CTAB Solutions Triggered by 1-Octanol. J Phys Chem B 2022; 126:8102-8111. [PMID: 36171735 DOI: 10.1021/acs.jpcb.2c05636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study exploits higher-order micellar transition ranging from ellipsoidal to rodlike to wormlike induced by 1-octanol (C8OH) in an aqueous solution of cetyltrimethylammonium bromide (CTAB), characterizing phase behavior, rheology, and small-angle neutron scattering (SANS). The phase diagram for the ternary system CTAB-C8OH-water was constructed, which depicted the varied solution behavior. Such performance was further inferred from the rheology study (oscillatory-shear frequency sweep (ω) and viscosity (η)) that displayed an interesting solution behavior of CTAB solutions as a function of C8OH. It was observed that at low C8OH concentrations, the solutions appeared viscous/viscoelastic fluids that changed to an elastic gel with an infinite relaxation time at higher concentrations of C8OH, thereby confirming the existence of distinct micelle morphologies. Small-angle neutron scattering (SANS) provided various micellar parameters such as aggregation numbers (Nagg) and micellar size/shape. The experimental results were further validated with a computational simulation approach. The molecular dynamic (MD) study offered an insight into the molecular interactions and aggregation behavior through different analyses, including radial distribution function (RDF), radius of gyration (Rg), and solvent-accessible surface area (SASA).
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, Gujarat, India
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University (WSU), Wichita, Kansas 67260-0051, United States
| | - Sai Geetha Marapureddy
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar 382355, Gujarat, India
| | - Rajni Verma
- Genzada Pharmaceuticals, Hutchinson, Kansas 67502, United States
| | - Prachi Thareja
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar 382355, Gujarat, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, Gujarat, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India
| |
Collapse
|
4
|
Najeeb J, Farwa U, Ishaque F, Munir H, Rahdar A, Nazar MF, Zafar MN. Surfactant stabilized gold nanomaterials for environmental sensing applications - A review. ENVIRONMENTAL RESEARCH 2022; 208:112644. [PMID: 34979127 DOI: 10.1016/j.envres.2021.112644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Surfactant stabilized Gold (Au) nanomaterials (NMs) have been documented extensively in recent years for numerous sensing applications in the academic literature. Despite the crucial role these surfactants play in the sensing applications, the comprehensive reviews that highlights the fundamentals associated with these assemblies and impact of these surfactants on the properties and sensing mechanisms are still quite scare. This review is an attempt in organizing the vast literature associated with this domain by providing critical insights into the fundamentals, preparation methodologies and sensing mechanisms of these surfactant stabilized Au NMs. For the simplification, the surfactants are divided into the typical and advanced surfactants and the Au NMs are classified into Au nanoparticles (NPs) and Au nanoclusters (NCs) depending upon the complexity in structure and size of the NMs respectively. The preparative methodologies are also elaborated for enhancing the understanding of the readers regarding such assemblies. The case studies regarding surfactant stabilized Au NMs were further divided into colorimetric sensors, surface plasmonic resonance (SPR) based sensors, luminescence-based sensors, and electrochemical/electrical sensors depending upon the property utilized by the sensor for the sensing of an analyte. Future perspectives are also discussed in detail for the researchers looking for further progress in that particular research domain.
Collapse
Affiliation(s)
- Jawayria Najeeb
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Fatima Ishaque
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Hira Munir
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98615-538, Iran
| | - Muhammad Faizan Nazar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Multan Campus, 60700, Pakistan.
| | | |
Collapse
|
5
|
Simeral ML, Zhang A, Demers SME, Hughes HJ, Abdul-Moqueet M, Mayer KM, Hafner JH. Effects of Conformational Variation on Structural Insights from Solution-Phase Surface-Enhanced Raman Spectroscopy. J Phys Chem B 2021; 125:2031-2041. [PMID: 33617719 PMCID: PMC8046088 DOI: 10.1021/acs.jpcb.0c10576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectra contain information on the chemical structure on nanoparticle surfaces through the position and alignment of molecules with the electromagnetic near field. Time-dependent density functional theory (TDDFT) can provide the Raman tensors needed for a detailed interpretation of SERS spectra. Here, the impact of molecular conformations on SERS spectra is considered. TDDFT calculations of the surfactant cetyltrimethylammonium bromide with five conformers produced more accurate unenhanced Raman spectra than a simple all-trans structure. The calculations and measurements also demonstrated a loss of structural information in the CH2/CH3 scissor vibration band at 1450 cm-1 in the SERS spectra. To study lipid bilayers, TDDFT calculations on conformers of methyl phosphorylcholine and cis-5-decene served as models for the symmetric choline stretch in the lipid headgroup and the C═C stretch in the acyl chains of 1,2-oleoyl-glycero-3-phosphocholine. Conformer considerations enabled a measurement of the distribution of double-bond orientations with an order parameter of SC═C = 0.53.
Collapse
Affiliation(s)
| | - Aobo Zhang
- Department of Physics & Astronomy, Rice University, Houston, TX
| | | | | | | | - Kathryn M. Mayer
- Department of Physics & Astronomy, University of Texas at San Antonio, San Antonio, TX
| | - Jason H. Hafner
- Department of Physics & Astronomy, Rice University, Houston, TX
- Department of Chemistry, Rice University, Houston, TX
| |
Collapse
|
6
|
Ristroph KD, Rummaneethorn P, Johnson-Weaver B, Staats H, Prud'homme RK. Highly-loaded protein nanocarriers prepared by Flash NanoPrecipitation with hydrophobic ion pairing. Int J Pharm 2021; 601:120397. [PMID: 33647410 DOI: 10.1016/j.ijpharm.2021.120397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 01/24/2023]
Abstract
The efficient encapsulation of therapeutic proteins into delivery vehicles, particularly without loss of function, remains a significant research hurdle. Typical liposomal formulations achieve drug loadings on the order of 3-5% and encapsulation efficiencies around 50%. We demonstrate the encapsulation of model proteins with isoelectric points above and below pH 7 into nanocarriers (NCs) with protein loadings as high as 46% and encapsulation efficiencies above 95%. This is done by combining the continuous nanofabrication process Flash NanoPrecipitation (FNP) with the technique of hydrophobic ion pairing by forming and encapsulating an ionic complex within a nanocarrier stabilized by a block copolymer surface layer. We complex and encapsulate lysozyme with two anionic hydrophobic counterions, sodium oleate and sodium dodecyl sulfate, using either a pre-formed complex or in situ pairing. The strategy successfully forms NCs ~150 nm in diameter and achieves encapsulation efficiencies over 95%. Protein release rate from the NCs in physiological conditions and the bioactivity of released lysozyme are measured, and both are found to vary with the complexing counterion and the protein/counterion ratio used during formulation. Protein release on the time scale of weeks is observed, and up to 100% bioactivity is measured from released lysozyme. 16 quaternary ammonium cationic counterions are tested to encapsulate ovalbumin in 32 formulations. Of these, 19 successfully form ~150 nm NCs with loadings up to 29% and encapsulation efficiencies up to 88%. We divide the formulations into four regimes and identify chemical factors responsible for the success or failure of a given counterion to formulate NCs with the desirable size, loading, and encapsulation efficiency. A successful ovalbumin NC formulation was then tested in vivo in a mouse nasal vaccine model and found to induce a higher titer of OVA-specific IgG than unencapsulated ovalbumin. Taken together, these findings suggest that Flash NanoPrecipitation with hydrophobic ion pairing is an attractive platform for encapsulating high molecular weight proteins into NCs. In particular, the ability to tune protein release rate by varying the counterion or protein/counterion ratio used during formulation is a useful feature.
Collapse
Affiliation(s)
- Kurt D Ristroph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Paradorn Rummaneethorn
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Brandi Johnson-Weaver
- Department of Immunology, Duke University School of Medicine, Durham, NC 27708, United States
| | - Herman Staats
- Department of Immunology, Duke University School of Medicine, Durham, NC 27708, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
7
|
Lah NAC, Gray R, Trigueros S. Synthesis, characterisation and cytotoxicity of gold microwires for ultra-sensitive biosensor development. Microb Cell Fact 2021; 20:46. [PMID: 33596912 PMCID: PMC7888188 DOI: 10.1186/s12934-020-01478-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
With the long-term goal of developing an ultra-sensitive microcantilever-based biosensor for versatile biomarker detection, new controlled bioreceptor-analytes systems are being explored to overcome the disadvantages of conventional ones. Gold (Au) microwires have been used as a probe to overcome the tolerance problem that occurs in response to changes in environmental conditions. However, the cytotoxicity of Au microwires is still unclear. Here, we examined the cytotoxicity of Au microwires systems using both commercial and as-synthesised Au microwires. In vitro experiments show that commercial Au microwires with an average quoted length of 5.6 µm are highly toxic against Gram-negative Escherichia coli (E. coli) at 50 µg/mL. However, this toxicity is due to the presence of CTAB surfactant not by the microwires. Conversely, the as-synthesised Au microwires show non-cytotoxicity even at the maximum viable concentration (330 µg/mL). These findings may lead to the development of potentially life-saving cytotoxicity-free biosensors for an early diagnostic of potential diseases.
Collapse
Affiliation(s)
- Nurul Akmal Che Lah
- Innovative Manufacturing, Mechatronics and Sports Lab (iMAMS), Faculty of Manufacturing and Mechatronics Engineering Technology, University Malaysia Pahang, 26600, Pekan, Pahang, Malaysia
| | - Robert Gray
- University College London, Gower St, Bloomsbury, London, WC1E 6BT, UK
| | - Sonia Trigueros
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| |
Collapse
|
8
|
Zheng L, Sun X, Wang J, Lu Y, Shao H. Effect of CTAB on the Oxidation of Furfural to Maleic Acid over Hierarchical CoAPO-5 Catalysts. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Synthesis of a Novel Co-B/CTAB Catalyst via Solid-state-reaction at Room Temperature for Hydrolysis of Ammonia-borane. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0209-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Influence of Electrostatic Interactions During the Resorcinol-Formaldehyde Polymerization on the Characteristics of Mo-Doped Carbon Gels. Processes (Basel) 2020. [DOI: 10.3390/pr8060746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The resorcinol (R)-formaldehyde (F) polymerization was carried out in different experimental conditions to obtain RF/Mo doped carbon xerogels with different morphology, porosity and nature and dispersion of metal. Attractive or repulsive electrostatic interactions were forced in the starting aqueous solution of RF-monomers using different synthesis conditions, namely, combinations of cationic or anionic surfactants, Mo-precursors and pH values. The results showed that when both cationic surfactant and Mo-precursor were used at neutral pH, attractive interactions with the anionic RF-macromolecules are favored during polymerization and the final carbon xerogel exhibited the most developed porosity and the strongest Mo-organic phase interaction, leading to deeper Mo-phase reduction during carbonization and the formation of highly-dispersed crystalline nanoparticles of Mo2C. On the contrary, the use of both anionic surfactant and Mo-precursor leads to repulsive interactions, which generates less porous carbon gels with a Mo-phase formed by large MoO3 platelet structures and low Mo-surface contents. RF/Mo-doped gels with intermediate properties were obtained by combining cationic and anionic surfactants, metal precursors or both. After carbonization, the obtained materials would be suitable to be used directly as catalysts with different physicochemical properties and active phases.
Collapse
|
11
|
González-Rubio G, Mosquera J, Kumar V, Pedrazo-Tardajos A, Llombart P, Solís DM, Lobato I, Noya EG, Guerrero-Martínez A, Taboada JM, Obelleiro F, MacDowell LG, Bals S, Liz-Marzán LM. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 2020; 368:1472-1477. [DOI: 10.1126/science.aba0980] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/22/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Guillermo González-Rubio
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Jesús Mosquera
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Vished Kumar
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Adrián Pedrazo-Tardajos
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Pablo Llombart
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Química Física Rocasolano, CSIC, E-28006 Madrid, Spain
| | - Diego M. Solís
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ivan Lobato
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Eva G. Noya
- Instituto de Química Física Rocasolano, CSIC, E-28006 Madrid, Spain
| | | | - José M. Taboada
- Departamento de Tecnología de los Computadores y de las Comunicaciones, University of Extremadura, 10003 Cáceres, Spain
| | - Fernando Obelleiro
- Departamento de Teoría de la Se ñal y Comunicaciones, University of Vigo, 36310 Vigo, Spain
| | - Luis G. MacDowell
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sara Bals
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|