1
|
Zhu Y, Yan X. Preparation of Tea Tree Essential Oil-Chitosan Microcapsules and Its Effect on the Properties of Water-Based Coating. Polymers (Basel) 2025; 17:849. [PMID: 40219240 PMCID: PMC11991613 DOI: 10.3390/polym17070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
The main chemical components of tea tree essential oil (TTO) are monoterpene compounds, including terpine-4-ol,1,8-cineole, para-cymene and γ-terpene. Among them, terpine-4-ol and 1,8-cineole are the main antibacterial components. The microcapsules were prepared by orthogonal experiments with the core-wall ratio, emulsifier concentration, mass ratio of Tween-80 to SDBS and oil-water ratio as variables. Through the analysis of the yield and coverage rate of nine kinds of microcapsules, the concentration of emulsifier was determined as the most influential factor for TTO-chitosan microcapsules, and six kinds of microcapsules were prepared by a single-factor experiment. With the increase in emulsifier concentration, the antibacterial rate of Escherichia coli increased first and then decreased, the antibacterial rate of Staphylococcus aureus increased first, decreased and then increased, and the antibacterial effect of Staphylococcus aureus was better than that of Escherichia coli. When the emulsifier concentration was 4% (13# microcapsule), the overall performance of the coating was better, the microcapsule dispersion was the most uniform, showing a round spheroid shape, and the particle size was mostly distributed between 4 and 8 μm. The antibacterial rate against Escherichia coli was 72.95%, and the antibacterial rate against Staphylococcus aureus was 75.81%. The color difference was 2.77, the glossiness at a 60° incidence angle was 22.8 GU, and the visible light transmittance was 87.80%. The roughness was 0.304 μm, and the elongation was 17.47%. The research results provide a technical reference for the application of an antibacterial water-based coating on a wood surface.
Collapse
Affiliation(s)
- Ye Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China;
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxing Yan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China;
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Gu CY, Shao JQ, Liu XL, Wei JT, Huang GQ, Xiao JX. Spray drying the Pickering emulsions stabilized by chitosan/ovalbumin polyelectrolyte complexes for the production of oxidation stable tuna oil microcapsules. Int J Biol Macromol 2024; 273:133139. [PMID: 38878929 DOI: 10.1016/j.ijbiomac.2024.133139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
The microencapsulation of polysaturated fatty acids by spray drying remains a challenge due to their susceptibility to oxidation. In this work, antioxidant Pickering emulsions were attempted as feeds to produce oxidation stable tuna oil microcapsules. The results indicated that the association between chitosan (CS) and ovalbumin (OVA) was a feasible way to fabricate antioxidant and wettable complexes and a high CS percentage favored these properties. The particles could yield tuna oil Pickering emulsions with enhanced oxidation stability through high-pressure homogenization, which were successfully spray dried to produce microcapsules with surface oil content of 8.84 % and microencapsulation efficiency of 76.65 %. The microcapsules exhibited significantly improved oxidation stability and their optimum peroxide values after storage at 50 °C, 85 % relative humidity, or natural light for 15 d were 48.67 %, 60.07 %, and 39.69 % respectively lower than the powder derived from the OVA-stabilized emulsion. Hence, Pickering emulsions stabilized by the CS/OVA polyelectrolyte complexes are potential in the production of oxidation stable polyunsaturated fatty acid microcapsules by spray drying.
Collapse
Affiliation(s)
- Chun-Ye Gu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Qi Shao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xue-Ling Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jian-Teng Wei
- Qingdao Special Food Research Institute, Qingdao 266109, China.
| | - Guo-Qing Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jun-Xia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
3
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Spray-drying and rehydration on β-carotene encapsulated Pickering emulsion with chitosan and seaweed polyphenol. Int J Biol Macromol 2024; 268:131654. [PMID: 38641273 DOI: 10.1016/j.ijbiomac.2024.131654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The spray-drying process to generate microcapsules from Pickering emulsions needs high temperatures, leading to instability of emulsions and degradation of encapsulated thermosensitive compounds (β-carotene). However, these effects may be attenuated by the introduction of seaweed polyphenols into the emulsion interfacial layers, although the effects underlying this protective mechanism have not been explored. This study evaluates the effects of spray-drying/rehydration on the morphology, encapsulation efficiency, redispersibility, and stability of β-carotene loaded Pickering emulsions stabilized by chitosan (PESC) and Pickering emulsions stabilized by chitosan/seaweed polyphenols (PESCSP). The encapsulation efficiency of β-carotene in PESCSP microcapsules (61.13 %) was higher than PESC (53.91 %). Rehydrated PESCSP exhibited more regular droplet size distribution, higher stability, stronger 3D network morphology, and lower redispersibility index (1.5) compared to rehydrated PESC. Analyses of interfacial layers of emulsions revealed that chitosan covalently bound fatty acids at their hydrophobic side. Polyphenols were linked to chitosan at the hydrophilic side of emulsions through hydrogen bonds, providing 3D network between droplets and antioxidant activities to inhibit the degradation of β-carotene. This study emphasized the role of polyphenols in the interfacial layers of Pickering emulsions for the development of efficient delivery systems and protection of β-carotene and other thermosensitive bioactive compounds during spray-drying and rehydration.
Collapse
Affiliation(s)
- Weihao Meng
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield Dublin 4, Ireland.
| |
Collapse
|
4
|
Guo L, Fan L, Liu Y, Li J. Strategies for improving loading of emulsion-based functional oil powder. Crit Rev Food Sci Nutr 2023; 64:12780-12799. [PMID: 37724529 DOI: 10.1080/10408398.2023.2257325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Functional oil is type of oil that is beneficial to human health and has nutritional value, however, functional oils are rich in bioactive substances such as polyunsaturated fatty acids which are sensitive to environmental factors and are susceptible to oxidation or decomposition. Construction of emulsion-based oil powder is a promising approach for improving the stability and solubility of functional oils. However, the low effective loading of oil in powder is the main challenge limiting encapsulation technology. This manuscript focuses on reviewing the current research progress of emulsion-based functional oil powder construction and systematically summarizes the processing characteristics of emulsion-based oil powder with high payload and summarizing the strategies to enhance the payload of powder in term of emulsification and drying, respectively. The impact of emulsion formation on oil powder production is discussed from different characteristics of emulsions, including emulsion composition, emulsification methods and emulsion types. In addition, the current status of improving material loading performance by various modifications to the drying technology is discussed, including the addition of drying processing additives, changes in drying parameters and the effect of innovative technological means.
Collapse
Affiliation(s)
- Lingxi Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Khann B, Polpanich D, Opaprakasit P, Wongngam Y, Thananukul K, Kaewsaneha C. Fabrication of Sacha Inchi Oil-Loaded Microcapsules Employing Natural-Templated Lycopodium clavatum Spores and Their Pressure-Stimuli Release Behavior. ACS OMEGA 2023; 8:20937-20948. [PMID: 37323417 PMCID: PMC10268288 DOI: 10.1021/acsomega.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Polymeric particles have attracted vast attention for use in various fields, especially as drug carriers and cosmetics, due to their excellent ability to protect active ingredients from the environment until reaching a target site. However, these materials are commonly produced from conventional synthetic polymers, which impose adverse effects on the environment due to their non-degradable nature, leading to waste accumulation and pollution in the ecosystem. This work aims to utilize naturally occurring Lycopodium clavatum spores to encapsulate sacha inchi oil (SIO), which contains active compounds with antioxidant activity, by applying a facile passive loading/solvent diffusion-assisted method. Sequential chemical treatments by acetone, potassium hydroxide, and phosphoric acid were employed to remove native biomolecules from the spores before encapsulation effectively. These are mild and facile processes compared to other synthetic polymeric materials. Scanning electron microscopy and Fourier-transform infrared spectroscopy revealed the clean, intact, and ready-to-use microcapsule spores. After the treatments, the structural morphology of the treated spores remained significantly unchanged compared to the untreated counterparts. With an oil/spore ratio of 0.75:1.00 (SIO@spore-0.75), high encapsulation efficiency and capacity loading values of 51.2 and 29.3%, respectively, were obtained. Using antioxidant assay (DPPH), the IC50 of SIO@spore-0.75 was 5.25 ± 3.04 mg/mL, similar to that of pure SIO (5.51 ± 0.31 mg/mL). Under pressure stimuli (1990 N/cm3, equivalent to a gentle press), a high amount of SIO was released (82%) from the microcapsules within 3 min. At an incubation time of 24 h, cytotoxicity tests showed a high cell viability of 88% at the highest concentration of the microcapsules (10 mg/mL), reflecting biocompatibility. The prepared microcapsules have a high potential for cosmetic applications, especially as functional scrub beads in facial washing products.
Collapse
Affiliation(s)
- Bunthoeurn Khann
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Duangporn Polpanich
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum
Thani 12120, Thailand
| | - Pakorn Opaprakasit
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Yodsathorn Wongngam
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum
Thani 12120, Thailand
| | - Kamonchanok Thananukul
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Chariya Kaewsaneha
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| |
Collapse
|
6
|
Dai H, Luo Y, Huang Y, Ma L, Chen H, Fu Y, Yu Y, Zhu H, Wang H, Zhang Y. Recent advances in protein-based emulsions: The key role of cellulose. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Edible oil to powder technologies: Concepts and advances. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
8
|
Preparation of powdered oil by spray drying the Pickering emulsion stabilized by ovalbumin - Gum Arabic polyelectrolyte complex. Food Chem 2022; 391:133223. [PMID: 35598390 DOI: 10.1016/j.foodchem.2022.133223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022]
Abstract
The suitability of the perilla seed oil Pickering emulsion stabilized by the ovalbumin (OVA) - gum Arabic (GA) polyelectrolyte complex for spray drying was investigated and the resultant powder was characterized. The OVA - GA complex conferred enhanced stability to the emulsion than OVA, GA, and their mixture. The viscosity of the Pickering emulsion was highly sensitive to stabilizer concentration and that fabricated by 2% OVA - GA complex showed acceptable viscosity and powder yield. The Pickering emulsion was more effective in preventing oil leakage during spray drying than the OVA-stabilized emulsion and the resultant powder possessed an oil content of up to 77.7%. Besides, the spray-dried Pickering emulsion powder showed greater rehydration and better flowability than that of the OVA-stabilized emulsion powder. Hence, the Pickering emulsion stabilized by the OVA - GA polyelectrolyte complex is promising as a novel feed for the production of oil powders by spray drying.
Collapse
|
9
|
Producing submicron chitosan-stabilized oil Pickering emulsion powder by an electrostatic collector-equipped spray dryer. Carbohydr Polym 2022; 294:119791. [DOI: 10.1016/j.carbpol.2022.119791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 01/03/2023]
|
10
|
Lai W, Liu Y, Kuang Y, Zhang S, Zhang C, Li C, Guo B. Preparation and evaluation of microcapsules containing Rimulus Cinnamon and Angelica Sinenis essential oils. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Wensheng Lai
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanling Liu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhui Kuang
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd, Modern Chinese Medicine Research Institute, Guangzhou, China
| | - Sisi Zhang
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd, Modern Chinese Medicine Research Institute, Guangzhou, China
| | - Chuanping Zhang
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd, Modern Chinese Medicine Research Institute, Guangzhou, China
| | - Chuyuan Li
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd, Modern Chinese Medicine Research Institute, Guangzhou, China
| | - Bohong Guo
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
11
|
Li KY, Zhang XR, Huang GQ, Teng J, Guo LP, Li XD, Xiao JX. Complexation between ovalbumin and gum Arabic in high total biopolymer concentrations and the emulsifying ability of the complexes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Perumal AB, Nambiar RB, Moses J, Anandharamakrishnan C. Nanocellulose: Recent trends and applications in the food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
14
|
Halahlah A, Piironen V, Mikkonen KS, Ho TM. Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Crit Rev Food Sci Nutr 2022; 63:6983-7015. [PMID: 35213281 DOI: 10.1080/10408398.2022.2038080] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural bioactive compounds (BCs) are types of chemicals found in plants and certain foods that promote good health, however they are sensitive to processing and environmental conditions. Microencapsulation by spray drying is a widely used and cost-effective approach to create a coating layer to surround and protect BCs and control their release, enabling the production of high functional products/ingredients with extended shelf life. In this process, wall materials determine protection efficiency, and physical properties, bioavailability, and storage stability of microencapsulated products. Therefore, an understanding of physicochemical properties of wall materials is essential for the successful and effective spray-dried microencapsulation process. Typically, polysaccharide-based wall materials are generated from more sustainable sources and have a wider range of physicochemical properties and applications compared to their protein-based counterparts. In this review, we highlight the essential physicochemical properties of polysaccharide-based wall materials for spray-dried microencapsulation of BCs including solubility, thermal stability, and emulsifying properties, rheological and film forming properties. We provide further insight into possibilities for the chemical structure modification of native wall materials and their controlled release behaviors. Finally, we summarize the most recent studies involving polysaccharide biopolymers as wall materials and/or emulsifiers in spray-dried microencapsulation of BCs.
Collapse
Affiliation(s)
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Thao M Ho
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| |
Collapse
|
15
|
Zhang X, Li Y, Li J, Liang H, Chen Y, Li B, Luo X, Pei Y, Liu S. Edible oil powders based on spray-dried Pickering emulsion stabilized by soy protein/cellulose nanofibrils. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Shaheen TI, Capron I. Formulation of re-dispersible dry o/w emulsions using cellulose nanocrystals decorated with metal/metal oxide nanoparticles. RSC Adv 2021; 11:32143-32151. [PMID: 35495516 PMCID: PMC9041789 DOI: 10.1039/d1ra06054f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023] Open
Abstract
This study describes for the first time the preparation of re-dispersible surfactant-free dry eicosane oil emulsion using cellulose nanocrystals (CNCs) using the freeze-drying technique. Surface properties of CNCs constitute a critical point for the stability of o/w emulsions and thus can affect both the droplet size and dispersion properties of the emulsion. Therefore, surface modification of CNCs was performed to understand its effect on the size of the obtained re-dispersible dry o/w eicosane emulsion. Decoration of the CNC surface with metal and metal oxide nanoparticles was conducted through the available alcoholic groups of glycosidic units of CNC, which played a dual role in reducing and stabilizing nanoparticles. Of these nanoparticles, silver (AgNPs), gold (AuNPs), copper oxide (CuO-NPs), and iron oxide (Fe3O4-NPs) nanoparticles were prepared via a facile route using alkali activated CNCs. Thorough characterizations pertaining to the as-prepared nanoparticles and their re-dispersible dry eicosane o/w emulsions were investigated using UV-vis spectroscopy, TEM, XRD, particle size, zeta potential, and STEM. Results confirmed the ability of CNCs to stabilize and/or reduce the formed nanoparticles with different sizes and shapes. These nanoparticles showed different shapes and surface charges accompanied by individual morphologies, reflecting on the stability of the re-dispersed dry eicosane emulsions with droplet sizes varying from 1.25 to 0.5 μm. Schematic diagram for the detailed preparation of dry eicosane o/w emulsions.![]()
Collapse
Affiliation(s)
- Tharwat I Shaheen
- National Research Centre (Scopus affiliation ID 60014618), Textile Industries Research Division (former El-Tahrir str.), Dokki, P.O. 12622 Giza Egypt
| | - Isabelle Capron
- INRAE, UR1268 Biopolymeres Interactions Assemblages 44316 Nantes France
| |
Collapse
|
17
|
Lugoloobi I, Maniriho H, Jia L, Namulinda T, Shi X, Zhao Y. Cellulose nanocrystals in cancer diagnostics and treatment. J Control Release 2021; 336:207-232. [PMID: 34102221 DOI: 10.1016/j.jconrel.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Cancer is currently a major threat to public health, being among the principal causes of death to the global population. With carcinogenesis mechanisms, cancer invasion, and metastasis remaining blurred, cancer diagnosis and novel drug delivery approaches should be developed urgently to enable management and treatment. A dream break-through would be a non-invasive instantaneous monitoring of cancer initiation and progression to fast-track diagnosis for timely specialist treatment decisions. These innovations would enhance the established treatment protocols, unlimited by evasive biological complexities during tumorigenesis. It is therefore contingent that emerging and future scientific technologies be equally biased towards such innovations by exploiting the apparent properties of new developments and materials especially nanomaterials. CNCs as nanomaterials have undisputable physical and excellent biological properties that enhanced their interest as biomedical materials. This article therefore highlights CNCs utility in cancer diagnosis and therapy. Their extraction, properties, modification, in-vivo/in-vitro medical applications, biocompatibility, challenges and future perspectives are precisely discussed.
Collapse
Affiliation(s)
- Ishaq Lugoloobi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Hillary Maniriho
- Department of Biochemistry and Human Molecular Genetics, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liang Jia
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Tabbisa Namulinda
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yili Zhao
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
18
|
Ee LY, Yau Li SF. Recent advances in 3D printing of nanocellulose: structure, preparation, and application prospects. NANOSCALE ADVANCES 2021; 3:1167-1208. [PMID: 36132876 PMCID: PMC9418582 DOI: 10.1039/d0na00408a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/26/2020] [Indexed: 05/08/2023]
Abstract
Emerging cellulose nanomaterials extracted from agricultural biomasses have recently received extensive attention due to diminishing fossil resources. To further reduce the carbon footprints and wastage of valuable resources, additive manufacturing techniques of new nanocellulosic materials have been developed. Studies on the preparation and characterization of 3D-printable functional nanocellulosic materials have facilitated a deeper understanding into their desirable attributes such as high surface area, biocompatibility, and ease of functionalization. In this critical review, we compare and highlight the different methods of extracting nanocellulose from biorenewable resources and the strategies for transforming the obtained nanocellulose into nanocomposites with high 3D printability. Optimistic technical applications of 3D-printed nanocellulose in biomedical, electronics, and environmental fields are finally described and evaluated for future perspectives.
Collapse
Affiliation(s)
- Liang Ying Ee
- Department of Chemistry, National University of Singapore Lower Kent Ridge Road, Science Drive 4, S5-02-03 Singapore 117549
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore Lower Kent Ridge Road, Science Drive 4, S5-02-03 Singapore 117549
| |
Collapse
|
19
|
Tyowua AT, Binks BP. Organic pigment particle-stabilized Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Surjit Singh CK, Lim HP, Tey BT, Chan ES. Spray-dried alginate-coated Pickering emulsion stabilized by chitosan for improved oxidative stability and in vitro release profile. Carbohydr Polym 2021; 251:117110. [DOI: 10.1016/j.carbpol.2020.117110] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
|