1
|
Firpo G, Vaschetti VM, González Mercado GV, Guerrero PA, Piccioni MN, Macaño HR, Dalmasso PR. A greener one-pot synthesis of nanostructured SiO 2 for the efficient emerging contaminant removal from simulated textile wastewater. ENVIRONMENTAL RESEARCH 2025; 278:121655. [PMID: 40258461 DOI: 10.1016/j.envres.2025.121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/16/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Emerging contaminants are a group of chemicals that have the potential to enter the environment and cause potentially adverse effects on the ecosystems and their components. Currently, the interest in achieving the removal of emerging contaminants from water bodies and wastewater has grown considerably, which is reflected in several publications on the synthesis of nanomaterials capable of adsorbing them. Among emerging pollutants, methylene blue (MB) is a widely used model dye for the study of adsorption processes on nanomaterials. In this work, we report a facile and greener one-pot synthesis of SiO2 nanoparticles (SiO2NPs) than the classical Stöber method, involving a cheaper Si source than TEOS, only water as solvent, and shorter reaction times under neutral conditions at room temperature, i.e. a new sol-gel strategy with favorable greenness attributes. A multi-technical characterization of SiO2NPs (XRD, FTIR, UV-vis DR, TEM, SEM, EDX, Z-potential, and N2 adsorption-desorption isotherms at 77 K) confirmed the formation of spherical NPs, with amorphous and polydisperse nature, negatively charged surface, and mesoporous structure. Several batch adsorption experiments of MB were performed by varying pH, contact time, model dye concentration, and SiO2NPs dosage, and the kinetic and thermodynamic behavior of the removal reaction was elucidated. It was determined that the adsorption process followed a pseudo-second-order kinetic model and a Langmuir isotherm model. SiO2NPs showed high efficiency towards MB removal after 30 min of contact time (maximum adsorption capacity = 165.6 mg g-1) and high reusability for up to seven cycles without appreciable loss of adsorption efficiency. In addition, this work reports the first successful application of SiO2NPs as a cationic dye nanoadsorbent under simulated conditions of real textile wastewater (high pH, very high concentration of MB and dissolved salts, and high COD), proving that NPs are suitable for conditioning water resources contaminated with industrial dyes.
Collapse
Affiliation(s)
- Guadalupe Firpo
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| | - Virginia M Vaschetti
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina.
| | - Griselda V González Mercado
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina
| | - Pablo A Guerrero
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina
| | - Martín N Piccioni
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina
| | - Héctor R Macaño
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina
| | - Pablo R Dalmasso
- Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, X5016ZAA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Naderi N, Ganjali F, Eivazzadeh-Keihan R, Maleki A, Sillanpää M. Applications of hollow nanostructures in water treatment considering organic, inorganic, and bacterial pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120670. [PMID: 38531142 DOI: 10.1016/j.jenvman.2024.120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
One of the major issues of modern society is water contamination with different organic, inorganic, and contaminants bacteria. Finding cost-effective and efficient materials and methods for water treatment and environment remediation is among the scientists' most important considerations. Hollow-structured nanomaterials, including hollow fiber membranes, hollow spheres, hollow nanoboxes, etc., have shown an exciting capability for wastewater refinement approaches, including membrane technology, adsorption, and photocatalytic procedure due to their extremely high specific surface area, high porosity, unique morphology, and low density. Diverse hollow nanostructures could potentially eliminate organic contaminants, including dyes, antibiotics, oil/water emulsions, pesticides, and other phenolic compounds, inorganic pollutants, such as heavy metal ions, salts, phosphate, bromate, and other ions, and bacteria contaminations. Here, a comprehensive overview of hollow nanostructures' fabrication and modification, water contaminant classification, and recent studies in the water treatment field using hollow-structured nanomaterials with a comparative attitude have been provided, indicating the privilege abd detriments of this class of nanomaterials. Eventually, the future outlook of employing hollow nanomaterials in water refinery systems and the upcoming challenges arising in scaling up are also propounded.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India.
| |
Collapse
|
3
|
Yamaguchi T, Kim T, Park JK, Oh JM. Time-Dependent Controlled Release of Ferulic Acid from Surface-Modified Hollow Nanoporous Silica Particles. Int J Mol Sci 2023; 24:10560. [PMID: 37445736 DOI: 10.3390/ijms241310560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Release of ferulic acid from surface-functionalized hollow nanoporous silica particles (HNSPs) was investigated in deionized water (DI water) and in ethanol. The host material, an HNSP, was synthesized in the presence of polymer and surfactant templates, and the pore as well as the surface were modified with either pentyltriethoxysilane (PTS) or octyltriethoxysilane (OTS) through silane coupling reactions. The inner hollow space occupied a volume of ~45% of the whole HNSP with a 2.54 nm pore channel in the wall. The pore size was estimated to decrease to 1.5 nm and 0.5 nm via the PTS and OTS functionalization, respectively. The encapsulation efficiencies of the HNSP (25 wt%), PTS-functionalized HNSP (PTS-HNSP, 22 wt%) and OTS-functionalized HNSP (OST-HNSP, 25 wt%) toward ferulic acid were similar, while the %release in DI water and ethanol varied following HNSP > PTS-HNSP > OTS-HNSP. Release kinetic analyses with Korsmeyer-Peppas fitting suggested a trade-off relationship between the solvent's ability to access the HNSP and the affinity of ferulic acid to the surface, allowing us to understand the solvent's controlled release rate and mechanism.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Taeho Kim
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jin-Kuen Park
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
4
|
de Paula FDC, Effting L, Arízaga GGC, Giona RM, Tessaro AL, Bezerra FM, Bail A. Spherical mesoporous silica designed for the removal of methylene blue from water under strong acidic conditions. ENVIRONMENTAL TECHNOLOGY 2022; 43:2278-2289. [PMID: 33390095 DOI: 10.1080/09593330.2021.1871662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
This work proposes a novel technology for environmental remediation based on mesoporous silica spheres, which were successfully synthesized by the solvothermal method using the cetyltrimethylammonium bromide as a structuring agent. The adsorbent was designed to remove cationic dyes at strong acidic conditions. The surface was modified by a careful thermal treatment aiming at the condensation of silanol to siloxane groups. The adsorbent was characterized by XRD, SEM, FTIR, N2 adsorption/desorption and the equilibrium technique to determine the pHpzc. The kinetic of the adsorption followed a pseudo-second-order model and the process was ruled by physical forces. The isotherms were fitted to Freundlich and Temkin models, indicating that the physisorption occurred with multilayer formation, with the interaction adsorbate-adsorbate being relevant to the whole process. The adsorption capacity was approximately 60 mg g-1 and the adsorbents performance in the fast-contact system showed removal of 65%wt. of a 93 mg L-1 methylene blue (MB) solution in a single application.
Collapse
Affiliation(s)
- Felipe do Casal de Paula
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
| | - Luciane Effting
- Departamento de Química, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Renata Mello Giona
- LaMaFi - Laboratório de Materiais e Fenômenos Interfaciais, Universidade Tecnológica Federal do Paraná (UTFPR), Medianeira, Brazil
| | - Andre Luiz Tessaro
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
- Programa de Pós-Graduação em Engenharia Ambiental (PPGEA), Universidade Tecnológica Federal do Paraná, Apucarana, Brazil
| | - Fabricio Maestá Bezerra
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
- Programa de Pós-Graduação em Engenharia Ambiental (PPGEA), Universidade Tecnológica Federal do Paraná, Apucarana, Brazil
| | - Alesandro Bail
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
| |
Collapse
|
5
|
Yan J, Zhao C, Ma Y, Yang W. Covalently Attaching Hollow Silica Nanoparticles on a COC Surface for the Fabrication of a Three-Dimensional Protein Microarray. Biomacromolecules 2022; 23:2614-2623. [PMID: 35603741 DOI: 10.1021/acs.biomac.2c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compared to traditional two-dimensional (2D) biochips, three-dimensional (3D) biochips exhibit the advantages of higher probe density and detection sensitivity due to their designable surface microstructure as well as enlarged surface area. In the study, we proposed an approach to prepare a 3D protein chip by deposition of a monolayer of functionalized hollow silica nanoparticles (HSNs) on an activated cyclic olefin copolymer (COC) substrate. First, the COC substrate was chemically modified through the photografting technique to tether poly[3-(trimethoxysilyl) propyl methacrylate] (PTMSPMA) brushes on it. Then, a monolayer of HSNs was deposited on the modified COC and covalently attached via a condensation reaction between the hydrolyzed pendant siloxane groups of PTMSPMA and the Si-OH groups of HSNs. The roughness of the COC substrate significantly increased to 50.3 nm after depositing a monolayer of HSNs (ranging from 100 to 700 nm), while it only caused a negligible reduction in the light transmittance of COC. The HSN-modified COC was further functionalized with epoxide groups by a silane coupling agent for binding proteins. Immunoglobulin G could be effectively immobilized on this substrate with the highest immobilization efficiency of 75.2% and a maximum immobilization density of 1.236 μg/cm2, while the highest immobilization efficiency on a 2D epoxide group-modified glass slide was only 57.4%. Moreover, immunoassay results confirmed a competitive limit of detection (LOD) (1.06 ng/mL) and a linear detection range (1-100 ng/mL) of the 3D protein chip. This facile and effective approach for fabricating nanoparticle-based 3D protein microarrays has great potential in the field of biorelated detection.
Collapse
|
6
|
Dong L, Chunyi Zhou BS. Fast and Selective Methyl Blue Adsorption from Aqueous Solution on 3D BiOCl Microspheres. ChemistrySelect 2022. [DOI: 10.1002/slct.202104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lihong Dong
- Department of Chemistry Tonghua Normal University Tonghua 134002 China
| | - B. S. Chunyi Zhou
- Department of Chemistry Tonghua Normal University Tonghua 134002 China
| |
Collapse
|
7
|
Li H, Chen X, Shen D, Wu F, Pleixats R, Pan J. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. NANOSCALE 2021; 13:15998-16016. [PMID: 34546275 DOI: 10.1039/d1nr04048k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is rapidly sweeping through all the vital fields of science and technology such as electronics, aerospace, defense, medicine, and catalysis. It involves the design, synthesis, characterization, and applications of materials and devices on the nanometer scale. At the nanoscale, physical and chemical properties differ from the properties of the individual atoms and molecules of bulk matter. In particular, the design and development of silica nanomaterials have captivated the attention of several researchers worldwide. The applications of hybrid silicas are still limited by the lack of control on the morphology and particle size. The ability to control both the size and morphology of the materials and to obtain nano-sized silica particles has broadened the spectrum of applications of mesoporous organosilicas and/or has improved their performances. On the other hand, adsorption is a widely used technique for the separation and removal of pollutants (metal ions, dyes, organics,...) from wastewater. Silica nanoparticles have specific advantages over other materials for adsorption applications due to their unique structural characteristics: a stable structure, a high specific surface area, an adjustable pore structure, the presence of silanol groups on the surface which allow easy modification, less environmental harm, simple synthesis, low cost, etc. Silica nanoparticles are potential adsorbents for pollutants. We present herein an overview of the different types of silica nanoparticles going from the definitions to properties, synthetic approaches and the mention of potential applications. We focus mainly on the recent advances in the adsorption of different target substances (metal ions, dyes and other organics).
Collapse
Affiliation(s)
- Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
- Anhui Laboratory of Molecules-Based Materials, College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241002, Anhui, China
| | - Xueping Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Danqing Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Fan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
8
|
pH-responsive pitted polymer particles with surface morphologies from cup shaped to multicavities. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04884-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Selective adsorption of cationic/anionic tritoluene dyes on functionalized amorphous silica: A mechanistic correlation between the precursor, modifier and adsorbate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Transformation of Glass Fiber Waste into Mesoporous Zeolite-Like Nanomaterials with Efficient Adsorption of Methylene Blue. SUSTAINABILITY 2021. [DOI: 10.3390/su13116207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recycling and reusing glass fiber waste (GFW) has become an environmental concern, as the means of disposal are becoming limited as GFW production increases. Therefore, this study developed a novel, cost-effective method to turn GFW into a mesoporous zeolite-like nanomaterial (MZN) that could serve as an environmentally benign adsorbent and efficient remover of methylene blue (MB) from solutions. Using the Taguchi optimizing approach to hydrothermal alkaline activation, we produced analcime with interconnected nanopores of about 11.7 nm. This MZN had a surface area of 166 m2 g−1 and was negatively charged with functional groups that could adsorb MB ranging from pH 2 to 10 and all with excellent capacity at pH 6.0 of the maximum Langmuir adsorption capacity of 132 mg g−1. Moreover, the MZN adsorbed MB exothermically, and the reaction is reversible according to its thermodynamic parameters. In sum, this study indicated that MZN recycled from glass fiber waste is a novel, environmentally friendly means to adsorb cation methylene blue (MB), thus opening a gateway to the design and fabrication of ceramic-zeolite and tourmaline-ceramic balls and ceramic ring-filter media products. In addition, it has environmental applications such as removing cation dyes and trace metal ions from aqueous solutions and recycling water.
Collapse
|
11
|
Saita S, Anzai M, Mori N, Kawasaki H. Controlled aggregation of methylene blue in silica–methylene blue nanocomposite for enhanced 1O2 generation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Jin R, Wang J, Gao M, Zhang X. Pollen-like silica nanoparticles as a nanocarrier for tumor targeted and pH-responsive drug delivery. Talanta 2021; 231:122402. [PMID: 33965051 DOI: 10.1016/j.talanta.2021.122402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/01/2022]
Abstract
Aptamer modified hollow silica nanoparticles with pollen structure (plSP@aptamer) were synthesized and used as a nanocarrier for tumor targeted and pH-responsive drug delivery. The 292 ± 14 nm interior void in diameter together with 11.8 nm surface pore size of plSP@aptamer nanoparticles contributed to a high drug loading efficiency of 0.509 g g-1. Furthermore, the drug delivery system was pH-responsive, and the releasing efficiency was up to 87.5% at pH of 5. The special spikes of this plSP@aptamer nanoparticles acted as "entry claws" to enhanced the interaction between cell and drug nanocarriers and then increased the internalization rate of drug vehicles. The cell uptake assay suggested that most of doxorubicin (DOX)@plSP@aptamer nanoparticles can escape form lysosome and located in nuclei of MCF-7 cells. The targeted performance testing showed that almost no DOX@plSP@aptamer were internalized by normal cells, indicating a high specificity of our drug vehicles. The cytotoxicity of nanoparticles was also investigated, the plSP@aptamer particles had excellent biocompatibility and the cell viability was nearly 100%. After loaded with DOX, DOX@plSP@aptamer showed great potential in targeted therapy of tumors, and only 4.2% MCF-7 cells were viable.
Collapse
Affiliation(s)
- Rongrong Jin
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jiaxi Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingxia Gao
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
13
|
Mesoporous manganese silicate composite adsorbents synthesized from high-silicon iron ore tailing. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Ge Y, Zhang A, Sun R, Xu J, Yin T, He H, Gou J, Kong J, Zhang Y, Tang X. Penetratin-modified lutein nanoemulsion in-situ gel for the treatment of age-related macular degeneration. Expert Opin Drug Deliv 2020; 17:603-619. [PMID: 32105151 DOI: 10.1080/17425247.2020.1735348] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Lutein is the primary macular pigment with an favorable effect on the treatment of age-related macular degeneration (AMD). However, the poor water solubility of lutein hinders its absorption and delivery. In this study, a penetratin-modified lutein nanoemulsion in-situ gel (GEL) was prepared for the treatment of AMD.Methods: A nanoemulsion (NE) was prepared and modified with penetratin (P-NE) to improve the penetration. The effect of penetratin was evaluated by cell uptake and intraocular distribution assays. A dry AMD model was induced using NaIO3, and the therapeutic effect was evaluated by electroretinography, the number of apoptosis cells and the reactive oxygen species (ROS) level.Results: Lutein showed a good ability to protect ARPE-19 from the damage of H2O2 and the uptake rate of P-NE was significantly higher than NE. In the efficacy experiments, the structure of retina was significantly improved after treatment, the apoptosis rate decreased from 31.98% to 2.05%, and the level of ROS was significantly decreased (p < 0.0001).Conclusions: With the aid of penetratin, lutein could be delivered to the retina effectively. The P-NE GEL could evidently inhibit the apoptosis and ROS, demonstrating that the P-NE GEL has a good application prospect in the treatment of AMD.
Collapse
Affiliation(s)
- Ying Ge
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Anan Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Rong Sun
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Jiawen Xu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China.,Department of Pharmacy, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Jun Kong
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| |
Collapse
|