1
|
Xu Y, Tan Y, Majeed Z, Nie F, Zheng K, Li Z, Yang L, Zhao C, Li C. Hybrid molecularly imprinted polymers for targeted separation and enrichment of 10-hydroxycamptothecin in Camptotheca acuminata Decne. Nat Prod Res 2024; 38:3221-3230. [PMID: 37395467 DOI: 10.1080/14786419.2023.2228981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
The molecularly imprinted polymer was synthesized using 3-aminopropylthiosilane-methacrylic acid monomer (APTES-MAA) as the functional monomer and 10-hydroxycamptothecin (HCPT) as the template, based on computer simulation. The hybrid molecularly imprinted polymers (HMIPs) were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, particle size measurement, scanning electron microscopy and energy dispersive X-ray spectroscopy. It has been shown that HMIPs are irregularly shaped and porous, with particle sizes ranging mainly from 130 to 211 nm. At 298 K, the HMIPs exhibit a maximum adsorption capacity of 8.35 mg·g-1 for HCPT and demonstrate good adsorption specificity (α = 5.38). The pseudo-second-order reaction mechanism suggests that the equilibrium adsorption capacity of HCPT on HMIPs is 8.11 mg·g-1. Finally, HCPT was successfully separated and enriched from the extract of Camptotheca acuminata Decne. seeds using HMIPs.
Collapse
Affiliation(s)
- Yanwei Xu
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Yulian Tan
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Zahid Majeed
- Department of Biotechnology, The University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Fang Nie
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Kaili Zheng
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Zhonghao Li
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Lian Yang
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Chunjian Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Chunying Li
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Nie Q, Zhang B, Li R, Yang Y, Ren J, Qiu L, Lu Y, Zhu L, Shen H, Liu Y, You R. Ultra-sensitive detection of tumor necrosis factor alpha based on silver-coated gold core shell and magnetically separated recognition of SERS aptamer sensors. Mikrochim Acta 2023; 191:41. [PMID: 38112843 DOI: 10.1007/s00604-023-06049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/15/2023] [Indexed: 12/21/2023]
Abstract
A highly sensitive tumor necrosis factor α (TNF-α) detection method based on a surface-enhanced Raman scattering (SERS) magnetic patch sensor is reported. Magnetic beads (MNPs) and core shells were used as the capture matrix and signaling probe, respectively. For this purpose, antibodies were immobilized on the surface of magnetic beads, and then Au@4-MBN@Ag core-shell structures coupled with aptamers and TNF-α antigen were added sequentially to form a sandwich immune complex. Quantitative analysis was performed by monitoring changes in the characteristic SERS signal intensity of the Raman reporter molecule 4-MBN. The results showed that the limit of detection (LOD) of the proposed method was 4.37 × 10-15 mg·mL-1 with good linearity (R2 = 0.9918) over the concentration range 10-12 to 10-5 mg·mL-1. Excellent assay accuracy was also demonstrated, with recoveries in the range 102% to 114%. Since all reactions occur in solution and are separated by magnetic adsorption of magnetic beads, this SERS-based immunoassay technique solves the kinetic problems of limited diffusion and difficult separation on solid substrates. The method is therefore expected to be a good clinical tool for the diagnosis of the inflammatory biomarker THF-α and in vivo inflammation screening.
Collapse
Affiliation(s)
- Qingling Nie
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Bohan Zhang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Rong Li
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Yixuan Yang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Junjie Ren
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Liting Qiu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Lanjin Zhu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Huiying Shen
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Yunzhen Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| |
Collapse
|
3
|
Dong L, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM. A review on recent advances in the applications of composite Fe 3O 4 magnetic nanoparticles in the food industry. Crit Rev Food Sci Nutr 2022; 64:1110-1138. [PMID: 36004607 DOI: 10.1080/10408398.2022.2113363] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fe3O4 magnetic nanoparticles (MNPs) have attracted tremendous attention due to their superparamagnetic properties, large specific surface area, high biocompatibility, non-toxicity, large-scale production, and recyclability. More importantly, numerous hydroxyl groups (-OH) on the surface of Fe3O4 MNPs can provide coupling sites for various modifiers, forming versatile nanocomposites for applications in the energy, biomedicine, and environmental fields. With the development of science and technology, the potential of nanotechnology in the food industry has also gradually become prominent. However, the application of composite Fe3O4 MNPs in the food industry has not been systematically summarized. Herein, this article reviews composite Fe3O4 MNPs, including their properties, modifications, and physical functions, as well as their applications in the entire food industry from production to processing, storage, and detection. This review lays a solid foundation for promoting food innovation and improving food quality and safety.
Collapse
Affiliation(s)
- Lina Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - XiaoMin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Yanguo Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agri-Produc-Product Quality and Safety, Ministry of Agriculture Rural Affairs China, Beijing, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agri-Produc-Product Quality and Safety, Ministry of Agriculture Rural Affairs China, Beijing, PR China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
4
|
Synthesis and magnetic properties of two cobalt-coordination polymers containing 1,10-phenanthroline and alkyl dicarboxylates ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Rezaei M, Reza Rajabi H, Bavarsad-Esfandiari N, Shokrollahi A, Setayeshfar I. Vortex-assisted dispersive micro-solid phase extraction based on nanostructured imprinted polymer: a comparison study between spectrophotometric and solution scanometric techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1199:123262. [DOI: 10.1016/j.jchromb.2022.123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
|
6
|
Jiménez-Skrzypek G, Ortega-Zamora C, González-Sálamo J, Hernández-Borges J. Miniaturized green sample preparation approaches for pharmaceutical analysis. J Pharm Biomed Anal 2022; 207:114405. [PMID: 34653744 DOI: 10.1016/j.jpba.2021.114405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022]
Abstract
The development of green sample preparation procedures is an extremely important research field in which more and more applications are constantly being proposed in different areas, including pharmaceutical analysis. This review article is aimed at providing a general overview of the development of miniaturized green analytical sample preparation procedures in the pharmaceutical analysis field, with special focus on the works published between January 2017 and July 2021. Particular attention has been paid to the application of environmentally friendly solvents and sorbents as well as nanomaterials or high extraction capacity sorbents in which the solvent volumes and reagents amounts are drastically reduced, with their subsequent advantages from the sustainability point of view.
Collapse
Affiliation(s)
- Gabriel Jiménez-Skrzypek
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España
| | - Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España.
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España.
| |
Collapse
|
7
|
Demirelli K, Abubakar AM, Tuncer H, Salih B. Preparation, characterization and electrical behaviors of greenish single-chain polymeric molecule-via intramolecular ball type cobalt phthalocyanines/ graphite oxide composites. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Improving the cycling stability of three-dimensional nanoporous Ge anode by embedding Ag nanoparticles for high-performance lithium-ion battery. J Colloid Interface Sci 2021; 592:103-115. [DOI: 10.1016/j.jcis.2021.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/31/2021] [Accepted: 02/07/2021] [Indexed: 02/01/2023]
|
9
|
Li Z, Liu G, Fan C, Pu S. Ratiometric fluorescence for sensitive detection of phosphate species based on mixed lanthanide metal organic framework. Anal Bioanal Chem 2021; 413:3281-3290. [PMID: 33693975 DOI: 10.1007/s00216-021-03264-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Phosphate (PO43-) plays a major role in aquatic ecosystems and biosystems. Developing a highly sensitive and selective ratiometric fluorescence probe for detection of PO43- is of great significance to the ecological environment and human health. In this work, a novel dual lanthanide metal organic framework was synthesized via hydrothermal reaction based on Tb3+ and Ce3+ as the center metal ions and terephthalic acid as the organic ligand (designated as Tb-Ce-MOFs). The fluorescence of Tb-Ce-MOFs shows emission at 375 nm. In the presence of PO43-, with increased concentration of PO43-, the fluorescence intensity of Tb-Ce-MOFs at 500 nm and 550 nm increased, while the intensity at 375 nm was reduced. Hence, ratiometric fluorescence detecting of PO43- can be achieved by measuring the ratio of fluorescence at 550 nm (FL550) to 375 nm (FL375) in the fluorescent spectra of the Tb-Ce-MOFs. In this sensing approach, the Tb-Ce-MOFs probe exhibits highly sensitive and selective for detection of PO43-. The limit of detection is calculated to be 28 nM and the detection range is 0.1 to 10 μM. In addition, the Tb-Ce-MOFs were used in the detection of PO43- in real samples. We design and synthesize a mixed lanthanide metal organic framework fluorescence probe (Tb-Ce-MOFs) for ratiometric fluorescence for the detection of PO43- based on Tb3+ and Ce3+ as the center metal ions and terephthalic acid as the organic ligand.
Collapse
Affiliation(s)
- Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
- YuZhang Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
10
|
Hammouche J, Gaidi M, Columbus S, Omari M. Enhanced Photocatalytic Performance of Zinc Ferrite Nanocomposites for Degrading Methylene Blue: Effect of Nickel Doping Concentration. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01960-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Zhao M, Wang J, Lian Z. Fluorescence assay of oxytetracycline in seawater after selective capture using magnetic molecularly imprinted nanoparticles. MARINE POLLUTION BULLETIN 2021; 163:111962. [PMID: 33444998 DOI: 10.1016/j.marpolbul.2020.111962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
A comprehensive strategy for manufacturing a novel sorbent based on magnetic molecularly imprinted polymers (MMIPs) is addressed for selective capture of oxytetracycline from seawater. The novel MMIPs were synthesized by nano-Fe3O4 as sacrificial matrix and adsorption properties of the polymers demonstrate rapid adsorption kinetics, high adsorption capacity, and specificity towards oxytetracycline provided by the core-shell composite structure. After screening the critical parameters by multivariate optimization, a magnetic imprinting solid phase extraction method combined with fluorescence spectrophotometry (MMIP-SPE-FL) was constructed for sensitive determination of oxytetracycline in seawater samples. The results show a good linear response dependence on the spiking concentration of 3-100 μg L-1, and a satisfactory limit of detection of 0.7 μg L-1 after the MMIP-SPE preconcentration. Seven seawater samples from Jiaozhou bay were analyzed to give recoveries in the range of 89.75-107.65% with relative standard deviation values of less than 5.44% (n = 3).
Collapse
Affiliation(s)
- Min Zhao
- Marine College, Shandong University, Weihai 264209, PR China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Ziru Lian
- Marine College, Shandong University, Weihai 264209, PR China.
| |
Collapse
|
12
|
Magnetic molecularly imprinted polymer for the selective dispersive micro solid phase extraction of phenolphthalein in urine samples and herbal slimming capsules prior to HPLC-PDA analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Design and performance of novel molecularly imprinted biomimetic adsorbent for preconcentration of prostate cancer biomarker coupled to electrochemical determination by using multi-walled carbon nanotubes/Nafion®/Ni(OH)2-modified screen-printed electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Teixeira LS, Silva CF, de Oliveira HL, Dinali LAF, Nascimento CS, Borges KB. Microextraction by packed molecularly imprinted polymer to selectively determine caffeine in soft and energy drinks. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Removal of 2,4-dichlorophenoxyacetic acid from aqueous samples using electrospun polyacrylonitrile nanofiber-based supported liquid membrane transport. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02048-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Core-Shell Molecularly Imprinted Polymers on Magnetic Yeast for the Removal of Sulfamethoxazole from Water. Polymers (Basel) 2020; 12:polym12061385. [PMID: 32575714 PMCID: PMC7362263 DOI: 10.3390/polym12061385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
In this work, magnetic yeast (MY) was produced through an in situ one-step method. Then, MY was used as the core and the antibiotic sulfamethoxazole (SMX) as the template to produce highly selective magnetic yeast-molecularly imprinted polymers (MY@MIPs). The physicochemical properties of MY@MIPs were assessed by Fourier-transform infrared spectroscopy (FT-IR), a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), specific surface area (SBET) determination, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out to compare MY@MIPs with MY and MY@NIPs (magnetic yeast-molecularly imprinted polymers without template), with MY@MIPs showing a better performance in the removal of SMX from water. Adsorption of SMX onto MY@MIPs was described by the pseudo-second-order kinetic model and the Langmuir isotherm, with maximum adsorption capacities of 77 and 24 mg g-1 from ultrapure and wastewater, respectively. Furthermore, MY@MIPs displayed a highly selective adsorption toward SMX in the presence of other pharmaceuticals, namely diclofenac (DCF) and carbamazepine (CBZ). Finally, regeneration experiments showed that SMX adsorption decreased 21 and 34% after the first and second regeneration cycles, respectively. This work demonstrates that MY@MIPs are promising sorbent materials for the selective removal of SMX from wastewater.
Collapse
|
17
|
Fu H, Liu J, Xu W, Wang H, Liao S, Chen G. A new type of magnetic molecular imprinted material combined with β-cyclodextrin for the selective adsorption of zearalenone. J Mater Chem B 2020; 8:10966-10976. [DOI: 10.1039/d0tb02146f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this paper, a new magnetic molecular imprinted polymer–cyclodextrin (MMIP–CD) material was prepared by connecting β-cyclodextrin (CD) on the surface of a magnetic molecular imprinted polymer (MMIP) and used for the rapid and specific adsorption of zearalenone (ZEN).
Collapse
Affiliation(s)
- Han Fu
- College of Engineering
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Junping Liu
- College of Engineering
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Wu Xu
- College of Engineering
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Haixiang Wang
- College of Engineering
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Shenghua Liao
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Guitang Chen
- College of Engineering
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|