1
|
Patel D, Singh A, Ambati SR, Singh RS, Sonwani RK. An overview of recent advances in treatment of complex dye-containing wastewater and its techno-economic assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122804. [PMID: 39388813 DOI: 10.1016/j.jenvman.2024.122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Industries such as textiles, polymers, pharmaceuticals, papers, and tanneries are the key contributors to the global economy. These industries utilize various types of synthetic dyes in their processes, leading to discharge of dyes-contaminated wastewater. The wastewater generally contains various types of dyes (such as methyl orange, congo red, malachite green, etc.), which have a detrimental impact on the ecosystem and human health due to their toxic, carcinogenic, and mutagenic nature. As the result, it is crucial to treat the dyes-contaminated wastewater to protect the environment and render it suitable for reuse, mitigating the escalating global demand for clean water. This review provides a comprehensive overview of dyes and their treatment technologies (i.e., physical, chemical, and biological treatment). Among various treatment methods, the biological treatment is widely employed due to its energy efficiency and eco-friendliness. However, biological treatment faces challenges such as slow processing rates and limited effectiveness in handling low-biodegradability pollutants (BOD5/COD <0.2). This review also highlighted recent advancements in treatment technologies and explored the emerging integrated treatment method that aims to achieve higher removal efficiency for a low biodegradability index dye-contaminated wastewater. Additionally, a techno-economic assessment is presented, analyzing the cost-effectiveness of the emerging technologies in real-world applications. Further, the critical research gaps and future outlooks are also discussed. Overall, the review aims to contribute to the ongoing efforts to improve wastewater treatment processes and promote sustainable water management practices.
Collapse
Affiliation(s)
- Diwakar Patel
- Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, 530003, Andhra Pradesh, India
| | - Alankriti Singh
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy, Visakhapatnam, 530003, Andhra Pradesh, India
| | - Seshagiri Rao Ambati
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy, Visakhapatnam, 530003, Andhra Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BΗU), Varanasi, 221005, Uttar Pradesh, India
| | - Ravi Kumar Sonwani
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy, Visakhapatnam, 530003, Andhra Pradesh, India.
| |
Collapse
|
2
|
Shoeb M, Mashkoor F, Khan MN, Jeong C. Polyindole-Functionalized RGO-NiFe 2O 4-SiO 2 Nanocomposite: A Dual-Functional Nanomaterial for Efficient Antimony Adsorption and Subsequent Application in Supercapacitor. Polymers (Basel) 2024; 16:3084. [PMID: 39518290 PMCID: PMC11548570 DOI: 10.3390/polym16213084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Effective wastewater treatment remains a critical challenge, especially when dealing with hazardous pollutants like antimony (Sb(III)). This study addresses this issue by using innovative nanocomposites to remove Sb(III) ions from water, while simultaneously repurposing the spent adsorbents for energy storage applications. We developed reduced graphene oxide-NiFe2O3-SiO2-polyindole nanocomposites (RGO-NiFe2O3-SiO2-PIn NCs) via a hydrothermal synthesis method, achieving a high removal efficiency of 91.84% for Sb(III) ions at an initial concentration of 50 mg/L at pH 8. After adsorption, the exhausted adsorbent was repurposed for energy storage, effectively minimizing secondary pollution. The Sb(III)-loaded adsorbent (RGO-NiFe2O3-SiO2-PIn@SbOx) exhibited excellent performance as an energy storage material, with a specific capacitance (Cs) of 701.36 F/g at a current density of 2 A/g and a retention rate of 80.15% after 10,000 cycles. This dual-purpose approach not only advances wastewater treatment technologies but also contributes to sustainable and economical recycling practices, particularly in the field of energy storage.
Collapse
Affiliation(s)
| | | | | | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.S.); (F.M.); (M.N.K.)
| |
Collapse
|
3
|
Ahmer MF, Uddin MK. Structure properties and industrial applications of anion exchange resins for the removal of electroactive nitrate ions from contaminated water. RSC Adv 2024; 14:33629-33648. [PMID: 39444944 PMCID: PMC11497218 DOI: 10.1039/d4ra03871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
The presence of nitrates in lakes, rivers, and groundwater is common. Anion exchange resins (AER) are polymeric structures that contain functional groups as well as a variety of particle sizes that are used for removing nitrate ions from solutions. This article provides a concise review of the types and properties of AER, synthesis methods, characterization, and environmental applications of AER. It discusses how different factors affect the adsorption process, isotherm and kinetic parameters, the adsorption mechanism, and the maximum adsorption capacities. Additionally, the present review addresses AER's regeneration and practical stability. It emphasizes the progress and proposes future strategies for addressing nitrate pollution using AER to overcome the challenges. This review aims to act as a reference for researchers working in the advancement of ion exchange resins and presents a clear and concise scientific analysis of the use of AER in nitrate adsorption. It is evident from the literature survey that AER is highly effective at removing nitrate ions from wastewater effluents.
Collapse
Affiliation(s)
- Mohammad Faraz Ahmer
- Department of Electrical and Electronics Engineering, Mewat Engineering College, Gurugram University Nuh 122107 Haryana India
| | - Mohammad Kashif Uddin
- Department of Chemistry, College of Science, Majmaah University Al-Zulfi Campus Al-Majmaah 11952 Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Prasad B, Goswami R, Mishra A, Gill FS, Juyal S, Asrani A, Jain A, Sahu R, Gupta MK, Bajaj M, Zaitsev I. Assessment of carbonized himalayan chir pine biomass as an eco-friendly adsorbent for effective removal of industrial dyes. Sci Rep 2024; 14:15694. [PMID: 38977838 PMCID: PMC11231168 DOI: 10.1038/s41598-024-66745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
This study investigates the use of carbonized Himalayan Chir Pine Biomass, known as Chir Pine Activated Carbon (CPAC), as an eco-friendly and cost-effective adsorbent for efficient industrial dye removal, with a focus on environmental sustainability. By applying different additive treatments, four adsorbents (C1, C2, C3, and C4) were formulated. CPAC was synthesized through pyrolysis and characterized using various analytical techniques including FE-SEM, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The adsorption capacity of CPAC was evaluated using Malachite Green (MG) dye as a model contaminant. FE-SEM images revealed high porosity (~ 10 µm) and a high surface area (119.886 m2/g) as confirmed by BET testing. CPAC effectively removed MG dye within 30 min at a solution pH of 7. Langmuir and Freundlich isotherm models indicated both monolayer and multilayer adsorption, while kinetic models suggested chemisorption. The regeneration efficiency was assessed using 0.1 N HCl over five consecutive cycles, with C4 demonstrating a high regeneration tendency of 85% and only a 9% reduction in adsorption ability after the fifth cycle. The developed CPAC shows excellent potential for use in the textile, paper, and leather industries for industrial dye adsorption, contributing to the protection of aquatic ecosystems. Additionally, CPAC can be utilized in other water and air purification applications.
Collapse
Affiliation(s)
- Brijesh Prasad
- Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India.
- Institute of Advance Materials, Ulrika, Sweden.
| | - Rekha Goswami
- Department of Environmental Sciences, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Abhilasha Mishra
- Department of Chemistry, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, India
| | - Fateh Singh Gill
- Department of Allied Sciences (Physics), Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, India
| | - Sakshi Juyal
- Department of Allied Sciences (Physics), Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, India
| | - Anjas Asrani
- Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Ankur Jain
- Suresh Gyan Vihar University Jaipur, Jaipur, India
| | - Rajesh Sahu
- Suresh Gyan Vihar University Jaipur, Jaipur, India
| | - Munish Kumar Gupta
- Department of Mechanical Engineering, Opole University of Technology, Opole, Poland
| | - Mohit Bajaj
- Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun, 248002, India.
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan.
- Graphic Era Hill University, Dehradun, 248002, India.
| | - Ievgen Zaitsev
- Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, 56, Kyiv-57, Peremogy, 03680, Ukraine.
- Center for Information-Analytical and Technical Support of Nuclear Power Facilities Monitoring of the National Academy of Sciences of Ukraine, Akademika Palladina Avenue, 34-A, Kyiv, Ukraine.
| |
Collapse
|
5
|
Ferenji AE, Hassen YE, Mekuria SL, Girma WM. Biogenic mediated green synthesis of NiO nanoparticles for adsorptive removal of lead from aqueous solution. Heliyon 2024; 10:e31669. [PMID: 38828348 PMCID: PMC11140706 DOI: 10.1016/j.heliyon.2024.e31669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The spread of heavy metal in water bodies, particularly lead (Pb), has occurred as a global threat to human existence. In this study, NiO nanoparticles (NPs) was prepared by coprecipitation approach using Hagenia abyssinica plant extract mediated as a reducing and template agent for the removal of Pb from aqueous solution. X-ray crystallographic diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and Brunauer-Emmett-Teller (BET) techniques were employed for the characterization of as prepared NiO NPs. The efficacy of adsorbent was evaluated on the removal of Pb2+ by varying the adsorptive parameters such as pH, Bio-NiO amount, interaction time, and Pb2+ concentration. The adsorption was 99.99% at pH, 0.06 g of NiO NPs dose, 60 mg L-1 concentrations of Pb2+ within 80 min contact time. The higher removal efficiency is could be due to higher surface area (151 m2g-1). The adsorption process was best fitted with Freundlich isotherm and pseudo-second order kinetic models, implying that it was chemical adsorption on the heterogeneous surface. The adsorption intensity (n) was found to be 1/n < 1 (0.47) indicating adsorption of Pb2+ on the surface of Bio-NiO NPs was favorable with a maximum adsorption capacity 60.13 mg g-1. The reusability studies confirmed that the synthesized bio-NiO NPs were an effective adsorbent for removing Pb2+ from aqueous solution up to five cycles.
Collapse
Affiliation(s)
- Abdurohman Eshtu Ferenji
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia
| | - Yeshi Endris Hassen
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia
| | - Shewaye Lakew Mekuria
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Wubshet Mekonnen Girma
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia
| |
Collapse
|
6
|
Hamad MTMH, Ibrahim S. Effective fabrication and characterization of eco-friendly nano particles composite for adsorption Cd (II) and Cu (II) ions from aqueous solutions using modelling studies. Sci Rep 2024; 14:11767. [PMID: 38782956 PMCID: PMC11632089 DOI: 10.1038/s41598-024-61050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The public health and environment are currently facing significant risks due to the discharge of industrial wastewater, which contains harmful heavy metals and other contaminants. Therefore, there is a pressing need for sustainable and innovative technologies to treat wastewater. The main objective of this research was to develop novel composites known as chitosan, Padina pavonica, Fe(III), and nano MgO incorporated onto pomegranate peel with the specific purpose of removing Cd (II) and Cu (II) ions from aqueous solutions. The characterization of these nanocomposites involved the utilization of several analytical methods, including Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, thermal gravimetric analysis, and X-ray photoelectron spectroscopy. The efficiency of these nanocomposites was evaluated through batch mode experiments, investigating the impact of factors such as pH, initial concentration, contact time, and adsorbent dose on the adsorption of Cu(II) ions. The optimum conditions for the removal of ions were pH = 5 for Cu (II) and 6 for Cd (II), contact time: 120 min, adsorbent dosage: 0.2 g, initial metal ion concentration: 50 mg/L for each metal ion for the present study. The MgO@Pp demonstrated the highest removal efficiencies for Cu(II) and Cd(II) at 98.2% and 96.4%, respectively. In contrast, the CS@Fe-PA achieved removal efficiencies of 97.2% for Cu(II) and 89.2% for Cd(II). The modified MgO@Pp exhibited significantly higher total adsorption capacities for Cu(II) and Cd(II) at 333.3 and 200 mg/g, respectively, compared to CS@Fe-PA, which had capacities of 250 and 142 mg/g, respectively. The adsorption of Cd (II) and Cu (II) ions by MgO@Pp was found to be a spontaneous process. The R2 values obtained using the Freundlich and Redlich-Peterson models were the highest for the MgO@Pp composite, with values of 0.99, 0.988, 0.987, and 0.994, respectively, for Cu (II) and Cd (II). The pseudo-second-order equation was determined to be the best-fit kinetic model for this process. Reusability experiments confirmed that the adsorbents can be utilized for up to four regeneration cycles. Based on the findings of this study, MgO @ Pp is the most promising alternative and could be instrumental in developing strategies to address existing environmental pollution through adsorption.
Collapse
Affiliation(s)
| | - Sabah Ibrahim
- Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Shubra El Kheima, Egypt
| |
Collapse
|
7
|
Blachnio M, Zienkiewicz-Strzalka M, Derylo-Marczewska A. Synthesis of Composite Sorbents with Chitosan and Varied Silica Phases for the Adsorption of Anionic Dyes. Molecules 2024; 29:2087. [PMID: 38731578 PMCID: PMC11085257 DOI: 10.3390/molecules29092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
In this work, various types of silica materials were used for the synthesis of chitosan-silica composites. The composites were obtained using the chitosan (Ch) immobilization process from an aqueous solution on various silica phases, i.e., amorphous diatomite (ChAD), crystalline diatomite (ChCD), mesoporous silica MCM-41 (ChMCM), and mesoporous silica SBA-15 (ChSBA). Textural, structural, morphological, and surface properties of the materials were determined by using various measurement techniques, i.e., low-temperature adsorption/desorption isotherms of nitrogen, X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), potentiometric titration, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The adsorption properties towards various anionic dyes, i.e., acid red 88 (AR88), acid orange 8 (AO8), and orange G (OG), were evaluated based on kinetic and equilibrium measurements. The ChSBA, ChAD, and ChMCM composites were characterized by relatively high adsorption capacities (am) for AR88, with values equal to 0.78, 0.71, and 0.69 mmol/g, respectively. These composites were also distinguished by the rapid AR88 adsorption rate, with the values of half-time parameter t0.5 equal to 0.35, 2.84, and 1.53 min, respectively. The adsorption equilibrium and kinetic data were analyzed by applying the generalized Langmuir isotherm and the multi-exponential equation (m-exp), respectively. An interaction mechanism between the dyes and the obtained materials was proposed.
Collapse
Affiliation(s)
| | | | - Anna Derylo-Marczewska
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (M.B.); (M.Z.-S.)
| |
Collapse
|
8
|
Daraei P, Rostami E, Nasirmanesh F, Nobakht V. Preparation of pH-sensitive composite polyethersulfone membranes embedded by Ag(I) coordination polymer for the removal of cationic and anionic dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119083. [PMID: 37757684 DOI: 10.1016/j.jenvman.2023.119083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
A pH-sensitive polyethersulfone (PES) membrane was prepared with the aid of newly synthesized Ag(I) coordination polymer (Ag(I)-CP) particles. Indicating obvious adsorptive property toward dyes, the Ag(I)-based metalorganic framework (MOF) was selected to be used as an additive to improve the dye selectivity of PES membranes for both cationic and anionic dyes. The performance examination and characterization of prepared membranes indicated the influence of Ag(I)-CP in PES membrane improvement. The effect of feed pH approved the membrane response to pH changes in dye removal results. By adjusting feed pH based on pHpzc of Ag(I)-CP, it is possible to remove both anionic and cationic dyes (97% of acid orange 7 (AO) & and 100% of methylene blue (MB)) from the effluent along with an enhanced permeated flux. The results offered a synergism in embedding Ag(I)-CP in PES membrane in dye removal efficiency. The additive particles can be applied with their natural size (200-300 nm) without severe influence on the uniformity of the membrane morphology if the optimum Ag(I)-CP content is considered.
Collapse
Affiliation(s)
- Parisa Daraei
- Department of Chemical Engineering, Kermanshah University of Technology, 67156, Kermanshah, Iran.
| | - Elham Rostami
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Farzad Nasirmanesh
- Department of Chemical Engineering, Kermanshah University of Technology, 67156, Kermanshah, Iran
| | - Valiollah Nobakht
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
9
|
Mashkoor F, Shoeb M, Jeong C. Alginate Modified Magnetic Polypyrrole Nanocomposite for the Adsorptive Removal of Heavy Metal. Polymers (Basel) 2023; 15:4285. [PMID: 37959965 PMCID: PMC10650565 DOI: 10.3390/polym15214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The presence of heavy metals with high acute toxicity in wastewater poses a substantial risk to both the environment and human health. To address this issue, we developed a nanocomposite of alginate-encapsulated polypyrrole (PPy) decorated with α-Fe2O3 nanoparticles (Alg@Mag/PPy NCs), fabricated for the removal of mercury(II) from synthetic wastewater. In the adsorption experiments, various parameters were examined to identify the ideal conditions. These parameters included temperature (ranging from 298 to 323 K), initial pH levels (ranging from two to nine), interaction time, amount of adsorbent (from 8 to 80 mg/40 mL), and initial concentrations (from 10 to 200 mg/L). The results of these studies demonstrated that the removal efficiency of mercury(II) was obtained to be 95.58% at the optimum pH of 7 and a temperature of 303 K. The analysis of adsorption kinetics demonstrated that the removal of mercury(II) adhered closely to the pseudo-second-order model. Additionally, it displayed a three-stage intraparticle diffusion model throughout the entire adsorption process. The Langmuir model most accurately represented equilibrium data. The Alg@Mag/PPy NCs exhibited an estimated maximum adsorption capacity of 213.72 mg/g at 303 K, surpassing the capacities of most of the other polymer-based adsorbents previously reported. The thermodynamic analysis indicates that the removal of mercury(II) from the Alg@Mag/PPy NCs was endothermic and spontaneous in nature. In summary, this study suggests that Alg@Mag/PPy NCs could serve as a promising choice for confiscating toxic heavy metal ions from wastewater through adsorption.
Collapse
Affiliation(s)
| | | | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (F.M.); (M.S.)
| |
Collapse
|
10
|
Sonawane MR, Chhowala TN, Suryawanshi KE, Fegade U, Naushad M, Bathula C. Statistical physics double-layer models for the experimental study and theoretical modeling of methyl orange dye adsorption on AlMnTiO nanocomposite. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:447-458. [PMID: 36988124 DOI: 10.1080/10934529.2023.2190710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
A Al2O3/MnO2/TiO2 (AlMnTiO) nanocomposite was synthesized using the thermal coprecipitation method and the adsorption performance of methyl orange (MO) dye from aqueous solution was carried out. Single-parameter optimization was used to explore the properties of AlMnTiO nanocomposite parameters on dye adsorption, including dose of adsorbent, solution pH, contact duration, and starting MO concentration. The model is the appropriate adsorption isotherm for the equilibrium process using a pseudo-second-order kinetic model property. Langmuir plot had a Qmax (mg/g) of 198.4 and best fitted (R2=0.990) among different isotherm models. The relevant parameters were computed using the dual-energy binary-layer statistical physics model. The statistical physics binary-layer model yield n (stoichiometric coefficient) values of 0.410, 0.440, and 0.453, all values are below 1, demonstrating the multi-docking process. AlMnTiO nanocomposite was regenerated up to six times, making the material extremely cost-effective. Using AlMnTiO nanocomposite, MO dye was removed from wastewater both in the laboratory and on the industrial scale.
Collapse
Affiliation(s)
- Mahesh R Sonawane
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | | | - K E Suryawanshi
- Department of Applied Science and Humanities, R.C. Patel Institute of Technology, Shirpur, India
| | - Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P.O. Nahata Commerce College, Bhusawal, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, Republic of Korea
| |
Collapse
|
11
|
Rubangakene NO, Elwardany A, Fujii M, Sekiguchi H, Elkady M, Shokry H. Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Zafar S, Bukhari DA, Rehman A. Azo dyes degradation by microorganisms - An efficient and sustainable approach. Saudi J Biol Sci 2022; 29:103437. [PMID: 36131780 PMCID: PMC9483650 DOI: 10.1016/j.sjbs.2022.103437] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/06/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Synthetic aromatic compounds consisting of various functional groups are known as dyes. These colored compounds are often discharged in effluents, and they are very dangerous to aquatic life. Basically, the dye industry started by using natural plant and insect sources, and then suddenly turned into artificial manufacturing. Natural equilibrium of our environment gets changed by the reduction in photosynthetic activity due to the dyes. In China 900,000 tons of all kinds of dyes are usually produced, which are used in many industries like food, textile, food, paper and leather. Untreated wastewater contaminates aquatic bodies by causing eutrophication, change in water color, oxygen depletion which affect aquatic organisms to a great extent. Dye wastewater is now the key environmental pollution form. In recent eras an extensive study line has been developed to explore the dye decolorization and biodegradation under both aerobic as well as anaerobic conditions. In this review, the chemistry, toxicity and microbial biodegradation/decolorization are presented. Some recent studies along with the new techniques and methodologies of remediating the dye pollution are also discussed to provide the bases of their handling. Overall, efficient and high biodegradation potential make microbes an impending foundation for green chemistry to eradicate toxic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Sadia Zafar
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Dilara A. Bukhari
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
- Corresponding author at: Department of Microbiology & Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
13
|
One-Step Synthesis of Nitrogen-Doped Porous Biochar Based on N-Doping Co-Activation Method and Its Application in Water Pollutants Control. Int J Mol Sci 2022; 23:ijms232314618. [PMID: 36498946 PMCID: PMC9739037 DOI: 10.3390/ijms232314618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
In this work, birch bark (BB) was used for the first time to prepare porous biochars via different one-step methods including direct activation (BBB) and N-doping co-activation (N-BBB). The specific surface area and total pore volume of BBB and N-BBB were 2502.3 and 2292.7 m2/g, and 1.1389 and 1.0356 cm3/g, respectively. When removing synthetic methyl orange (MO) dye and heavy metal Cr6+, both BBB and N-BBB showed excellent treatment ability. The maximum adsorption capacities of BBB and N-BBB were 836.9 and 858.3 mg/g for MO, and 141.1 and 169.1 mg/g for Cr6+, respectively, which were higher than most previously reported biochar adsorbents. The probable adsorption mechanisms, including pore filling, π-π interaction, H-bond interaction, and electrostatic attraction, supported the biochars' demonstrated high performance. In addition, after five recycles, the removal rates remained above 80%, which showed the high stability of the biochars. This work verified the feasibility of the one-step N-doping co-activation method to prepare high-performance biochars, and two kinds of biochars with excellent performance (BBB and N-BBB) were prepared. More importantly, this method provides new directions and ideas for the development and utilization of other biomasses.
Collapse
|
14
|
Xie Y, Hu J, Esmaeili H, Wang D, Zhou Y. A review study on wastewater decontamination using nanotechnology: Performance, mechanism and environmental impacts. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Environmental application of Saccharum munja biomass-derived hybrid composite for the simultaneous removal of cationic and anionic dyes and remediation of dye polluted water: A step towards pilot-scale studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Ullah S, Haq HU, Salman M, Jan F, Safi F, Arain MB, Khan MS, Castro-Muñoz R, Boczkaj G. Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Using Deep Eutectic Solvents (DESs) for Neutral Red Dye Spectrophotometric Determination. Molecules 2022; 27:molecules27186112. [PMID: 36144845 PMCID: PMC9501489 DOI: 10.3390/molecules27186112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Deep eutectic solvents (DES), which have low toxicity and are low cost, biodegradable, and easily synthesized, were used for the extraction of neutral red (NR) dye before its spectrophotometric analysis. DES, containing choline chloride as a hydrogen bond acceptor and phenol as a hydrogen bond donor with a molar ratio of 1:2, was used for the extraction of NR dye from aqueous media. The possible interaction of different DESs with NR was studied using density functional theory (DFT) calculations. Experimentally, a UV-visible spectrophotometer was used for the quantitative analysis. The most important parameters affecting method performance, such as pH, extraction temperature, DES type, its volume, THF volume, sonication time, and centrifugation time, were optimized. The developed method provides exceptional sensitivity in terms of LOD and LOQ, which were 2.2 and 7.3 µg/L respectively. The relative standard deviation was 1.35−1.5% (n = 10), and the pre-concentration factor was 40. The method was found to be linear in the range of 2−300 µg/L (R2 = 0.9967). The method was successfully used for the determination of NR in wastewater samples. Finally, the DES-based method presents operational simplicity, high sensitivity, and rapid determination (<5 min) compared with other analytical procedures.
Collapse
Affiliation(s)
- Sana Ullah
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Hameed Ul Haq
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
- Correspondence: (H.U.H.); (G.B.); Tel.: +48-697970303 (G.B.); Fax: +48-58-347-26-94 (G.B.)
| | - Muhammad Salman
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Faheem Jan
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Faisal Safi
- Department of Advanced Materials Center, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | | | - Muhammad Shahzeb Khan
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
- Tecnologico de Monterrey Campus Toluca, Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
- EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
- Correspondence: (H.U.H.); (G.B.); Tel.: +48-697970303 (G.B.); Fax: +48-58-347-26-94 (G.B.)
| |
Collapse
|
17
|
Aldahash SA, Higgins P, Siddiqui S, Uddin MK. Fabrication of polyamide-12/cement nanocomposite and its testing for different dyes removal from aqueous solution: characterization, adsorption, and regeneration studies. Sci Rep 2022; 12:13144. [PMID: 35907938 PMCID: PMC9338974 DOI: 10.1038/s41598-022-16977-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Polyamide-12/Portland cement nanocomposite was prepared by using the exfoliated adsorption method. The fabricated nanocomposite was applied first time to remove Congo red (CR), brilliant green (BG), methylene blue (MB), and methyl red (MR) from the synthetic wastewater. The polymer nanocomposite was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, elemental mapping, Brunauer-Emmett-Teller surface area analysis, and X-ray diffraction. The adsorption was rapid and all the studied dyes were absorbed on the surface of the polymer nanocomposite in 90 min. The point of zero charge was found at pH 5 and the factors such as pH, time, and temperature were found to affect the adsorption efficiency. Freundlich isotherm and pseudo-second-order models well-fitted the adsorption isotherm and kinetics data, respectively. The calculated maximum adsorption capacity was 161.63, 148.54, 200.40, and 146.41 mg/g for CR, BG, MB, and MR, respectively. The mode of the adsorption process was endothermic, spontaneous, and physical involving electrostatic attraction. On an industrial scale, the high percentage of desorption and slow decrease in the percentage of adsorption after every five regeneration cycles confirm the potential, practicality, and durability of the nanocomposite as a promising and advanced adsorbent for decolorization of colored wastewater.
Collapse
Affiliation(s)
- Saleh Ahmed Aldahash
- Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al-Majmaah, 11952, Kingdom of Saudi Arabia
| | - Prerna Higgins
- Department of Chemistry, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P., 211007, India
| | - Shaziya Siddiqui
- Department of Chemistry, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P., 211007, India.
| | - Mohammad Kashif Uddin
- Department of Chemistry, College of Science, Al-Zulfi Campus, Majmaah University, Al-Majmaah, 11952, Kingdom of Saudi Arabia.
| |
Collapse
|
18
|
Uddin MK, Abd Malek NN, Jawad AH, Sabar S. Pyrolysis of rubber seed pericarp biomass treated with sulfuric acid for the adsorption of crystal violet and methylene green dyes: an optimized process. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:393-402. [PMID: 35786072 DOI: 10.1080/15226514.2022.2086214] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, the biomass of rubber seed pericarp was first treated with sulfuric acid and then its activated carbon was formed by the pyrolysis process. As produced acid-treated activated carbon of chosen biomass was then used for the adsorption of crystal violet (CV) and methylene green (MG) from the colored aqueous solution. The adsorbent was exposed to several characterization methods to know its structural and morphological behaviors before and after CV and MG adsorption. The adsorbent was found to be mesoporous having a surface area of 59.517 m2/g. The effect of pH, time, and concentration was assessed while various isotherm and kinetics models were employed to know the adsorption insight. The optimum conditions were at pH 8, within 30 min, 50 mg/L concentration, and 0.06 gm dose. The adsorption data (the maximum adsorption capacity for CV and MG were found to be 302.7 and 567.6 mg/g, respectively) was validated by fitting in a response surface statistical methodology and the positive interactions between the studied factors were found. The adsorption was mainly belonging to the electrostatic attraction of the dye molecules. The study proves that the used adsorbent is economical and an excellent source of treating wastewater.
Collapse
Affiliation(s)
- Mohammad Kashif Uddin
- Department of Chemistry, College of Science, Zulfi Campus, Majmaah University, Al-Majmaah, Saudi Arabia
| | | | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - S Sabar
- Chemical Sciences Programme, School of Distance Education (SDE), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
19
|
Boubekri FZ, Benkhaled A, Elbahri Z. Design of experiments for the methylene blue adsorption study onto biocomposite material based on Algerian earth chestnut and cellulose derivatives. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Novel bio-composite films based on Algerian earth chestnut i.e. Bunium incrassatum roots (Talghouda, TG) and cellulose derivatives (ethylcellulose; EC and cellulose acetate; AC) are prepared and tested for methylene blue (MB) adsorption from aqueous solutions. The biomaterial films are elaborated by dissolution solvent evaporation technique and are characterized by infrared spectroscopy, X-ray diffraction, SEM and optical microscopy. The pHpzc is also determined. For the adsorption tests, design of experiments based on 23 factorial design is built and followed. So, the effects of TG:EC:AC ratio, pH and MB initial concentration are discussed on the basis of mathematical modelling using Minitab software. Mathematical relations between equilibrium adsorption percentages and capacities versus selected variables were obtained and illustrated by surface plots. The interactive effects between variables have been also identified. The results showed that the MB adsorption percentage exceeded 83% and is mostly affected by pH value. Nevertheless the adsorption capacity is affected by MB initial concentration.
Collapse
Affiliation(s)
- Fatima Zohra Boubekri
- Laboratoire de Matériaux & Catalyse, Faculté des Sciences Exactes , Université Djillali Liabès de Sidi Bel Abbes , Djillali Liabes University of Sidi Bel Abbes , Sidi Bel Abbes 22000 , Algeria
| | - Amal Benkhaled
- Laboratoire Toxicomed , Université Abou bekr Belkaid , Tlemcen 13000 , Abou bekr Belkaid University of Tlemcen, Algeria
| | - Zineb Elbahri
- Laboratoire de Matériaux & Catalyse, Faculté des Sciences Exactes , Université Djillali Liabès de Sidi Bel Abbes , Djillali Liabes University of Sidi Bel Abbes , Sidi Bel Abbes 22000 , Algeria
| |
Collapse
|
20
|
Alhalili Z. Green synthesis of Copper Oxide nanoparticles CuO NPs from Eucalyptus Globoulus leaf extract: adsorption and design of experiments. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Malek NNA, Jawad AH, Ismail K, Razuan R, ALOthman ZA. Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. Int J Biol Macromol 2021; 189:464-476. [PMID: 34450144 DOI: 10.1016/j.ijbiomac.2021.08.160] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023]
Abstract
A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
Collapse
Affiliation(s)
- Nurul Najwa Abd Malek
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Khudzir Ismail
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia
| | - R Razuan
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, P.O. Box 2455, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Khan S, Idrees M, Bilal M. Revealing and elucidating chemical speciation mechanisms for lead and nickel adsorption on zeolite in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126711] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Mudhoo A, Sillanpää M. Magnetic nanoadsorbents for micropollutant removal in real water treatment: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4393-4413. [PMID: 34341658 PMCID: PMC8320315 DOI: 10.1007/s10311-021-01289-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/18/2021] [Indexed: 05/24/2023]
Abstract
Pure water will become a golden resource in the context of the rising pollution, climate change and the recycling economy, calling for advanced purification methods such as the use of nanostructured adsorbents. However, coming up with an ideal nanoadsorbent for micropollutant removal is a real challenge because nanoadsorbents, which demonstrate very good performances at laboratory scale, do not necessarily have suitable properties in in full-scale water purification and wastewater treatment systems. Here, magnetic nanoadsorbents appear promising because they can be easily separated from the slurry phase into a denser sludge phase by applying a magnetic field. Yet, there are only few examples of large-scale use of magnetic adsorbents for water purification and wastewater treatment. Here, we review magnetic nanoadsorbents for the removal of micropollutants, and we explain the integration of magnetic separation in the existing treatment plants. We found that the use of magnetic nanoadsorbents is an effective option in water treatment, but lacks maturity in full-scale water treatment facilities. The concentrations of magnetic nanoadsorbents in final effluents can be controlled by using magnetic separation, thus minimizing the ecotoxicicological impact. Academia and the water industry should better collaborate to integrate magnetic separation in full-scale water purification and wastewater treatment plants.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
24
|
Lahiri SK, Liu L. Fabrication of a Nanoporous Silica Hydrogel by Cross-Linking of SiO 2-H 3BO 3-Hexadecyltrimethoxysilane for Excellent Adsorption of Azo Dyes from Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8753-8764. [PMID: 34251834 DOI: 10.1021/acs.langmuir.1c01046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study reports a novel cross-linking approach to fabricate the hydrothermally neutralized silica hydrogel of SiO2-H3BO3-hexadecyltrimethoxysilane by grafting alkylsilane groups onto the nanoporous silica. The synthesized silica hydrogel possessed a large specific surface area of 51.3 m2g-1 and showed excellent dye adsorption capability of cationic dyes in neutral (pH 7) and alkaline (pH 9) medium from wastewater. The colloidal electrokinetic potential analysis revealed that the outstanding adsorption efficiency of cationic dyes over anionic dyes strongly relies on the surface charge of the hydrogels. Moreover, the hydrophobic interactions between the dye molecules and the hydrogels were studied, and it was found that the dye adsorption performance can be tuned by altering the concentration of hydrophobic reagents of the hydrogel. The dye adsorption mechanism was established, and the kinetic study suggested that the adsorption is a pseudo-second-order reaction. Adsorption isotherms at various equilibrium conditions fitted well with the Langmuir isotherm. Therefore, this strongly supports the promising and practical application of the prepared silica hydrogel. The recyclability of the hydrogel was studied, and it showed 90% adsorption efficiency by the regenerated gel up to 6 cycles, which has a high potential in wastewater treatment.
Collapse
Affiliation(s)
- Sudip Kumar Lahiri
- School of Materials Science and Engineering and State Key Laboratory for Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Liu
- School of Materials Science and Engineering and State Key Laboratory for Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
25
|
Husein DZ, Uddin MK, Ansari MO, Ahmed SS. Green synthesis, characterization, application and functionality of nitrogen-doped MgO/graphene nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28014-28023. [PMID: 33527239 DOI: 10.1007/s11356-021-12628-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
A facile, feasible, and green synthesis via an electrochemical exfoliation process was applied to synthesize nitrogen-doped MgO/graphene nanocomposite (N-MgO/G). The N-MgO/G nanocomposite was characterized by several analytical techniques including X-ray photoelectron spectroscopy, X-ray powder diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction, and elemental mapping analysis. N-MgO/G nanocomposite was then applied to adsorb lead metal ions (Pb2+) from aqueous solutions. The N-MgO/G nanocomposite demonstrated a remarkably high Langmuir maximum adsorption capacity (294.12 mg/g) for Pb2+ ions under the optimum experimental conditions at a pH of 5.13, time of 35 min, dose of 0.025 g, the concentration of 400 mg/L, and a temperature of 36 °C. Adsorption kinetics results fitted with a pseudo-second-order model and a thermodynamic study showed that Pb2+ adsorption is an endothermic process. The practical application of N-MgO/G was also investigated to test its applicability in real water samples collected from different sources such as deionized water, tap water, wastewater, and river water.
Collapse
Affiliation(s)
- Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Mohammad Kashif Uddin
- Department of Chemistry, College of Science, Majmaah University, Zulfi Campus, Al-Zulfi, 11932, Saudi Arabia.
| | | | - Sameh S Ahmed
- Mining and Metallurgical Engineering Department, Faculty of Engineering, Assiut University, Assiut, 71516, Egypt
- Civil and Environmental Engineering Department, College of Engineering, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| |
Collapse
|
26
|
Fegade U, Kolate S, Dhake R, Altalhi T, Kanchi S. Adsorption of Congo Red on Pb doped Fe xO y: experimental study and theoretical modeling via double-layer statistical physics models. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1714-1727. [PMID: 33843754 DOI: 10.2166/wst.2021.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Size-controlled Pb0.06Fe0.7O3 nanoparticles (Pb-FeONPs) were fabricated by the thermal co-precipitation method and characterized by FE-SEM, EDX, XRD, and IR techniques. The SEM and XRD images showed the average size distribution and average crystallite size of 19.21 nm and 4.9 nm, respectively. The kinetic model of Congo Red (CR) adsorption onto Pb-FeONPs was verified and found to be a pseudo-second-order reaction. The Langmuir plot was better fitted (R2 = 0.990) than other isotherm models with a Qmax (mg/g) of 500 for Congo Red (CR) dye in 40 min. The double-layer statistical physics model based on two energies was used to calculate the significant parameters. The n (stoichiometric coefficient) values obtained from the statistical physics double-layer model were found to be 0.599, 0.593, and 0.565, which are less than 1, indicating the multi-docking process. The regeneration of Pb-FeONPs was used for up to 5 cycles effectively, making the material highly economical. The Pb-FeONPs were fruitfully applied for the removal of CR dye from wastewater on a laboratory and industrial scale.
Collapse
Affiliation(s)
- Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P.O. Nahata Commerce College, Bhusawal 425201 (MH), India E-mail:
| | - Sachin Kolate
- Department of Chemistry, Bhusawal Arts, Science and P.O. Nahata Commerce College, Bhusawal 425201 (MH), India E-mail:
| | - Rajesh Dhake
- Department of Chemistry, D. D. N. Bhole College, Bhusawal, Jalgaon 425201 (MH), India
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Suvardhan Kanchi
- Department of Chemistry, Durban University of Technology, Durban 4000, South Africa and Department of Chemistry, Sambhram Institute of Technology, M.S. Palya, Jalahalli East, Bengaluru 560097, India
| |
Collapse
|
27
|
de Salomón YLO, Georgin J, Franco DSP, Netto MS, Foletto EL, Allasia D, Dotto GL. Application of seed residues from Anadenanthera macrocarpa and Cedrela fissilis as alternative adsorbents for remarkable removal of methylene blue dye in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2342-2354. [PMID: 32885336 DOI: 10.1007/s11356-020-10635-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Two novel ecological and low-cost adsorbents were prepared from seed residues of the tree species Anadenanthera macrocarpa and Cedrela fissilis for the removal of methylene blue dye in water. The materials were comminuted and characterized by different techniques. The particles of samples have a rough surface with cavities. The optimum dosage and pH for both materials were 1 g L-1 and pH 8. The pseudo-second-order model was the most suitable for describing the adsorption kinetics for both systems. The Anadenanthera macrocarpa presented a maximum experimental capacity of 228 mg g-1, while the Cedrela fissilis, a similar capacity of 230 mg g-1 at 328 K. The Tóth model was proper for describing the equilibrium curves for both systems. The thermodynamic indicators show that the adsorption process is spontaneous and endothermic for both materials. The application of materials for the simulated effluent treatment showed 74 and 78% of color removal using Anadenanthera macrocarpa and Cedrela fissilis samples, respectively. Overall, seed residues of Anadenanthera macrocarpa and Cedrela fissilis could be potentially applied for adsorptive removal of colored contaminants in wastewater.
Collapse
Affiliation(s)
- Yamil L O de Salomón
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| | - Matias Schadeck Netto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| | - Edson Luiz Foletto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| | - Daniel Allasia
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
28
|
Ultrahigh and efficient removal of Methyl orange, Eriochrom Black T and acid Blue 92 by triazine based cross-linked polyamine resin: Synthesis, isotherm and kinetic studies. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Thakur RS, Katoch SS, Modi A. Assessment of pine cone derived activated carbon as an adsorbent in defluoridation. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03207-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Baig U, Khan A, Gondal MA, Dastageer MA, Falath WS. Laser Induced Anchoring of Nickel Oxide Nanoparticles on Polymeric Graphitic Carbon Nitride Sheets Using Pulsed Laser Ablation for Efficient Water Splitting under Visible Light. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1098. [PMID: 32498231 PMCID: PMC7353223 DOI: 10.3390/nano10061098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022]
Abstract
A visible-light-active nickel oxide-graphitic carbon nitride (NiO@g-CN) hetero-structured nanocomposite was synthesized for the first time by pulsed laser ablation in liquid and used as a photoanode material in photoelectrochemical water-splitting reaction with a solar simulator. It was found that the photoelectrochemical performance of PLAL synthesized NiO@g-CN nanocomposite as photoanode, compared to g-CN as photoanode showed fourfold enhancements in photocurrent density under visible light. FT-IR, XRD, FE-SEM, and EDX consistently showed the proper anchoring of nano-sized NiO on g-CN. UV-DRS and the band gap estimation showed the narrowing down of the band gap energy and consequent enhancement in the visible-light absorption, whereas photoluminescence spectroscopy confirmed the reduction of the recombination of photo-excited electron hole pairs as a result of the anchoring of NiO on g-CN. The photoelectrochemical performance of g-CN and the NiO@g-CN nanocomposite photoanodes was compared by linear sweep voltammetry (LSV), Chronoamperometry (I-t), and Electrochemical Impedance Spectroscopy (EIS). All of these results of the characterization studies account for the observed fourfold enhancement of photocurrent density of NiO@g-CN nanocomposite as photoanode in the photoelectrochemical reaction.
Collapse
Affiliation(s)
- Umair Baig
- Center of Research Excellence in Desalination & Water Treatment and Center for Environment and Water, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (U.B.); (W.S.F.)
| | - Abuzar Khan
- Center for Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Mohammad A. Gondal
- Department of Physics and Center for Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Mohamed A. Dastageer
- Department of Physics and Center for Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Wail S. Falath
- Center of Research Excellence in Desalination & Water Treatment and Center for Environment and Water, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (U.B.); (W.S.F.)
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
31
|
Zhou A, Wang J. Preparation and adsorption efficiency of sodium dodecyl sulfate modified palygorskite towards Sr(II) ions. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07197-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Cai N, Larese-Casanova P. Facile Synthesis and Reuse of Magnetic Black Carbon Magnetite (BC-Mag) for Fast Carbamazepine Removal from Water. NANOMATERIALS 2020; 10:nano10020213. [PMID: 31991921 PMCID: PMC7074862 DOI: 10.3390/nano10020213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/24/2022]
Abstract
Magnetic carbonaceous nanomaterials are needed in water treatment applications because they can offer both carbon surfaces for sorption of organic pollutants and ease of material magnetic retrieval for regeneration and reuse. In this study, we employed a facile one-step method to synthesize a black carbon-magnetite composite (BC-Mag) by high-temperature annealing of black carbon and hematite. The nanocomposite was easily dispersed and stable in water owing to the presence of negatively charged oxygen surface functional groups. Sorption kinetics with dissolved carbamazepine showed a rapid initial uptake with equilibrium achieved within only minutes. The sorption extent can be described with the Freundlich model, and surface area normalized sorption affinity was an order of magnitude greater than conventional granular activated carbon. The sorption extent of neutral carbamazepine remained constant between pH 2–10 while surface zeta potential decreased. BC-Mag can be reused for the sorption of carbamazepine up to six times without significant loss of the sorption extent.
Collapse
Affiliation(s)
- Nan Cai
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Engineering and Technology Research Center of Online Monitoring for Water Environmental Pollution, Guangdong Institute of Analysis, Guangzhou 510070, China;
| | - Philip Larese-Casanova
- Department of Civil & Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
- Correspondence: or ; Tel.: +1-617-373-2899
| |
Collapse
|