1
|
Liang X, Chen H, Zhang R, Xu Z, Zhang G, Xu C, Li Y, Zhang L, Xu FJ. Herbal micelles-loaded ROS-responsive hydrogel with immunomodulation and microenvironment reconstruction for diabetic wound healing. Biomaterials 2025; 317:123076. [PMID: 39805188 DOI: 10.1016/j.biomaterials.2024.123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Persistent inflammation is a major cause of diabetic wounds that are difficult to heal. This is manifested in diabetic wounds with excessive reactive oxygen clusters (ROS), advanced glycation end products (AGE) and other inflammatory factors, and difficulty in polarizing macrophages toward inhibiting inflammation. Berberine is a natural plant molecule that inhibits inflammation; however, its low solubility limits its biological function through cytosis. In this study, we designed F127 micelles to encapsulate berberine with the aim of improving its solubility and bioavailability. Meanwhile, in order to achieve effective drug delivery at the wound site, we designed an injectable ferrocene-cyclodextrin self-assembled oxidation-reactive supramolecular hydrogel drug delivery system. Cellular experiments have shown that the hydrogel can reduce intracellular ROS and AGE production, attenuate cellular damage, promote macrophage polarization toward inhibition of inflammation, and reduce the secretion of inflammatory factors. In an animal model of diabetic mice, this hydrogel dressing reduces the level of inflammation in diabetic wounds, optimizes collagen deposition in diabetic wounds, and ultimately achieves high-quality diabetic wound healing. The work offers a straightforward and effective solution to the challenge of administering hydrophobic anti-inflammatory agents in the context of diabetic wound therapy.
Collapse
Affiliation(s)
- Xiaoyang Liang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Honggui Chen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhixuan Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Wang X, Cheng Y, Qi Z, Zhao J, Wang C. Bio-Nano Innovations Targeting the Neurovascular Complex for Epilepsy Treatment. Adv Healthc Mater 2025:e2404857. [PMID: 40304157 DOI: 10.1002/adhm.202404857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Epilepsy is a prevalent chronic neurological disorder characterized by seizures resulting from an imbalance between excitatory and inhibitory neurons. While pharmacotherapy remains the standard treatment, traditional pharmacotherapy faces significant challenges, including poor brain penetration, high drug resistance rates, and providing only symptomatic relief, rather than addressing the underlying causes for a comprehensive cure. Recently, the neurovascular complex (NVC) has gained attention for its critical role in the development and progression of epilepsy. Simultaneously, various innovative bio-nanotechnology systems have emerged, specifically designed to enhance drug delivery across the brain and enable precise targeting within the lesion. Herein, this review begins by outlining the core NVC involved in epilepsy treatment, breaking it down into four key components: the blood-brain barrier (BBB), neurons, glial cells, and the microenvironment. The viability of targeting NVC to improve epilepsy therapy is analyzed. Next, innovative bio-nanotechnology systems, detailing their design principles, construction strategies, and preclinical evaluations in epilepsy therapy are highlighted. Finally, the prospects for next-generation nanotechnologies and the challenges that must be overcome for effective clinical translation are discussed. Overall, this review aims to guide the development of more efficient and precise bio-nano therapies, ultimately enhancing treatment outcomes for epilepsy patients.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Yanlong Cheng
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Zhengzhuo Qi
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Jing Zhao
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Cong Wang
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, 518055, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| |
Collapse
|
3
|
Zhang Q, Wang Y, Wu D, Chen Z. Stimuli-responsive nanoscale drug delivery system for epilepsy theranostics. Acta Biomater 2025; 194:58-79. [PMID: 39880180 DOI: 10.1016/j.actbio.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Epilepsy is a common neurological disease characterized by distinct pathological changes in the epileptogenic zone. Antiseizure drugs (ASDs) are widely used as the primary treatment for epilepsy. To improve the efficiency of ASDs medication, stimuli-responsive nanoscale drug delivery systems (nanoDDSs), triggered by either endogenous or exogenous factors, have been developed and been considered as a noninvasive and spatial-temporal approach to epilepsy theranostics. In this review, we introduce the pathological variations observed in epileptic lesions such as dysregulated neurotransmitter systems, disrupted ion homeostasis, and dynamic inflammatory cytokine networks. Furthermore, we summarize the recent advances in functional nano-assemblies that could be activated by endogenous stimuli of pathological alterations or exogenous stimuli such as electricity, light, and other interventions. Finally, we discuss the remaining challenges and prospect the insight into perspective of future development in this field. In summary, this review aims to highlight the potential of stimuli-responsive nanoDDSs as precise, controllable and efficient strategies for addressing unresolved issues in epilepsy theranostics. STATEMENT OF SIGNIFICANCE: This review summarizes recent progress in pathological changes such as dysregulated neurotransmitter system, disrupted ion homeostasis and dynamic inflammatory cytokine network, and emphasizes endogenous/exogenous stimuli-responsive nanoscale platforms including neurotransmitter-, ion-, and other stimuli-responsive nanoDDSs, providing the prospects of smart nanoDDSs applications and discussing the challenges to offer generalized guideline for further development of epilepsy theranostics.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences and School of Basic Medical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences and School of Basic Medical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences and School of Basic Medical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences and School of Basic Medical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
4
|
Sabet FS, Dabirmanesh B, Sabet HS, Zarei P, Hosseini M, Fathollahi Y, Khajeh K. The electro-responsive nanoliposome as an on-demand drug delivery platform for epilepsy treatment. Int J Pharm 2024; 664:124610. [PMID: 39168285 DOI: 10.1016/j.ijpharm.2024.124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Nano-based drug delivery systems are regarded as a promising tool for efficient epilepsy treatment and seizure medication with the least general side effects and socioeconomic challenges. In the current study, we have designed a smart nanoscale drug delivery platform and applied it in the kindling model of epilepsy that is triggered rapidly by epileptic discharges and releases anticonvulsant drugs in situ, such as carbamazepine (CBZ). The CBZ-loaded electroactive ferrocene nanoliposomes had an average diameter of 100.6 nm, a surface charge of -7.08 mV, and high drug encapsulation efficiency (85.4 %). A significant increase in liposome size was observed in response to direct current (50-500 μA) application. This liposome-based drug delivery system can release CBZ at a fast rate in response to both direct current and pulsatile electrical stimulation in vitro. The CBZ-liposome can release the anticonvulsant drug upon epileptiform activity in the kindled rat model and can decline electrographic and behavioral seizure activity in response to electrical stimulation of the hippocampus with an initially subconvulsive current. With satisfactory biosafety results, this "smart" nanocarrier has promising potential as an effective and safe drug delivery system to improve the therapeutic index of antiepileptic drugs.
Collapse
Affiliation(s)
- Fereshte Sadat Sabet
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Hoorie Sadat Sabet
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Parisa Zarei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Khosro Khajeh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Chenab KK, Malektaj H, Nadinlooie AAR, Mohammadi S, Zamani-Meymian MR. Intertumoral and intratumoral barriers as approaches for drug delivery and theranostics to solid tumors using stimuli-responsive materials. Mikrochim Acta 2024; 191:541. [PMID: 39150483 DOI: 10.1007/s00604-024-06583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Department of Chemistry, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
- Department of Physics, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220, Aalborg, Denmark
| | | | | | | |
Collapse
|
6
|
Shi Y, Zhang Y, Zhu L, Miao Y, Zhu Y, Yue B. Tailored Drug Delivery Platforms: Stimulus-Responsive Core-Shell Structured Nanocarriers. Adv Healthc Mater 2024; 13:e2301726. [PMID: 37670419 DOI: 10.1002/adhm.202301726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Core-shell structured nanocarriers have come into the scientific spotlight in recent years due to their intriguing properties and wide applications in materials chemistry, biology, and biomedicine. Tailored core-shell structures to achieve desired performance have emerged as a research frontier in the development of smart drug delivery system. However, systematic reviews on the design and loading/release mechanisms of stimulus-responsive core-shell structured nanocarriers are uncommon. This review starts with the categories of core-shell structured nanocarriers with different means of drug payload, and then highlights the controlled release mechanism realized through stimulus-response processes triggered under different environments. Finally, some multifaceted perspectives on the design of core-shell structured materials as drug carriers are addressed. This work aims to provide new enlightenments and prospects in the drug delivery field for further developing advanced and smart nanocarriers.
Collapse
Affiliation(s)
- Yulong Shi
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiran Zhang
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yueqi Zhu
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bingbing Yue
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| |
Collapse
|
7
|
Elkalla E, Khizar S, Tarhini M, Lebaz N, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Core-shell micro/nanocapsules: from encapsulation to applications. J Microencapsul 2023; 40:125-156. [PMID: 36749629 DOI: 10.1080/02652048.2023.2178538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.
Collapse
Affiliation(s)
- Eslam Elkalla
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP UMR-5007, Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
8
|
Hughes KA, Misra B, Maghareh M, Bobbala S. Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. NANO RESEARCH 2023; 16:6974-6990. [PMID: 36685637 PMCID: PMC9840428 DOI: 10.1007/s12274-022-5267-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
Drug delivery has made tremendous advances in the last decade. Targeted therapies are increasingly common, with intracellular delivery highly impactful and sought after. Intracellular drug delivery systems have limitations due to imprecise and non-targeted release profiles. One way this can be addressed is through using stimuli-responsive soft nanoparticles, which contain materials with an organic backbone such as lipids and polymers. The choice of biomaterial is essential for soft nanoparticles to be responsive to internal or external stimuli. The nanoparticle must retain its integrity and payload in non-targeted physiological conditions while responding to particular intracellular environments where payload release is desired. Multiple internal and external factors could stimulate the intracellular release of drugs from nanoparticles. Internal stimuli include pH, oxidation, and enzymes, while external stimuli include ultrasound, light, electricity, and magnetic fields. Stimulatory responsive soft nanoparticulate systems specifically utilized to modulate intracellular delivery of drugs are explored in this review.
Collapse
Affiliation(s)
- Krystal A. Hughes
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Bishal Misra
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Maryam Maghareh
- Department of Clinical Pharmacy, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| |
Collapse
|
9
|
Fatima M, Sheikh A, Abourehab MAS, Kesharwani P. Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics 2022; 14:2432. [PMID: 36365249 PMCID: PMC9695386 DOI: 10.3390/pharmaceutics14112432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a destructive disease with a poor prognosis, low survival rate and high rate of metastasis. It comprises 15% of total breast cancers and is marked by deficiency of three important receptor expressions, i.e., progesterone, estrogen, and human epidermal growth factor receptors. This absence of receptors is the foremost cause of current TNBC therapy failure, resulting in poor therapeutic response in patients. Polymeric nanoparticles are gaining much popularity for transporting chemotherapeutics, genes, and small-interfering RNAs. Due to their exclusive properties such as great stability, easy surface modification, stimuli-responsive and controlled drug release, ability to condense more than one therapeutic moiety inside, tumor-specific delivery of payload, enhanced permeation and retention effect, present them as ideal nanocarriers for increasing efficacy, bioavailability and reducing the toxicity of therapeutic agents. They can even be used as theragnostic agents for the diagnosis of TNBC along with its treatment. In this review, we discuss the limitations of already existing TNBC therapies and highlight the novel approach to designing and the functionalization of polymeric nanocarriers for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India
| |
Collapse
|
10
|
Najmi A, Wang S, Huang Y, Seefeldt T, Alqahtani Y, Guan X. 2-(2-Cholesteroxyethoxyl)ethyl-3′-S-glutathionylpropionate (COXP) for brain-targeting liposomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Zhang Y, Zou Z, Liu S, Miao S, Liu H. Nanogels as Novel Nanocarrier Systems for Efficient Delivery of CNS Therapeutics. Front Bioeng Biotechnol 2022; 10:954470. [PMID: 35928954 PMCID: PMC9343834 DOI: 10.3389/fbioe.2022.954470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Nanogels have come out as a great potential drug delivery platform due to its prominently high colloidal stability, high drug loading, core-shell structure, good permeation property and can be responsive to environmental stimuli. Such nanoscopic drug carriers have more excellent abilities over conventional nanomaterials for permeating to brain parenchyma in vitro and in vivo. Nanogel-based system can be nanoengineered to bypass physiological barriers via non-invasive treatment, rendering it a most suitable platform for the management of neurological conditions such as neurodegenerative disorders, brain tumors, epilepsy and ischemic stroke, etc. Therapeutics of central nervous system (CNS) diseases have shown marked limited site-specific delivery of CNS by the poor access of various drugs into the brain, due to the presences of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Hence, the availability of therapeutics delivery strategies is considered as one of the most major challenges facing the treatment of CNS diseases. The primary objective of this review is to elaborate the newer advances of nanogel for CNS drugs delivery, discuss the early preclinical success in the field of nanogel technology and highlight different insights on its potential neurotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Haiyan Liu
- Department of Anatomy, College of Basic Medicine Sciences, Jilin University, Changchun, China
| |
Collapse
|
12
|
Li JJ, Meng XY, Men ZN, Chen X, Shen T, Liu JS. Electric and reactive oxygen species dual-responsive polymeric micelles improve the therapeutic efficacy of lamotrigine in pentylenetetrazole kindling rats. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Kaur J, Gulati M, Kapoor B, Jha NK, Gupta PK, Gupta G, Chellappan DK, Devkota HP, Prasher P, Ansari MS, Aba Alkhayl FF, Arshad MF, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chem Biol Interact 2022; 361:109960. [PMID: 35533733 DOI: 10.1016/j.cbi.2022.109960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
|
14
|
Synthesis of Polymeric Ferrocenyl Amphiphiles with smart hydrophobic block and long hydrophilic poly(ethylene glycol) block and their application in self-assembly micelles with electrochemical response. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Yang Y, Alencar LMR, Pijeira MSO, Batista BDS, França ARS, Rates ERD, Lima RC, Gemini-Piperni S, Santos-Oliveira R. [223Ra] RaCl2 nanomicelles showed potent effect against osteosarcoma: targeted alpha therapy in the nanotechnology era. Drug Deliv 2022; 29:186-191. [PMID: 35191342 PMCID: PMC8741223 DOI: 10.1080/10717544.2021.2005719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Yang Yang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Martha Sahylí Ortega Pijeira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro, Brazil
| | - Beatriz da Silva Batista
- Department of Physics, Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Maranhão, Brazil
| | - Alefe Roger Silva França
- Department of Physics, Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Maranhão, Brazil
| | - Erick Rafael Dias Rates
- Department of Physics, Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Maranhão, Brazil
| | - Ruana Cardoso Lima
- Department of Physics, Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Maranhão, Brazil
| | - Sara Gemini-Piperni
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro, Brazil
- Zona Oeste State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Solubilization of quercetin in P123 micelles: Scattering and NMR studies. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|