1
|
Soleimani N, Rahimnejad M, Ezoji H. Exploiting the synergistic effect of β-cyclodextrin functionalized-multi-walled carbon nanotubes and Zn-MOF for the detection of endocrine-disrupting chemical methylparaben. Anal Chim Acta 2025; 1337:343517. [PMID: 39800525 DOI: 10.1016/j.aca.2024.343517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/01/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity. RESULTS In this regard, Zn-BTC metal-organic framework (MOF) and multi-walled carbon nanotubes (MWCNTs) functionalized with β-Cyclodextrin (β-CD) were utilized to modify the matrix of a carbon paste electrode (CPE). The morphological and electrochemical characteristics of β-CD-MWCNTs/Zn-BTC/CPE were evaluated using conventional material characterization techniques and electroanalytical methods. The sensor exhibited two linear current responses in concentration ranges of 0.01 mM-0.3 mM and 0.3 mM-6 mM. The limit of detection (LOD) and limit of quantification (LOQ) were calculated to be 3.8 μM and 11.5 μM, respectively. The device demonstrated excellent selectivity, repeatability, reproducibility, and stability over two weeks. Evaluating its applicability in real samples, including personal care products, tap and river water, and human blood serum, achieved recoveries in the range of 96.25 %-105 %, proving its reliability in environmental and industrial applications. SIGNIFICANCE Overall, the proposed modified graphitic platform is not only a cheaper and more easily fabricable and applicable option for MP detection compared to other reported conventional and electrochemical devices but also demonstrates exceptional selectivity and satisfactory sensitivity among various reported electrochemical sensors. In addition, the developed electroanalytical tool can be employed for MP measurement in a broader range of real sample matrixes compared to alternative electrochemical platforms.
Collapse
Affiliation(s)
- Niusha Soleimani
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Hoda Ezoji
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
2
|
Adewunmi A, Kamal MS, Hussain SMS. Nonionic Demulsifier for Smart Demulsification of Crude Oil Emulsion at Room and Moderate Temperatures. ACS OMEGA 2024; 9:48405-48415. [PMID: 39676926 PMCID: PMC11635471 DOI: 10.1021/acsomega.4c06634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024]
Abstract
This study reports the demulsification activity of a newly developed nonionic demulsifier (NID) via the condensation of glycolic acid ethoxylate lauryl ether with amine. The demulsification performance of the developed NID was assessed under room and moderate temperatures (25 and 60 °C), while the concentrations of NID were varied from 100 to 700 ppm at both temperatures in order to observe their oil-water separation efficiency. The demulsification mechanism was expatiated by determining the viscosity and elastic modulus of emulsion in the presence and absence of the NID. Adsorption at the oil and water interface was analyzed through a series of interfacial tension measurements. Accordingly, under the aforementioned temperatures, the optimal demulsification efficiency of the NID was 95% (25 °C) and 99% (60 °C) at 500 ppm. Viscosity determination at both temperatures revealed a drastic reduction in emulsion viscosity in the presence of NID, and the viscosity drop was of high magnitude at moderate temperatures (60 °C). Likewise, the elastic modulus measurements in bulk rheology revealed that the presence of NID in the emulsion weakened the elastic strength. Again, the interfacial modulus test exhibited the percolation of NID at the oil-water interface and the displacement of asphaltenes. Interfacial tension (IFT) measurements of the oil-water system at different NID concentrations showed that the particles were adsorbed at the oil-water interface. The IFT values of the oil-water system in the presence of NID ranged from 1.84 to 3.02 mN/m as compared to that of the NID-free oil-water system recorded as 16.11 mN/m. It is envisaged that this new nonionic demulsifier would be very useful in oilfields and petrochemical industries.
Collapse
Affiliation(s)
- Ahmad
A. Adewunmi
- Center
for Integrative Petroleum Research, College of Petroleum Engineering
and Geosciences, King Fahd University of
Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Shahzad Kamal
- Center
for Integrative Petroleum Research, College of Petroleum Engineering
and Geosciences, King Fahd University of
Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Petroleum
Engineering Department, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Syed Muhammad Shakil Hussain
- Center
for Integrative Petroleum Research, College of Petroleum Engineering
and Geosciences, King Fahd University of
Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
3
|
Demulsification of oily wastewater driven by an amine functionalized cellulose derived from waste cotton textiles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Liu B, Chen B, Ling J, Matchinski EJ, Dong G, Ye X, Wu F, Shen W, Liu L, Lee K, Isaacman L, Potter S, Hynes B, Zhang B. Development of advanced oil/water separation technologies to enhance the effectiveness of mechanical oil recovery operations at sea: Potential and challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129340. [PMID: 35728323 DOI: 10.1016/j.jhazmat.2022.129340] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Mechanical oil recovery (i.e., booming and skimming) is the most common tool for oil spill response. The recovered fluid generated from skimming processes may contain a considerable proportion of water (10 % ~ 70 %). As a result of regulatory prohibition on the discharge of contaminated waters at sea, vessels and/or storage barges must make frequent trips to shore for oil-water waste disposal. This practice can be time- consuming thus reduces the overall efficiency and capacity of oil recovery. One potential solution is on-site oil-water separation and disposal of water fraction at sea. However, currently available decanting processes may have limited oil/water separation capabilities, especially in the presence of oil-water emulsion, which is inevitable in mechanical oil recovery. The decanted water may not meet the discharge standards and cause severe ecotoxicological impacts. This paper therefore comprehensively reviews the principles and progress in oil/water separation, demulsification, and on-site treatment technologies, investigates their applicability on decanting at sea, and discusses the ecotoxicity of decanted water in the marine environment. The outputs provide the fundamental and practical knowledge on decanting and help enhance response effectiveness and consequently reducing the environmental impacts of oil spills.
Collapse
Affiliation(s)
- Bo Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Jingjing Ling
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Ethan James Matchinski
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Xudong Ye
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Fei Wu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Wanhua Shen
- Environmental Engineering Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Lei Liu
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| | - Lisa Isaacman
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| | - Stephen Potter
- SL Ross Environmental Research Ltd., Ottawa, ON K2H 8S9, Canada
| | - Brianna Hynes
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
5
|
Ye F, Jiang X, Liu H, Ai G, Shen L, Yang Y, Feng X, Yuan H, Zhang Z, Mi Y, Yan X. Amine functional cellulose derived from wastepaper toward oily wastewater treatment and its demulsification mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Chen L, Ye F, Liu H, Jiang X, Zhao Q, Ai G, Shen L, Feng X, Yang Y, Mi Y. Demulsification of oily wastewater using a nano carbon black modified with polyethyleneimine. CHEMOSPHERE 2022; 295:133857. [PMID: 35122810 DOI: 10.1016/j.chemosphere.2022.133857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In this work, nano carbon black was modified with polyethyleneimine (CB-PEI) under an ultrasonic field. The obtained product was used as a demulsifier to break oily wastewater. Morphology, structure, and chemical composition of CB-PEI were systematically analyzed. Bottle test was carried out to evaluate the influence of dosage, pH value and salinity on the demulsification efficiency of the emulsion. The results showed that the light transmittance of water phase (TSW) after the demulsification was 79.1% and corresponding oil removal rate (ORR) could reach up to 99.4% with 60 mg/L of CB-PEI at ambient temperature for 30 min. In addition, the possible demulsification mechanism was explored by dynamic interface tension (IFT), elasticity modulus, wettability, self-assemble of interfacial membrane, zeta potential and micrograph analysis. It indicated that CB-PEI had an appropriate amphiphilicity and good interfacial activity, which could improve it quickly transfer to the oil-water interface and result in the oil-water separation. The current work provides a simple method to prepare a demulsifier with excellent performance, so it has a good application prospect for the treatment of oil-water emulsions.
Collapse
Affiliation(s)
- Lihan Chen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Fan Ye
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Hanjun Liu
- Safety and Environmental Protection Quality Supervision and Testing Research Institute, CNPC Chuanqing Drilling Engineering Co. Ltd., Guanghan, 618300, PR China
| | - Xuebin Jiang
- Safety and Environmental Protection Quality Supervision and Testing Research Institute, CNPC Chuanqing Drilling Engineering Co. Ltd., Guanghan, 618300, PR China
| | - Qingmei Zhao
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| | - Guosheng Ai
- Xinjiang Tarim Oilfield Construction Engineering Co., Ltd., PetroChina Tarim Oilfield Company, Korla, 841000, PR China
| | - Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| |
Collapse
|
7
|
|
8
|
Zou L, Zhang Z, Feng J, Ding W, Li Y, Liang D, Xie T, Li F, Li Y, Chen J, Yang X, Tang L, Ding W. Case ReportPaclitaxel-loaded TPGS 2k/Gelatin-grafted Cyclodextrin/Hyaluronic acid-grafted Cyclodextrin nanoparticles for oral bioavailability and targeting enhancement. J Pharm Sci 2022; 111:1776-1784. [PMID: 35341722 DOI: 10.1016/j.xphs.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 01/20/2023]
Abstract
The clinical applications of paclitaxel (PTX), a natural compound with broad-spectrum antitumor effects, have been markedly limited owing to its poor oral bioavailability and lack of targeting ability. Recently, several drug carriers, such as TPGS2k, gelatin (Gel), cyclodextrin (CD), and hyaluronic acid (HA), have been identified as promising enhancers of drug efficacy. Therefore, Gel-grafted CD (GEL-CD) and HA-grafted CD (HA-CD) were synthesized via grafting, and PTX-loaded TPGS2k/GEL-CD/HA-CD nanoparticles (TGHC-PTX-NPs) were successfully prepared using the ultrasonic crushing method. The mean particles size, polydispersity index, and Zeta potential of TGHC-PTX-NPs were 253.57 ± 2.64 nm, 0.13 ± 0.03, and 0.087 ± 0.005 mV, respectively. TGHC-PTX-NPs with an encapsulation efficiency of 61.77 ± 0.47% and a loading capacity of 6.86 ± 0.32% appeared round and uniformly dispersed based on transmission electron microscopy. In vitro release data revealed that TGHC-PTX-NPs had good sustained-release properties. Further, TGHC-PTX-NPs had increased the targeted uptake by HeLa cells as HA can specifically bind to the CD44 receptor at the cell surface, and its intestinal absorption is related to caveolin-mediated endocytosis. The pharmacokinetic results indicated that TGHC-PTX-NPs significantly enhanced the absorption of PTX in vivo compared to the PTX suspension, with a relative bioavailability of 227.21%. Such findings indicate the potential of TGHC-PTX-NPs for numerous clinical applications.
Collapse
Affiliation(s)
- Linghui Zou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhongbin Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; South China Branch of National Engineering Research Center for Manufacturing Technology of Traditional Chinese Medicine Solid Preparation, Nanning, China
| | - Wenyou Ding
- Basic Courses Department of Wuhan Donghu University
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University
| | - Dan Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Tanfang Xie
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Fang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuyang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinqing Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xu Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Ling Tang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wenya Ding
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; College of Veterinary Medicine, Northeast Agricultural University; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
9
|
Preparation of a demulsifier using rice straw as raw materials via a simple acid treatment process. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Ye F, Wang G, Ao Y, Shen L, Yang Y, Feng X, Zhang Z, Yuan H, Mi Y, Yan X. Recyclable amine-functionalized carbon nanotubes for the separation of oily wastewater. CHEMOSPHERE 2022; 288:132571. [PMID: 34655642 DOI: 10.1016/j.chemosphere.2021.132571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
In this work, a CNTs-NH2 demulsifier was prepared by grafting ethylenediamine on the surface of carbon nanotubes to break oily wastewater. The physicochemical and interfacial properties of CNTs-NH2 were characterized and analyzed. It showed that CNTs-NH2 had an eminent amphipathicity and high interfacial activity, which allows it to sharply migrates to the interface and effectively interacts with interfacial film by the combined action of π-π interaction and electrostatic attraction. The demulsification tests exhibited that CNTs-NH2 could effectively remove emulsified oil from the oily wastewater. It could be used at acidic and neutral conditions, and high salinity. Moreover, it could be recycled and still maintained its interfacial activity, thusly vastly enhancing the application scope. The light transmittance was up to 88.1% and the corresponding oil removal rate was 99.2% with 100 mg/L of CNTs-NH2 for 30 min. The oil removal rate of CNTs-NH2 remained above 97.8% after 6 cycles. This work provides a deep understanding on the design of demulsifier and its demulsification mechanism.
Collapse
Affiliation(s)
- Fan Ye
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Gang Wang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yiling Ao
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Zejun Zhang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Huaikui Yuan
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| | - Xuemin Yan
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| |
Collapse
|
11
|
Ye F, Zhang Z, Ao Y, Li B, Chen L, Shen L, Feng X, Yang Y, Yuan H, Mi Y. Demulsification of water-in-crude oil emulsion driven by a carbonaceous demulsifier from natural rice husks. CHEMOSPHERE 2022; 288:132656. [PMID: 34710449 DOI: 10.1016/j.chemosphere.2021.132656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Removing emulsified water from a water-in-crude oil (W/O) emulsion is critically required prior to downstream processing in the petroleum industry. In this work, environmentally friendly and amphipathic rice husk carbon (RHC) demulsifier was prepared by a simple carbonization process in a muffle furnace using rice husks as starting materials. RHC was characterized by field-emission scanning electron microscope, energy dispersive spectrometer, Fourier transform infrared spectrometer, ultraviolet-visible spectrometer, powder X-ray diffraction, zeta potential and synchronal thermal analyzer. The factors such as dosage, temperature, settling time, pH value and salinity were systematically investigated. The results indicated that the dehydration efficiency (DE) reached as high as 96.99% with 600 mg/L of RHC for 80 min at 70 °C. RHC exhibited an optimal DE under neutral condition, but it was also effective under acidic and alkaline conditions. Also, it had an excellent salt tolerance. The possible demulsification mechanism was explored by interfacial properties, different treatment methods for RHC and microexamination. The demulsification of RHC is attributed to its high interfacial activity, oxygen-containing groups and content of silica. It indicates that RHC is an effective demulsifier for the treatment of the W/O emulsion.
Collapse
Affiliation(s)
- Fan Ye
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Zejun Zhang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yiling Ao
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Bin Li
- Xinjiang Tarim Oilfield Construction Engineering Co., Ltd., PetroChina Tarim Oilfield Company, Korla, 841000, PR China
| | - Lihan Chen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Huaikui Yuan
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| |
Collapse
|
12
|
Shen L, Hu W, Lei Z, Peng J, Zhu E, Zhang X, Yang M, Feng X, Yang Y, Mi Y. Nanoscale silica-coated graphene oxide and its demulsifying performance in water-in-oil and oil-in-water emulsions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55454-55464. [PMID: 34132965 DOI: 10.1007/s11356-021-14888-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
In current work, GO@SiO2 nanocomposite was prepared by coating nanoscale silica onto graphene oxide (GO). GO@SiO2 was characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (IF-IR). Additionally, the demulsifying performance of GO@SiO2 was investigated by bottle test. The results showed that GO@SiO2 had a good demulsifying performance in both oil-in-water (O/W) and water-in-oil (W/O) emulsions. When the concentration of GO@SiO2 was 200 ppm in the O/W emulsion, the optimal light transmittance of aqueous phase (LTA) and corresponding oil removal rate (ORR) at room temperature could reach 86.9% and 99.48%, respectively. Also, GO@SiO2 had an excellent salt tolerance under acidic condition. Furthermore, GO@SiO2 also could demulsify the W/O emulsion, and the efficiency at 70 °C could reach 80.5% when the concentration was 400 ppm.
Collapse
Affiliation(s)
- Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Wenxiang Hu
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Zhiyun Lei
- Boda Oil and Gas Development Department, PetroChina Tarim Oilfield Company, Korla, 841000, People's Republic of China
| | - Jianguo Peng
- Boda Oil and Gas Development Department, PetroChina Tarim Oilfield Company, Korla, 841000, People's Republic of China
| | - Enxiong Zhu
- Boda Oil and Gas Development Department, PetroChina Tarim Oilfield Company, Korla, 841000, People's Republic of China
| | - Xuanwei Zhang
- Boda Oil and Gas Development Department, PetroChina Tarim Oilfield Company, Korla, 841000, People's Republic of China
| | - Ming Yang
- Oil and Gas Budget Management Department, PetroChina Tarim Oilfield Company, Korla, 841000, People's Republic of China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China.
| |
Collapse
|
13
|
Zhang Y, Kuang J, Li B, Mi Y, Yang Y, Feng X. The demulsification of oily wastewater by a hyperbranched polymer grafted SiO 2. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1960167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yu Zhang
- School of Chemistry & Environmental Engineering, Hubei Minzu University, Enshi, P.R. China
| | - Jiazhe Kuang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| | - Bin Li
- Xinjiang Tarim Oilfield Construction Engineering Co., Ltd, PetroChina Tarim Oilfield Company, Korla, P.R. China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| |
Collapse
|
14
|
Feng L, Gao Y, Dai Z, Dan H, Xiao F, Yue Q, Gao B, Wang S. Preparation of a rice straw-based green separation layer for efficient and persistent oil-in-water emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125594. [PMID: 33740722 DOI: 10.1016/j.jhazmat.2021.125594] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Inefficiency, high cost, and complex operation have emerged as shackles for large-scale separate oil-in-water emulsion. Herein, a low-cost and eco-friendly separation layer with a rough structure and rich anionic groups was fabricated from rice straw (RS) via a simple acid-base treatment and slight squeeze process. The separation layer's morphology, composition, and wettability were investigated. It was then employed to separate oil-in-water emulsion. The RS after acid and alkali treatment (A1A2-RS) exhibited a clear fiber structure and abundant humps, which made the separation layer superwettable and highly electronegative (-26.55 mV). The overlapped and intertwined A1A2-RS layer structure owned a superior performance for hexadecyl-trimethyl-ammonium-bromide (CTAB) adsorption and tiny oil interception. As a result, the separation layer had stable fluxes (>500 LMH) for multiple CTAB-stabilized emulsions and the obtained filtrates performed low total organic carbon (TOC) contents (<30 mg/L). In addition, the A1A2-RS layer had excellent renewability (10 cycles/ 200 mL) and the flux could be substantially recovered merely by aqueous wash. Moreover, filtrate analysis showed that the A1A2-RS layer had a good effect on actual emulsion treatment with a TOC removal rate of 89.56%.
Collapse
Affiliation(s)
- Lidong Feng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| | - Zhenguo Dai
- Shandong Shanda WIT Science and Technology Co., Ltd., Jinan 250061, Shandong, PR China
| | - Hongbing Dan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Fang Xiao
- Ecological Environment Monitoring Center of HeZe Shandong, PR China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Shuguang Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| |
Collapse
|
15
|
Lin S, Zou C, Liang H, Peng H, Liao Y. The effective removal of nickel ions from aqueous solution onto magnetic multi-walled carbon nanotubes modified by β-cyclodextrin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126544] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Yuan H, Huang Z, Shen L, Xu J, Feng X, Yang Y, Zhang Z, Luo Y, Yan X, Mi Y. Demulsification of crude oil emulsion using carbonized cotton/silica composites. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|