1
|
Ahmad I, Rahman N. Novel magnetic coordination polymer gel facilitates high efficiency dual-mode trace Cd(II) detection and cleanup from real samples. CHEMOSPHERE 2025; 374:144193. [PMID: 39923285 DOI: 10.1016/j.chemosphere.2025.144193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Cadmium (Cd(II)) is highly toxic to humans and the environment. Therefore, efficient monitoring and control of Cd(II) is required for environmental protection and human security. Over the years, impressive advances have been made, however, majority of the research focuses on either detection or removal. Herein, a novel magnetic coordination polymer gel, CoFe2O4@Zrtdpa, is explored for the twin objectives of dual mode trace Cd(II) determination and removal from real samples. Box-Behnken design combined genetic algorithm and Taguchi L32 (46 21) design optimized the removal and extraction process variables, respectively. The experimental adsorption capacity at saturation was 179.07 mg g-1 at 298 K. The uptake of Cd(II) was multimolecular (n > 1), endothermic and spontaneous. XPS revealed that two active sites were oxygen and sulphur. The adsorption energies (E1 = 41.79-46.00 kJ mol-1, E2 = 29.85-32.19 kJ mol-1) indicated that complexation at the first and electrostatic interaction through ion exchange at the second active site are at play. Density functional theory (DFT) calculations verified the same asserting that the uptake was more favorable onto the first active site (sulphur). The best fit fractal like pseudo second order model and site energy distribution analysis established energetic heterogeneity. The limits of detection (LODs) and limits of quantifications (LOQs) for the enrichment-spectrophotometric and ICP-AES methods were 1.36 μg L-1, 4.11 μg L-1, and 0.019 μg L-1, 0.062 μg L-1 respectively. The developed adsorption, enrichment-spectrophotometric and ICP-AES methods were successfully employed for the removal and trace Cd(II) determination in real samples with good reusability.
Collapse
Affiliation(s)
- Izhar Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
2
|
Ahmad I, Rahman N. Site Energy Distribution Coupled with Statistical Physics Modeling for Cr(VI) Adsorption onto Coordination Polymer Gel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26956-26974. [PMID: 39671220 DOI: 10.1021/acs.langmuir.4c03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In this work, a novel pristine coordination polymer gel composed of zirconium and 2-amino-5-mercapto-1,3,4-thiadiazole is unveiled and explored to remove Cr(VI) from aqueous systems. A Box-Behnken design, coupled with a genetic algorithm and desirability function, was used for optimizing the controllable factors for maximum removal efficiency. Under optimized conditions (A = 50 mg L-1, B = 40 mg, C = 90 min, and D = 4), 99% of Cr(VI) was removed, and the saturation adsorption capacity recorded was 132.37 mg g-1. The adsorption data were investigated through statistical physics modeling. The most suited statistical physics model (monolayer with three energies; R2 = 0.994-0.997, χ2 = 0.008-0.024), combined with site energy distribution analysis, XPS, and FTIR, unraveled the uptake mechanism. At the first and third active sites, Cr(VI) uptake was multimolecular (n > 1), while at the second active site, it was a mixed multimolecular (298 K, n > 1) and multidocking (308 and 318 K, n < 1). The adsorption energy values indicated the involvement of coordination exchange (E1 = 53.40-58.47 kJ mol-1), electrostatic interaction (E2 = 29.56-32.29 kJ mol-1), and hydrogen bonding (E3 = 24.68-28.35 kJ mol-1) in Cr(VI) adsorption. The BSf(1.5, α) model fitted best (R2 = 0.976-0.994, χ2 = 0.023-0.377) to the kinetic data under all conditions. Common coexisting ions had no significant impact on removal efficiency (%R > 97% at 1:3), and the sorbent could be reutilized up to 5 uptake-elution cycles (>96% efficiency). The practical utility of ZrAMTD was investigated by remediating Cr(VI) contaminated real water samples (%R ≥ 92.91%).
Collapse
Affiliation(s)
- Izhar Ahmad
- Department of Chemistry Aligarh Muslim University, Aligarh 202002, India
| | - Nafisur Rahman
- Department of Chemistry Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
3
|
Raheem A, Rahman N, Khan S. Monolayer Adsorption of Ciprofloxacin on Magnetic Inulin/Mg-Zn-Al Layered Double Hydroxide: Advanced Interpretation of the Adsorption Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12939-12953. [PMID: 38861462 DOI: 10.1021/acs.langmuir.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
In this study, magnetic inulin/Mg-Zn-Al layered double hydroxide (MILDH) was synthesized for the adsorption of ciprofloxacin. The application of various analytical techniques confirmed the successful formation of MILDH. For the optimization of controllable factors, Taguchi design was applied and optimum values were obtained as equilibrium time─100 min, adsorbent dose─20 mg, and ciprofloxacin concentration─30 mg/L. The highest capacity of the material was recorded as 196.19 mg/g at 298 K. Langmuir model (R2 = 0.9669-0.9832) fitted best as compared to the Freundlich model (R2 = 0.9588-0.9657), concluded the monolayer adsorption of ciprofloxacin on MILDH. Statistical physics model M 2 was found to fit best to measured data (R2 = 0.9982-0.9989), indicating that the binding of ciprofloxacin took place on two types of receptor sites (n1 and n2). The multidocking mechanism with horizontal position was suggested on the first receptor site (n1 < 1), while multimolecular adsorption of ciprofloxacin lying vertically on the second receptor site (n2 > 1) at all temperatures. The adsorption energies (E1 = 22.79-27.20 kJ/mol; E2 = 18.00-19.46 kJ/mol) illustrated that the adsorption of ciprofloxacin onto MILDH occurred through physical forces. Best fitting of the fractal-like pseudo-first-order kinetic model (R2 = 0.9982-0.9992) indicated that the adsorption of ciprofloxacin happened on the MILDH surface having different energies. X-ray photoelectron spectroscopy analysis further confirmed the adsorption mechanism of ciprofloxacin onto MILDH.
Collapse
Affiliation(s)
- Abdur Raheem
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Saimeen Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
Zhang X, Xiong Y, Wang X, Wen Z, Xu X, Cui J, Liu Z, Wei L, An X. MgO-modified biochar by modifying hydroxyl and amino groups for selective phosphate removal: Insight into phosphate selectivity adsorption mechanism through experimental and theoretical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170571. [PMID: 38309336 DOI: 10.1016/j.scitotenv.2024.170571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Metal oxides-modified biochars have been widely studied as promising adsorbents for removing phosphate from wastewater discharge. Yet, the low adsorption selectivity towards phosphate severely limits its potential in practical applications. In this study, MgO-modified biochar modified by hydroxyl and amino groups (OH/NH2@MBC) is developed for selective phosphorus recovery from wastewater. As major results, the OH/NH2@MBC exhibits favorable phosphate adsorption performance is superior to that of MBC resin in the presence of co-existing anions (NO3-, Cl-, HCO3- and SO42-) and natural organic matter (humic acid) even actual wastewater, suggesting its superior selectivity towards phosphate. The OH/NH2@MBC shows an excellent phosphate adsorption capacity (43.27 mg/g) and desorption ratio (82.34 %) after five cycles under the condition of anion coexistence (100 mg/L). The experimental and DFT theoretical study reveals that attaching hydroxyl and amino groups onto the MBC surface, which facilitates to inhibiting the side effects of anions (NO3-, Cl-, HCO3-, and SO42-) through Lewis acid-base sites, hydrogen bonds, and metal affinity, and preferentially select adsorption P, contributing greatly to improve phosphate adsorption selectivity. Importantly, the presence of amino and hydroxyl groups can reduce the Fermi level of OH/NH2@MgO(220) and OH/NH2@MgO(200) and improve the adsorption selection for HPO42-. This study provides an effective strategy for enhancing the adsorption selectivity of metal oxides-modified biochars towards phosphate through modifying functional groups.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Youpeng Xiong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaohao Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhennan Wen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jianbing Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhongwang Liu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Linna Wei
- Analysis and Testing Institute of Xinjiang Uygur Autonomous Region, 830011 Xinjiang, China
| | - Xiongfang An
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
5
|
Rahman N, Raheem A. Adsorption of Cd(II) ions on magnetic graphene oxide/cellulose modified with β-cyclodextrin: Analytical interpretation via statistical physics modeling and fractal like kinetic approach. ENVIRONMENTAL RESEARCH 2024; 243:117868. [PMID: 38072113 DOI: 10.1016/j.envres.2023.117868] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
In the present study, β-cyclodextrin modified magnetic graphene oxide/cellulose (CN/IGO/Cel) was fabricated for removal of Cd(II) ions. The material was characterized through various analytical techniques like FTIR, XRD, TGA/DTA, SEM, TEM, and XPS. The point of zero charge of the material was obtained as 5.38. The controllable factors were optimized by Taguchi design and optimum values were: adsorbent dose-16 mg, equilibrium time-40 min, and initial concentration of Cd(II) ions-40 mg/L. The material shows high adsorption capacity (303.98 mg/g). The good fitting of Langmuir model to adsorption data (R2 = 0.9918-0.9936) revealed the monolayer coverage on adsorbent surface. Statistical physics model M 2 showed best fitting to adsorption data (R2 > 0.997), suggesting the binding of Cd(II) ions occurred on two different receptor sites (n). Stereographically n > 1 confirming vertical multi-molecular mechanisms of Cd(II) ions adsorption on CN/IGO/Cel surface. The adsorption energies (E1 = 23.71-28.95 kJ/mol; E2 = 22.69-29.38 kJ/mol) concluded the involvement of physical forces for Cd(II) ions adsorption. Kinetic data fitted well to fractal-like pseudo first-order model (R2 > 0.9952), concluding the adsorption of Cd(II) ions occurred on energetically heterogeneous surface. The kinetic analysis shows that both the film-diffusion and pore-diffusion were responsible for Cd(II) ions uptake. XPS analysis was utilized to explain the adsorption mechanism of Cd(II) ions onto CN/IGO/Cel.
Collapse
Affiliation(s)
- Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abdur Raheem
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
6
|
Rahman N, Ahmad I. Insights into the statistical physics modeling and fractal like kinetic approach for the adsorption of As(III) on coordination polymer gel based on zirconium(IV) and 2-thiobarbituric acid. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131783. [PMID: 37327609 DOI: 10.1016/j.jhazmat.2023.131783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/13/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
A novel coordination polymer gel based on zirconium(IV) and 2-thiobarbituric (ZrTBA) was synthesized and explored its potential to remediate As(III) from water. Box-Behnken design with desirability function and genetic algorithm yielded the optimized conditions (initial concentration=194 mg L-1, dosage = 42.2 mg, time= 95 min and pH = 4.9) for maximum removal efficiency (99.19 %). The experimental saturation capacity for As(III) was 178.30 mg g-1. The steric parameter n > 1 of the best fitted statistical physics model: monolayer with two energies (R2 = 0.987-0.992) suggested multimolecular mechanism with vertical orientation of As(III) molecules onto the two active sites. XPS and FTIR confirmed the two active sites being zirconium and oxygen. The adsorption energies (E1 = 35.81-37.63 kJ/mol; E2 = 29.50-36.49 kJ/mol) and isosteric heat of adsorption indicated that physical forces governed the As(III) uptake. DFT calculations implied that the weak electrostatic interaction and hydrogen bonding were involved. The best fitted (R2>0.99) fractal like pseudo first order model established energetic heterogeneity. ZrTBA showed excellent removal efficiency in the presence of potential interfering ions and could be used up to 5 cycles of adsorption-desorption with < 8 % loss in the efficiency. ZrTBA removed ≥96.06 % As(III) from real water samples spiked at different levels of As(III).
Collapse
Affiliation(s)
- Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Izhar Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
7
|
Sonawane MR, Chhowala TN, Suryawanshi KE, Fegade U, Naushad M, Bathula C. Statistical physics double-layer models for the experimental study and theoretical modeling of methyl orange dye adsorption on AlMnTiO nanocomposite. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:447-458. [PMID: 36988124 DOI: 10.1080/10934529.2023.2190710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
A Al2O3/MnO2/TiO2 (AlMnTiO) nanocomposite was synthesized using the thermal coprecipitation method and the adsorption performance of methyl orange (MO) dye from aqueous solution was carried out. Single-parameter optimization was used to explore the properties of AlMnTiO nanocomposite parameters on dye adsorption, including dose of adsorbent, solution pH, contact duration, and starting MO concentration. The model is the appropriate adsorption isotherm for the equilibrium process using a pseudo-second-order kinetic model property. Langmuir plot had a Qmax (mg/g) of 198.4 and best fitted (R2=0.990) among different isotherm models. The relevant parameters were computed using the dual-energy binary-layer statistical physics model. The statistical physics binary-layer model yield n (stoichiometric coefficient) values of 0.410, 0.440, and 0.453, all values are below 1, demonstrating the multi-docking process. AlMnTiO nanocomposite was regenerated up to six times, making the material extremely cost-effective. Using AlMnTiO nanocomposite, MO dye was removed from wastewater both in the laboratory and on the industrial scale.
Collapse
Affiliation(s)
- Mahesh R Sonawane
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | | | - K E Suryawanshi
- Department of Applied Science and Humanities, R.C. Patel Institute of Technology, Shirpur, India
| | - Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P.O. Nahata Commerce College, Bhusawal, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, Republic of Korea
| |
Collapse
|
8
|
Li X, Zhang Y, Xu H, Sun Y, Gao B, Wu J. Granular limestone amended sand filters for enhanced removal of nanoplastics from water: Performance and mechanisms. WATER RESEARCH 2023; 229:119443. [PMID: 36509035 DOI: 10.1016/j.watres.2022.119443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/22/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Effluent from wastewater treatment plants (WWTPs) has been regarded as one of the major contributors of nanoplastics (NPs) in the environment. Improving the performance of rapid sand filter (RSF) systems in WWTPs is thus in urgent need. In this study, granular limestone, a low-cost and abundant natural material, was integrated into RSF systems to enhance NP removal from water. Laboratory filtration columns packed with pure sand and limestone-amended sand were applied to remove polystyrene nanospheres (100 nm) from deionized water (DIW) and artificial wastewater (AWW) under different grain size and flow velocity conditions. Pure sand filter showed neglectable NP removal from DIW but much higher NP removal from AWW, especially when fine sand was employed. Limestone amended RSF had a significant improvement in the removal of NPs for all the tested conditions and the removal efficiency of NPs became greater with increasing amount of limestone in columns. The sensitivity of NP immobilization to flow velocity changed significantly with different combinations of filter and background solutions. Coupled effects of physical straining, electrostatic interaction, cation screening and bridging, and surface roughness controlled the retention behaviors of NPs in the columns. The higher removal efficiency of NPs by limestone can be mainly attributed to its chemical composition as well as its surface heterogeneity and roughness. Results of this study demonstrate that limestone can offer extensive application potential for enhancing the performance of RSF systems in WWTPs to remove NPs from wastewater.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yuanyuan Zhang
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Zhang L, Yang L, Chen J, Yin W, Zhang Y, Zhou X, Gao F, Zhao J. Adsorption of Congo Red and Methylene Blue onto Nanopore-Structured Ashitaba Waste and Walnut Shell-Based Activated Carbons: Statistical Thermodynamic Investigations, Pore Size and Site Energy Distribution Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213831. [PMID: 36364607 PMCID: PMC9657552 DOI: 10.3390/nano12213831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/01/2023]
Abstract
In this paper, an advanced statistical physics adsorption model (double-layer model with two energies) is successfully established. On the basis of this model, statistical thermodynamic functions (e.g., entropy (S), Gibbs free enthalpy (G), and internal energy (Eint)), pore size distribution (PSD), and site energy distribution (SED) functions were successfully developed and applied to investigate the adsorption mechanisms of nanopore-structured ashitaba waste-based activated carbons (AWAC) and walnut shell-based activated carbons (WSAC) on Congo red (CR) and methylene blue (MB) dyes in aqueous solutions. Statistical thermodynamic results indicated that the adsorption reactions involved in this study are entropy-increasing, endothermic, and spontaneous in nature. Furthermore, PSD and SED described the heterogeneity of these adsorbents in terms of geometry or structure and energy and illustrated that the aforementioned adsorption processes are endothermic physisorption. All in all, this study contributed to broadening the understanding of the adsorption mechanisms of dye molecules onto biomass-based activated carbons.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Feng Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jiang Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
10
|
Jethave G, Fegade U, Attarde S, Inamuddin, Altalhi T, Khan MF. Analytical modeling and interpretation of ultrasound-assisted adsorption mechanism of fuchsine dye on MgZnFeO nanocomposites. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2096058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ganesh Jethave
- Department of Chemistry, Dr. Annasaheb G. D. Bendale Mahila Mahavidyalaya, Jalgaon, MS, India
| | - Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science, and P. O. Nahata Commerce College, Bhusawal, MS, India
| | - Sanjay Attarde
- School of Environmental and Earth Sciences, KBC North Maharashtra University, Jalgaon, MS, India
| | - Inamuddin
- Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohd. Farhan Khan
- Department of Science, Gagan College of Management and Technology, Aligarh, India
| |
Collapse
|
11
|
Jethave G, Fegade U, Inamuddin, Altalhi T, Khan MF, Barhate B, Suryawanshi KE, Isai KA. Adsorption of Congo Red dye on CuO nanoparticles synthesized by green method using
Nyctanthes arbor‐tristis
leaf extract: Experimental and theoretical study. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ganesh Jethave
- Department of Chemistry Dr. Annasaheb G. D. Bendale Mahila Mahavidyalaya Jalgaon Maharashtra India
| | - Umesh Fegade
- Department of Chemistry Bhusawal Arts Science and P. O. Nahata Commerce College Bhusawal Maharashtra India
| | - Inamuddin
- Department of Applied Chemistry Zakir Husain College of Engineering and Technology Faculty of Engineering and Technology Aligarh Muslim University Aligarh India
| | - Tariq Altalhi
- Department of Chemistry College of Science Taif University Taif Saudi Arabia
| | - Mohd. Farhan Khan
- Department of Science Gagan College of Management and Technology Aligarh India
| | - Bhojraj Barhate
- Department of Computer Science Bhusawal Arts Science and P. O. Nahata Commerce College Bhusawal Maharashtra India
| | - Kiran E. Suryawanshi
- Department of Applied Science and Humanities R. C. Patel Institute of Technology Shirpur Maharashtra India
| | - Kalpesh A. Isai
- Department of Applied Science and Humanities R. C. Patel Institute of Technology Shirpur Maharashtra India
| |
Collapse
|
12
|
Jethave G, Inamuddin, Fegade U, Altalhi T, Kanchi S, Dhake R. Double-layer modelling and physicochemical parameters interpretation for chromium adsorption on ZnMnOAC nanocomposite. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ganesh Jethave
- School of Environmental and Earth Science, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India
| | - Inamuddin
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, India
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Suvardhan Kanchi
- Department of Chemistry, Durban University of Technology, Durban, South Africa
- Department of Chemistry, Sambhram Institute of Technology, Bengaluru, India
| | - Rajesh Dhake
- Department of Chemistry, D. D. N. Bhole College, Bhusawal, India
| |
Collapse
|
13
|
Outstanding Performance of a New Exfoliated Clay Impregnated with Rutile TiO2 Nanoparticles Composite for Dyes Adsorption: Experimental and Theoretical Studies. COATINGS 2021. [DOI: 10.3390/coatings12010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pure rutile TiO2 nanoparticles (Rt) were combined with exfoliated black clay (BC) to prepare a new composite for water decontamination, in particular, for the uptake of methylene blue (MB) and methyl orange (MO) dyes. The as-prepared Rt/BC was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Field emission scanning electron microscopy (FESEM) techniques, and the dyes’ adsorption isotherms at three temperatures (i.e., 25, 40, and 50 °C) were studied. The results indicated that Rt/BC displayed a high removal performance for MO (96.7%) and MB (91.4%) at pH 3.0 and 8.0, respectively. Adsorption data of MB and MO were adjusted by a double layer model at all temperatures. The theoretical parameters of this statistical physics model were interpreted to understand the MO and MB adsorption mechanisms at the molecular level. The removed molecules per active site (n) of Rt/BC ranged from 1.12 to 1.29 for MB and 1.47 to 1.85 for MO, thus representing parallel orientation and multi-interactions mechanisms (i.e., van der Waals forces, hydrogen bonding, and electrostatic interactions were involved). The Rt/BC composite had a density of surface adsorption sites of 100 mg/g. The aggregation of MO molecules was high and increased their adsorption capacities (Qsat = 294–370 mg/g) compared to that of MB (Qsat = 214–249 mg/g). Adsorption energies were 9.70–20.15 kJ/mol, and these values indicated that MO and MB adsorption processes were endothermic and occurred via physical interactions. Overall, the low cost, high regeneration performance, and stability of Rt/BC support its application as a promising adsorbent for organic pollutants from wastewaters.
Collapse
|
14
|
Tomoyoshi Sakamoto, Amano Y, Machida M. Phosphate Ion Adsorption Properties of PAN-Based Activated Carbon Fiber Prepared with Na2CO3 Activation. J WATER CHEM TECHNO+ 2021. [DOI: 10.3103/s1063455x21040111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Adsorption of ketoprofen and 2- nitrophenol on activated carbon prepared from winery wastes: A combined experimental and theoretical study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Fegade U, Kolate S, Dhake R, Altalhi T, Kanchi S. Adsorption of Congo Red on Pb doped Fe xO y: experimental study and theoretical modeling via double-layer statistical physics models. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1714-1727. [PMID: 33843754 DOI: 10.2166/wst.2021.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Size-controlled Pb0.06Fe0.7O3 nanoparticles (Pb-FeONPs) were fabricated by the thermal co-precipitation method and characterized by FE-SEM, EDX, XRD, and IR techniques. The SEM and XRD images showed the average size distribution and average crystallite size of 19.21 nm and 4.9 nm, respectively. The kinetic model of Congo Red (CR) adsorption onto Pb-FeONPs was verified and found to be a pseudo-second-order reaction. The Langmuir plot was better fitted (R2 = 0.990) than other isotherm models with a Qmax (mg/g) of 500 for Congo Red (CR) dye in 40 min. The double-layer statistical physics model based on two energies was used to calculate the significant parameters. The n (stoichiometric coefficient) values obtained from the statistical physics double-layer model were found to be 0.599, 0.593, and 0.565, which are less than 1, indicating the multi-docking process. The regeneration of Pb-FeONPs was used for up to 5 cycles effectively, making the material highly economical. The Pb-FeONPs were fruitfully applied for the removal of CR dye from wastewater on a laboratory and industrial scale.
Collapse
Affiliation(s)
- Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P.O. Nahata Commerce College, Bhusawal 425201 (MH), India E-mail:
| | - Sachin Kolate
- Department of Chemistry, Bhusawal Arts, Science and P.O. Nahata Commerce College, Bhusawal 425201 (MH), India E-mail:
| | - Rajesh Dhake
- Department of Chemistry, D. D. N. Bhole College, Bhusawal, Jalgaon 425201 (MH), India
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Suvardhan Kanchi
- Department of Chemistry, Durban University of Technology, Durban 4000, South Africa and Department of Chemistry, Sambhram Institute of Technology, M.S. Palya, Jalahalli East, Bengaluru 560097, India
| |
Collapse
|
17
|
Miao J, Zhao XJ, Li YT, Liu ZH. Facial preparation of hierarchical porous Ba(B2Si2O8) microsphere by sacrificial-template method and its highly efficient selective adsorption of triphenylmethane dyes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Simple synthesis of the novel adsorbent BaCO3/g-C3N4 for rapid and high-efficient selective removal of Crystal Violet. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Barakat MAE, Kumar R, Seliem MK, Selim AQ, Mobarak M, Anastopoulos I, Giannakoudakis D, Barczak M, Bonilla-Petriciolet A, Mohamed EA. Exfoliated Clay Decorated with Magnetic Iron Nanoparticles for Crystal Violet Adsorption: Modeling and Physicochemical Interpretation. NANOMATERIALS 2020; 10:nano10081454. [PMID: 32722342 PMCID: PMC7466639 DOI: 10.3390/nano10081454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023]
Abstract
Surfactant–modified exfoliated Fayum clay (CTAB–EC) obtained after chemical treatment with a CTAB/H2O2 solution was further decorated with magnetic Fe3O4 nanoparticles (MNP). The final nanocomposite (MNP/CTAB–EC) was characterized by XRD, SEM, FTIR, TEM and its adsorptive capability against a model cationic dye, crystal violet (CV), was evaluated. A comparison of the adsorption performance of the raw clay and its modified counterparts using H2O2, CTAB, CTAB/H2O2 or MNP indicated that the adsorption capacity of MNP/CTAB–EC was the highest for CV removal at pH 8.0. The pseudo‒second order for the kinetics and Freundlich model for adsorption equilibrium fitted well the CV removal experimental data at all tested temperatures (25, 40 and 55 °C). The enhancement of the Langmuir adsorption capacity from 447.1 to 499.4 mg g−1 with increasing the temperature from 25 to 55 °C revealed an endothermic nature of the removal process. The interactions between CV and MNP/CTAB–EC were interpreted using advanced statistical physics models (ASPM) in order to elucidate the adsorption mechanism. Multilayer model fitted the adsorption process and therefore, the steric and energetic factors that impacted the CV adsorption were also interpreted using this model. The aggregated number of CV molecules per MNP/CTAB–EC active site (n) was more than unity at all temperatures, representing thus a vertical adsorption orientation and a multi‒interactions mechanism. It was determined that the increase of CV uptake with temperature was mainly controlled by the increase of the number of active sites (NM). Calculated adsorption energies (ΔE) revealed that CV removal was an endothermic and a physisorption process (ΔE < 40 kJ mol −1). MNP/CTAB–EC was magnetically separated, regenerated by NaOH, and reused without significant decrease in its adsorption efficiency, supporting a prosperity of its utilization as an effective adsorbent against hazardous dyes from wastewaters.
Collapse
Affiliation(s)
- Mohamed Abou Elfetouh Barakat
- Department of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Central Metallurgical R & D Institute, Helwan 11421, Cairo, Egypt
- Correspondence: or (M.A.E.B.); (M.K.S.)
| | - Rajeev Kumar
- Department of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Moaaz Korany Seliem
- Faculty of Earth Science, Beni-Suef University, Beni-Suef 62511, Egypt; (A.Q.S.); (E.A.M.)
- Correspondence: or (M.A.E.B.); (M.K.S.)
| | - Ali Qurany Selim
- Faculty of Earth Science, Beni-Suef University, Beni-Suef 62511, Egypt; (A.Q.S.); (E.A.M.)
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Ioannis Anastopoulos
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia Cy-1678, Cyprus;
| | - Dimitrios Giannakoudakis
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Mariusz Barczak
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry Maria Curie Skłodowska University in Lublin, 20-031 Lublin, Poland;
| | - Adrián Bonilla-Petriciolet
- Departamento de Ingeniería Química, Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico;
| | | |
Collapse
|
20
|
Lin J, Zhao Y, Zhan Y, Wang Y. Influence of coexisting calcium and magnesium ions on phosphate adsorption onto hydrous iron oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11303-11319. [PMID: 31965506 DOI: 10.1007/s11356-020-07676-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Removal of phosphorus (P) from municipal wastewater is of vital importance to the control of eutrophication in receiving freshwater bodies. Typical cations such as Ca2+ and Mg2+ generally exist in municipal wastewater, and they may affect the sorption behavior and mechanism of iron oxide-based materials for aqueous phosphate (HxPO4x - 3, x = 0, 1, 2, or 3 depending on solution pH). To better apply iron oxide-containing materials as adsorbents to eliminate HxPO4x - 3 in municipal wastewater, a hydrous ferric oxide (HFEO) was prepared and characterized at first and then the impact of coexisting Ca2+ and Mg2+ on the uptake of HxPO4x - 3 by HFEO was studied. The results showed that, without coexisting Ca2+ and Mg2+, the kinetic data for HxPO4x - 3 sorption onto HFEO were better described by the Elovich model (R2 = 0.953) than the pseudo-second-order (R2 = 0.838) and pseudo-first-order (R2 = 0.641) models, and the isotherm data were fitted better with the Dubinin-Radushkevich (R2 = 0.966) and Freundlich (R2 = 0.953) models than with the Langmuir (R2 = 0.924) model. The ligand exchange of the Fe-bound hydroxyl group with HxPO4x - 3 and the generation of Fe-O-P bonding played a key role in the uptake of HxPO4x - 3 by HFEO in the absence of Ca2+ and Mg2+. Coexisting Ca2+ and Mg2+ greatly improved the adsorptive removal of HxPO4x - 3 by HFEO, including the adsorption capacity and initial adsorption rate. According to the Langmuir isotherm equation, the predicted maximum HxPO4x - 3 adsorption capacity for HFEO at pH 7 in the presence of 2 mmol/L Ca2+ (24.7 mg P/g) or 2 mmol/L Mg2+ (18.4 mg P/g) was much larger than that without coexisting Ca2+ and Mg2+ (10.7 mg P/g). The formation of aqueous CaHPO40 and MgHPO40 species firstly and then the adsorption of the formed CaHPO40 and MgHPO40 species on the HFEO surface to generate the HPO42--bridged ternary complexes (i.e., Fe(OPO3H)Ca+ and Fe(OPO3H)Mg+) had an important role in the improvement of HxPO4x - 3 adsorption onto HFEO by coexisting Ca2+ and Mg2+.
Collapse
Affiliation(s)
- Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, China.
| | - Yuying Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, China
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, China
| | - Yan Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, China
| |
Collapse
|