1
|
Mohammadi M, Karimi M, Raofie F. Nano-engineering of sertraline liposomes using supercritical fluid and optimization of the involved parameters. Sci Rep 2025; 15:15386. [PMID: 40316582 PMCID: PMC12048644 DOI: 10.1038/s41598-024-82018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/02/2024] [Indexed: 05/04/2025] Open
Abstract
Sertraline is one of the drugs whose transport from the blood circulation to the brain is severely limited by the blood-brain barrier and it shows low bioavailability (44%). Liposomes can be an effective carrier for this drug and increase bioavailability. In this study, the synthesis of nanometer-sized liposomes containing sertraline hydrochloride is proposed using a technique called supercritical fluid expansion into aqueous solution (ESSAS). In this technique, phospholipid precipitation rates are controlled, and homogeneous liposomes with nanometer-sized dimensions can be created. The operational parameters were optimized using the response surface methodology (pressure drop: 29.9 MPa, collection time: 13.6 min, temperature: 40 °C), which showed that the optimal values for the encapsulation efficiency, mean size, and number of liposomes were 78.4%, 89.5 nm, and 85, respectively. Also, the drug release test showed that it takes 27 h for sertraline to be completely released from the liposomal suspension.
Collapse
Affiliation(s)
- Misagh Mohammadi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Mehrnaz Karimi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Farhad Raofie
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, 1983969411, Iran.
| |
Collapse
|
2
|
Valverde Cabeza S, González-R PL, González-Rodríguez ML. Enhancing quality-by-design through weighted goal programming: a case study on formulation of ultradeformable liposomes. Drug Dev Ind Pharm 2025; 51:384-395. [PMID: 39993320 DOI: 10.1080/03639045.2025.2470397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION Optimization of pharmaceutical formulations requires advanced tools to ensure quality, safety, and efficacy. quality-by-design (QbD), introduced by the FDA, emphasizes understanding and controlling processes early in development. Advanced optimization methods, such as desirability, have surpassed traditional single-objective techniques. Others, such as weighted goal programming (WGP) offers unique advantages by integrating decision-maker preferences, enabling balanced solutions for complex drug delivery systems. This study applies WGP to optimize timolol (TM)-loaded nanoliposomes aligning with QbD principles. METHODS The optimization process followed six steps: identifying factors and responses, developing a Design of Experiments (DoE) plan, defining ideal and anti-ideal points, setting aspiration levels, assigning relative weights, and applying WGP compared to desirability function. Minimized and balanced deviations from aspiration levels served as criteria for selecting the most robust optimization results. Six responses were analyzed: vesicle size ( z 1 ) , polydispersity index ( z 2 ) , zeta potential ( z 3 ) , deformability index ( z 4 ) , phosphorus content ( z 5 ) , and drug entrapment efficiency ( z 6 ) . RESULTS WGP produced a more balanced formulation that simultaneously optimized multiple responses. By incorporating the importance of each response, the WGP approach improved control over size, colloidal stability, and drug entrapment, based on its mathematical formulation. Comparative analysis with the desirability function confirmed that WGP effectively addressed potential tradeoffs without oversimplifying conflicting objectives. CONCLUSIONS This case-study demonstrates WGP potential as an advanced multi-objective optimization tool for pharmaceutical applications, improving upon traditional methods in complex formulations. Its ability to harmonize multiple critical attributes in line with QbD highlights its value in developing high-quality pharmaceutical products.
Collapse
Affiliation(s)
- Sonia Valverde Cabeza
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Pedro Luis González-R
- Department of Industrial Engineering and Management Science, School of Engineering, University of Seville, Seville, Spain
| | | |
Collapse
|
3
|
Birla D, Khandale N, Bashir B, ShahbazAlam M, Vishwas S, Gupta G, Dureja H, Kumbhar PS, Disouza J, Patravale V, Veiga F, Paiva-Santos AC, Pillappan R, Paudel KR, Goh BH, Singh M, Dua K, Singh SK. Application of quality by design in optimization of nanoformulations: Principle, perspectives and practices. Drug Deliv Transl Res 2025; 15:798-830. [PMID: 39126576 DOI: 10.1007/s13346-024-01681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Nanoparticulate drug delivery systems (NDDS) based nanoformulations have emerged as promising drug delivery systems. Various NDDS-based formulations have been reported such as polymeric nanoparticles (NPs), nanoliposomes, solid lipid NPs, nanocapsules, liposomes, self-nano emulsifying drug delivery systems, pro liposomes, nanospheres, microemulsion, nanoemulsion, gold NPs, silver NPs and nanostructured lipid carrier. They have shown numerous advantages such as enhanced bioavailability, aqueous solubility, permeability, controlled release profile, and blood-brain barrier (BBB) permeability. This advantage of NDDS can help to deliver pure drugs to the target site. However, the formulation of nanoparticles is a complex process that requires optimization to ensure product quality and efficacy. Quality by Design (QbD) is a systemic approach that has been implemented in the pharmaceutical industry to improve the quality and reliability of drug products. QbD involves the optimization of different parameters like zeta potential (ZP), particle size (PS), entrapment efficiency (EE), polydispersity index (PDI), and drug release using statistical experimental design. The present article discussed the detailed role of QbD in optimizing nanoformulations and their advantages, advancement, and applications from the industrial perspective. Various case studies of QbD in the optimization of nanoformulations are also discussed.
Collapse
Affiliation(s)
- Devendra Birla
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nikhil Khandale
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Md ShahbazAlam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal. Panhala, Dist., Kolhapur, Maharashtra, India, 416 113
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal. Panhala, Dist., Kolhapur, Maharashtra, India, 416 113
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India, 400019
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ramkumar Pillappan
- NITTE (Deemed to Be University), NGSM Institute of Pharmaceutical Sciences [NGSMIPS], Mangaluru, Karnataka, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bey Hing Goh
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Biofunctional Molecule Exploratory Research (BMEX) Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Manisha Singh
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, Uttar Pradesh, India
| | - Kamal Dua
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia.
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
| |
Collapse
|
4
|
Vanić Ž, Jøraholmen MW, Škalko-Basnet N. Challenges and considerations in liposomal hydrogels for the treatment of infection. Expert Opin Drug Deliv 2025; 22:255-276. [PMID: 39797393 DOI: 10.1080/17425247.2025.2451620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Liposomal hydrogels are novel drug delivery systems that comprise preformed liposomes incorporated in hydrogels destined for mostly localized drug therapy, herewith antimicrobial therapy. The formulation benefits from versatility of liposomes as lipid-based nanocarriers that enable delivery of various antimicrobials of different lipophilicities, and secondary vehicle, hydrogel, that assures better retention time of formulation at the infection site. Especially in an era of alarming antimicrobial resistance, efficient localized antimicrobial therapy that avoids systemic exposure of antimicrobial and related side effects is crucial. AREAS COVERED We provide an overview of liposomal hydrogels that were developed for superior delivery of antimicrobials at different infections sites, with focus on skin and vaginal infections. The review summarizes the challenges of infection site and most common infection-causing pathogens and offers commentary on most relevant features the formulation needs to optimize to increase the therapy outcome. We discuss the impact of liposomal composition, size, and choice of polymer-forming hydrogel on antimicrobial outcome based on the literature overview and own experience in the field. EXPERT OPINION Liposomal hydrogels offer improved therapy outcome in localized antimicrobial therapy. By fine-tuning of liposomal as well as hydrogel properties, formulations with superior performance can be optimized targeting specific infection site.
Collapse
Affiliation(s)
- Željka Vanić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Pande S. Factors affecting response variables with emphasis on drug release and loading for optimization of liposomes. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:334-344. [PMID: 38833335 DOI: 10.1080/21691401.2024.2360634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Drug delivery through Liposomes has shown tremendous potential in terms of the therapeutic application of nanoparticles. There are several drug-loaded liposomal formulations approved for clinical use that help mitigate harmful effects of life-threatening diseases. Developments in the field of liposomal formulations and drug delivery have made it possible for clinicians and researchers to find therapeutic solutions for complicated medical conditions. A key aspect in the development of drug-loaded liposomes is a careful review of optimization techniques to improve the overall formulation stability and efficacy. Optimization studies help in improving/modulating the various properties of drug-loaded liposomes and are vital for the development of this class of delivery systems. A comprehensive overview of the various process variables and factors involved in the optimization of drug-loaded liposomes is presented in this review. The influence of different independent variables on drug release and loading properties with the application of a statistical experimental design is also explained in this article.
Collapse
Affiliation(s)
- Shantanu Pande
- Drug Product Technical Services, Wave Life Sciences, MA, USA
| |
Collapse
|
6
|
Kudi P, Sen S, Murkute S, Mohapatra P, Ranjan OP. Quality by design (QbD) based approach for development of itraconazole-loaded transferosomes for skin cancer: in vitro, ex vivo and cell line studies. Drug Dev Ind Pharm 2024:1-14. [PMID: 39226132 DOI: 10.1080/03639045.2024.2400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE Itraconazole (ITZ), a widely used systemic antifungal drug, has been ingeniously repurposed for its antitumor effects. In the present work, we have prepared and optimized the ITZ-loaded transferosomes by Quality by Design (QbD) approach and repurposed them for skin cancer. METHODS The transferosomal formulation was optimized by employing a QbD approach with the design of experiment. A combination of screening and optimization design was used for formulation optimization. The optimized formulation was characterized by particle size, PDI, zeta potential, FTIR, XRD, and surface morphology using TEM. In vitro and ex vivo studies were performed using Franz diffusion cells. An in vitro cell line study was performed on the human melanoma A375 cell line. RESULTS The optimized formulation has a particle size of 192.37 ± 13.19 nm, PDI of 0.41 ± 0.03, zeta potential -47.80 ± 3.66, and an entrapment efficiency of 64.11 ± 3.75%. In vitro release studies showed that ITZ encapsulated transferosomes offer higher and sustained release than pure drugs. Ex vivo drug penetration and retention studies show that the penetration and retention of transferosomes are more visible in the skin than in the drug. The cell viability study confirms that ITZ encapsulated transferosomes have almost 2-fold more potency against the A375 cell line than pure drug. CONCLUSION ITZ encapsulated transferosomes were successfully prepared and optimized using a combination of screening and optimization designs. Based on ex vivo and cell line studies, we conclude that ITZ-loaded transferosomes could aid melanoma management alongside standard therapies.
Collapse
Affiliation(s)
- Priya Kudi
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Srijita Sen
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Satyajit Murkute
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Purusottam Mohapatra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Om Prakash Ranjan
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
7
|
Bhatia R, Singh A, Singh S, Navneesh, Rawal RK. Emerging trends in nano-carrier based gene delivery systems for targeted cancer therapy. J Drug Deliv Sci Technol 2024; 95:105546. [DOI: 10.1016/j.jddst.2024.105546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Das B, Nayak AK, Mallick S. Thyme Oil-Containing Fluconazole-Loaded Transferosomal Bigel for Transdermal Delivery. AAPS PharmSciTech 2023; 24:240. [PMID: 37989918 DOI: 10.1208/s12249-023-02698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
The objective of the present research was to develop fluconazole-loaded transferosomal bigels for transdermal delivery by employing statistical optimization (23 factorial design-based). Thin-film hydration was employed to prepare fluconazole-loaded transferomal suspensions, which were then incorporated into bigel system. A 23 factorial design was employed where ratios of lipids to edge activators, lipids (soya lecithin to cholesterol), and edge activators (sodium deoxycholate to Tween 80) were factors. Ex vivo permeation flux (Jss) of transferosomal bigels across porcine skin was analyzed as response. The optimal setting for optimized formulation (FO) was A= 4.96, B= 3.82, and C= 2.16. The optimized transferosomes showed 52.38 ± 1.76% DEE, 76.37 nm vesicle size, 0.233 PDI, - 20.3 mV zeta potential, and desirable deformability. TEM of optimized transferosomes exhibited a multilamelar structure. FO bigel's FE-SEM revealed a globule-shaped vesicular structure. Further, the optimized transferosomal suspension was incorporated into thyme oil (0.1% w/w)-containing bigel (TO-FO). Ex vivo transdermal fluconazole permeation from different transferosomal bigels was sustained over 24 h. The highest permeation flux (4.101 μg/cm2/h) was estimated for TO-FO bigel. TO-FO bigel presented 1.67-fold more increments of antifungal activity against Candida albicans than FO bigel. The prepared thyme oil (0.1% w/w)-containing transfersomal bigel formulations can be used as topical delivery system to treat candida related fungal infections.
Collapse
Affiliation(s)
- Biswarup Das
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj, Jharpokharia, Odisha, 757086, India
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
9
|
Abdallah MH, El-Horany HES, El-Nahas HM, Ibrahim TM. Tailoring Risperidone-Loaded Glycethosomal In Situ Gels Using Box-Behnken Design for Treatment of Schizophrenia-Induced Rats via Intranasal Route. Pharmaceutics 2023; 15:2521. [PMID: 38004501 PMCID: PMC10675145 DOI: 10.3390/pharmaceutics15112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Schizophrenic patients often face challenges with adherence to oral regimens. The study aimed to highlight the potentiality of intranasal ethanol/glycerin-containing lipid-nanovesicles (glycethosomes) incorporated into in situ gels for sustaining anti-psychotic risperidone (RS) release. The Box-Behnken Design (BBD) was followed for in vitro characterization. Glycethosomal-based in situ gels were examined by physical, ex vivo, and in vivo investigations. The ethanol impact on minimizing the vesicle size (VS) and enhancing the zeta potential (ZP) and entrapment efficiency (EE%) of nanovesicles was observed. Glycerin displayed positive action on increasing VS and ZP of nanovesicles, but reduced their EE%. After incorporation into various mucoadhesive agent-enriched poloxamer 407 (P407) in situ gels, the optimized gel containing 20% P407 and 1% hydroxypropyl methyl cellulose-K4M (HPMC-K4M) at a 4:1 gel/glycethosomes ratio showed low viscosity and high spreadability with acceptable pH, gel strength, and mucoadhesive strength ranges. The ethanol/glycerin mixture demonstrated a desirable ex vivo skin permeability of RS through the nasal mucosa. By pharmacokinetic analysis, the optimized gel showed eight-fold and three-fold greater increases in RS bioavailability than the control gel and marketed tablet, respectively. Following biochemical assessments of schizophrenia-induced rats, the optimized gel boosted the neuroprotective, anti-oxidant, and anti-inflammatory action of RS in comparison to other tested preparations. Collectively, the intranasal RS-loaded glycethosomal gel offered a potential substitute to oral therapy for schizophrenic patients.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (T.M.I.)
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Hanan M. El-Nahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (T.M.I.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (T.M.I.)
| |
Collapse
|
10
|
Alnasser SM, Azam F, Alqarni MH, Aodah AH, Hashmi S, Kamal M, Meshal A, Alam A. Development and Evaluation of Novel Encapsulated Isoeugenol-Liposomal Gel Carrier System for Methicillin-Resistant Staphylococcus aureus. Gels 2023; 9:gels9030228. [PMID: 36975677 PMCID: PMC10048158 DOI: 10.3390/gels9030228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In recent years, methicillin-resistant Staphylococcus aureus (MRSA) bacteria have seriously threatened the health and safety of the world’s population. This challenge demands the development of alternative therapies based on plant origin. This molecular docking study ascertained the orientation and intermolecular interactions of isoeugenol within penicillin-binding protein 2a. In this present work, isoeugenol as an anti-MRSA therapy was selected by encapsulating it into a liposomal carrier system. After encapsulation into the liposomal carrier, it was evaluated for encapsulation efficiency (%), particle size, zeta potential, and morphology. The percentage entrapment efficiency (% EE) was observed to be 57.8 ± 2.89% with a particle size of 143.31 ± 7.165 nm, a zeta potential of (−)25 mV, and morphology was found to be spherical and smooth. After this evaluation, it was incorporated into a 0.5% Carbopol gel for a smooth and uniform distribution on the skin. Notably, the isoeugenol-liposomal gel was smooth on the surface with a pH of 6.4, suitable viscosity, and spreadability. Interestingly, the developed isoeugenol-liposomal gel was safe for human use, with more than 80% cell viability. The in vitro drug release study shows promising results with 75.95 ± 3.79% of drug release after 24 h. The minimum inhibitory concentration (MIC) was 8.236 µg/mL. Based on this, it can be concluded that encapsulating isoeugenol into the liposomal gel is a potential carrier for MRSA treatment.
Collapse
Affiliation(s)
- Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Alhussain H. Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Sana Hashmi
- Department of Pharmaceutical Sciences, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Alotaibi Meshal
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al-Batin 39911, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
- Correspondence:
| |
Collapse
|
11
|
Das B, Nayak AK, Mallick S. Lipid-based nanocarriers for ocular drug delivery: An updated review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release 2022; 351:361-380. [PMID: 36169040 DOI: 10.1016/j.jconrel.2022.09.025] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Upon exhaustive research, the transdermal drug delivery system (TDDS) has appeared as a potential, well-accepted, and popular approach to a novel drug delivery system. Ease of administration, easy handling, minimum systemic exposure, least discomfort, broad flexibility and tunability, controlled release, prolonged therapeutic effect, and many more perks make it a promising approach for effective drug delivery. Although, the primary challenge associated is poor skin permeability. Skin is an intact barrier that serves as a primary defense mechanism to preclude any foreign particle's entry into the body. Owing to the unique anatomical framework, i.e., compact packing of stratum corneum with tight junction and fast anti-inflammatory responses, etc., emerged as a critical physiological barrier for TDDS. Fusion with other novel approaches like nanocarriers, specially designed transdermal delivery devices, permeation enhancers, etc., can overcome the limitations. Utilizing such strategies, some of the products are under clinical trials, and many are under investigation. This review explores all dimensions that overcome poor permeability and allows the drug to attain maximum potential. The article initially compiles fundamental features, components, and design of TDDS, followed by critical aspects and various methods, including in vitro, ex vivo, and in vivo methods of assessing skin permeability. The work primarily aimed to highlight the recent advancement in novel strategies for effective transdermal drug delivery utilizing active methods like iontophoresis, electroporation, sonophoresis, microneedle, needleless jet injection, etc., and passive methods such as the use of liposomes, SLN, NLC, micro/nanoemulsions, dendrimers, transferosomes, and many more nanocarriers. In all, this compilation will provide a recent insight on the novel updates along with basic concepts, the current status of clinical development, and challenges for the clinical translation of TDDS.
Collapse
Affiliation(s)
- Vivek Phatale
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Shikha Jha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Dnyaneshwar Patil
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Mukta Agrawal
- SVKM's Narsee Monjee Institute of Management Studies (NMIMS), School of Pharmacy & Technology Management, Hyderabad 509301, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India.
| |
Collapse
|
13
|
Aguilar-Pérez KM, Medina DI, Parra-Saldívar R, Iqbal HMN. Nano-Size Characterization and Antifungal Evaluation of Essential Oil Molecules-Loaded Nanoliposomes. Molecules 2022; 27:5728. [PMID: 36080492 PMCID: PMC9457754 DOI: 10.3390/molecules27175728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoliposomes, bilayer vesicles at the nanoscale, are becoming popular because of their safety, patient compliance, high entrapment efficiency, and prompt action. Several notable biological activities of natural essential oils (EOs), including fungal inhibition, are of supreme interest. As developed, multi-compositional nanoliposomes loaded with various concentrations of clove essential oil (CEO) and tea tree oil (TTO) were thoroughly characterized to gain insight into their nano-size distribution. The present work also aimed to reconnoiter the sustainable synthesis conditions to estimate the efficacy of EOs in bulk and EO-loaded nanoliposomes with multi-functional entities. Following a detailed nano-size characterization of in-house fabricated EO-loaded nanoliposomes, the antifungal efficacy was tested by executing the mycelial growth inhibition (MGI) test using Trichophyton rubrum fungi as a test model. The dynamic light scattering (DLS) profile of as-fabricated EO-loaded nanoliposomes revealed the mean size, polydispersity index (PdI), and zeta potential values as 37.12 ± 1.23 nm, 0.377 ± 0.007, and -36.94 ± 0.36 mV, respectively. The sphere-shaped morphology of CEO and TTO-loaded nanoliposomes was confirmed by a scanning electron microscope (SEM). The existence of characteristic functional bands in all tested counterparts was demonstrated by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Compared to TTO-loaded nanoliposomes, the CEO-loaded nanoliposomes exhibited a maximum entrapment efficacy of 91.57 ± 2.5%. The CEO-loaded nanoliposome fraction, prepared using 1.5 µL/mL concentration, showed the highest MGI of 98.4 ± 0.87% tested against T. rubrum strains compared to the rest of the formulations.
Collapse
Affiliation(s)
- Katya M. Aguilar-Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
| | - Dora I. Medina
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Roberto Parra-Saldívar
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Hafiz M. N. Iqbal
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
14
|
Abdallah MH, Abdelnabi DM, Elghamry HA. Response Surface Methodology for Optimization of Buspirone Hydrochloride-Loaded In Situ Gel for Pediatric Anxiety. Gels 2022; 8:gels8070395. [PMID: 35877480 PMCID: PMC9323393 DOI: 10.3390/gels8070395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of the current investigation was to formulate, assess, and optimize oral in situ gels of buspirone hydrochloride (BH) with the specific end goal of expanding the time the medication spends in the stomach, thereby ensuring an extended medication discharge. This would allow the use of a once-a-day dose of liquid BH formulations, which is ideal for the treatment of pediatric anxiety. In situ gels loaded with BH were prepared using various concentrations of sodium alginate (Na alg.), calcium chloride (CaCl2), and hydroxypropyl methylcellulose (HPMC K15M). The in situ gels exhibited the desired consistency, drug distribution, pH, ability to form gel, and prolonged drug release in vitro. The (33) full factorial design was utilized for the revealing of the ideal figures for the selected independent variables, Na alg. (X1), HPMC (X2), and CaCl2 (X3) based on measurements of the viscosity (Y1) and percentage drug release after 6 h (Y2). A pharmacokinetic study of the optimum formulation on rabbits was also performed. The formulation containing 2% of Na alg., 0.9% of HPMC-K15M, and 0.1125% of CaCl2 was selected as the ideal formulation, which gave the theoretical values of 269.2 cP and 44.9% for viscosity and percentage of drug released after 6 h, respectively. The pharmacokinetic study showed that the selected oral Na alg. in situ gel formulation displayed a prolonged release effect compared to BH solution and the marketed tablet (Buspar®), which was confirmed by the low Cmax and high Tmax values. The optimum oral Na alg. in situ gel showed a 1.5-fold increment in bioavailability compared with the drug solution.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (D.M.A.); (H.A.E.)
- Correspondence:
| | - Dina M. Abdelnabi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (D.M.A.); (H.A.E.)
| | - Hanaa A. Elghamry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (D.M.A.); (H.A.E.)
| |
Collapse
|
15
|
Mehanna MM, Abla KK, Domiati S, Elmaradny H. Superiority of Microemulsion-based Hydrogel for Non-Steroidal Anti-Inflammatory Drug Transdermal Delivery: A Comparative Safety and Anti-nociceptive Efficacy Study. Int J Pharm 2022; 622:121830. [PMID: 35589005 DOI: 10.1016/j.ijpharm.2022.121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent the foundation of pain management caused by inflammatory disorders. Nevertheless, their oral administration induces several side effects exemplified by gastric ulceration, thus, delivering NSAIDs via the skin has become an attractive alternative. Herein, microemulsion-based hydrogel (MBH), proliposomal, and cubosomal gels were fabricated, loaded with diclofenac, and physicochemically characterized. The sizes, charges, surface morphologies, and the state of diclofenac within the reconstituted gels were also addressed. The release pattern and ex-vivo permeation studies using Franz cells were performed via the rat abdominal skin. The formulations were assessed in-vivo on mice skin for their irritation effect and their anti-nociceptive efficacy through the tail-flick test. Biosafety study of the optimal gel was also pointed out. The gels and their dispersion forms displayed accepted physicochemical properties. Diclofenac released in a prolonged manner from the prepared gels. MBH revealed a significantly higher skin permeation and the foremost results regarding in-vivo assessment where no skin irritation or altered histopathological features were observed. MBH further induced a significant anti-nociceptive effect during the tail-flick test with a lower tendency to evoke systemic toxicity. Therefore, limonene-containing microemulsion hydrogel is a promising lipid-based vehicle to treat pain with superior safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Kawthar K Abla
- Pharmaceutical Technology Department, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Souraya Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Hoda Elmaradny
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Novel nano spanlastic carrier system for buccal delivery of lacidipine. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Bhattacharyya S, Sudheer P, Das K, Ray S. Experimental Design Supported Liposomal Aztreonam Delivery: In Vitro Studies. Adv Pharm Bull 2021; 11:651-662. [PMID: 34888212 PMCID: PMC8642795 DOI: 10.34172/apb.2021.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose: The present study focuses on a systemic approach to develop liposomal aztreonam as a promising dosage form for inhalation therapy in the treatment of pneumonia and explores the in-vitro antimicrobial and cell uptake efficacy. Methods: Liposomes were prepared by ethanol injection method using the lipids - soya phosphatidylcholine (SP) and cholesterol (CH). A central composite design (CCD) was employed to optimize the lipid composition to evaluate the effect on vesicle size, zeta potential and entrapment efficiency of the formulation. A numerical and graphical optimization was carried out to predict the optimized blend. The optimized formulation was characterized for vesicle size, surface charge, encapsulation, surface morphology, differential scanning calorimetry (DSC), powder X Ray Diffraction (PXRD), thermogravimetric analysis (TGA), in vitro diffusion, accelerated stability studies, antimicrobial studies on Pseudomonas aeruginosa NCIM 2200 and in vitro cell uptake studies. Results: The optimized formulation was found to have a particle size of 144 nm, a surface charge of -35 mV, with satisfactory drug entrapment. The surface morphology study proved the formation of nanosized vesicles. The drug release from liposomal matrix was biphasic in nature. The solid-state study revealed the reason for good encapsulation of drug. The moisture retention capacity was found to be minimum. The anti-microbial study revealed the potential antibacterial activity of the optimized formulation over the pure drug. The formulation was found to be safe on the epithelial cells and showed a marked increase in cellular uptake of aztreonam in a lipid carrier. Conclusion: It can be concluded that the optimized liposomal aztreonam could be considered as a promising approach for the delivery of aztreonam through inhalation.
Collapse
Affiliation(s)
| | - Preethi Sudheer
- Krupanidhi College of Pharmacy, Bengaluru, Karnataka 560035, India
| | - Kuntal Das
- Krupanidhi College of Pharmacy, Bengaluru, Karnataka 560035, India
| | - Subhabrata Ray
- Dr. BC Roy College of Pharmacy, Durgapur, West Bengal 713206, India
| |
Collapse
|
18
|
Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor. Int J Pharm 2021; 605:120819. [PMID: 34166727 DOI: 10.1016/j.ijpharm.2021.120819] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Targeted delivery of chemotherapeutic agents is considered a prominent strategy for the treatment of cancer due to its site-specific delivery, augmented penetration, bioavailability, and improved therapeutic efficiency. In the present study, we employed UniPR126 as a carrier in a mixed nanomicellar delivery system to target and deliver anticancer drug NIC specifically to cancer cells via EphA2 receptors as these receptors are overexpressed in cancer cells but not in normal cells. The specificity of the carrier was confirmed from the significant enhancement in the uptake of coumarin-6 loaded mixed nanomicelle by EphA2 highly expressed PC-3 cells compared to EphA2 low expressed H4 cells. Further, niclosamide-loaded lithocholic acid tryptophan conjugate-based mixed nanomicelle has shown significant synergistic cytotoxicity in PC-3 but not in H4 cells. In vivo anticancer efficacy data in PC-3 xenograft revealed a significant reduction in the tumor volume (66.87%) with niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle, where pure niclosamide showed just half of the activity. Molecular signaling data by western blotting also indicated that niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle interfered with the EphA2 receptor signaling and inhibition of the Wnt/beta-catenin pathway and resulted in the synergistic anticancer activity compared to niclosamide pure drug.
Collapse
|
19
|
Franco P, De Marco I. Contact Lenses as Ophthalmic Drug Delivery Systems: A Review. Polymers (Basel) 2021; 13:1102. [PMID: 33808363 PMCID: PMC8037676 DOI: 10.3390/polym13071102] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
Ophthalmic drugs used for the treatment of various ocular diseases are commonly administered by eye drops. However, due to anatomical and physiological factors, there is a low bioavailability of the active principle. In order to increase the drug residence time on the cornea to adequate levels, therapeutic contact lenses have recently been proposed. The polymeric support that constitutes the contact lens is loaded with the drug; in this way, there is a direct and effective pharmacological action on the target organ, promoting a prolonged release of the active principle. The incorporation of ophthalmic drugs into contact lenses can be performed by different techniques; nowadays, the soaking method is mainly employed. To improve the therapeutic performance of drug-loaded contact lenses, innovative methods have recently been proposed, including the impregnation with supercritical carbon dioxide. This updated review of therapeutic contact lenses production and application provides useful information on the most effective preparation methodologies, recent achievements and future perspectives.
Collapse
Affiliation(s)
- Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy;
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
20
|
Das S, Samanta A, Mondal S, Roy D, Nayak AK. Design and release kinetics of liposomes containing abiraterone acetate for treatment of prostate cancer. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2020.100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
21
|
Yadav K, Singh D, Singh MR, Pradhan M. Multifaceted targeting of cationic liposomes via co-delivery of anti-IL-17 siRNA and corticosteroid for topical treatment of psoriasis. Med Hypotheses 2020; 145:110322. [DOI: 10.1016/j.mehy.2020.110322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 01/05/2023]
|