1
|
Dai C, Li Y, Qi B, Li Z, Wang B, Fang F, Dai X, Qin Z, Qin X, Wan Y. A low-cost, easily fabricated sodium alginate-nanoparticle coated paper membrane with superb oil-fouling resistance for efficient oil-in-water emulsion separation. Int J Biol Macromol 2025; 307:142090. [PMID: 40086320 DOI: 10.1016/j.ijbiomac.2025.142090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
The treatment of kitchen oily wastewater has often been neglected, despite its significant annual discharge and associated environmental risks. This study addresses the issue by developing a novel composite paper membrane, using A4 paper as a substrate coated with a simple and durable hydrogel composite of nanoparticles (SiO2 or TiO2) and sodium alginate. The optimal membrane preparation conditions were determined to be 0.6 wt% sodium alginate and 0.1 wt% nanoparticles, ensuring a stable and effective coating. Oil-in-water emulsions can be effectively separated by the resultant membrane, which exhibits superhydrophilic and underwater superoleophobic properties, with a water contact angle in air close to 14° and an oil contact angle in water close to 150°. According to experimental findings, adding nanoparticles improved the composite membrane's surface roughness and selective wettability. The membrane demonstrated outstanding oil removal efficiency for five types of oil-water emulsions (>95 %) and exhibited excellent reusability (over 15 cycles), without causing significant environmental concerns after prolonged use. This study introduces an inexpensive and eco-friendly hydrogel composite membrane that is easy to fabricate and demonstrates excellent emulsion separation capabilities, regeneration performance, and practical application potential. It is positioned as a viable material for treating oily wastewater because of these qualities.
Collapse
Affiliation(s)
- Chang Dai
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China; Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yun Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China.
| | - Benkun Qi
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Zhitao Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China.
| | - Bin Wang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Fei Fang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Xuhuan Dai
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Zhiheng Qin
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Xiaopeng Qin
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Yinhua Wan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, PR China
| |
Collapse
|
2
|
Sun K, Hong X, Yu T, Wang Z. Transparent Superhydrophilic Coating with Robust and Persistent Anti-Oil-Fouling Properties for Efficient Long-Term Oil/Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4906-4917. [PMID: 39954008 DOI: 10.1021/acs.langmuir.4c05307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Porous membranes with superhydrophilicity and underwater superoleophobicity have attracted considerable attention for efficient oil/water emulsion separation. However, such membranes fail to remediate severe oil contamination in long-term applications and exhibit a serious water flux decline. Herein, a universal combination strategy integrating the high coverage of a mussel-inspired sticky interlayer and a double rigid cellulose nanofiber-amorphous calcium carbonate (CNF-ACC) composite outer layer is proposed to prepare a superhydrophilic coating surface with superior anti-oil-fouling properties on diverse substrates. The introduction of the mussel-inspired interlayer not only provides a stable and complete coverage interface but also offers an anchor to fix the outstanding hydration of the outer CNF-ACC composite layer. The high-coverage and double rigid superior hydration CNF-ACC layer provides excellent anti-oil-fouling characteristics, irrespective of the type of oil, under various conditions, such as water-prewetted or oil-fouled environments. Owing to its superior anti-oil-fouling property, the coating-modified membrane shows efficient and long-term separation of diverse oil/water emulsions without significant flux decline and with a flux recovery ratio of nearly 100%. In addition, this coating exhibits antifogging and high transparency, which may show promising applications in diverse optical devices.
Collapse
Affiliation(s)
- Kai Sun
- School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
- College of Innovation and Practice, Liaoning Technical University, Fuxin 123000, China
| | - Xin Hong
- School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Tianlu Yu
- College of Civil Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Zhecun Wang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| |
Collapse
|
3
|
Zhang X, Ding J, Chen H, Fu H, Xu J. Superhydrophobic and environmentally friendly bovine bone biomass based cellulose membrane for oil-water separation. Int J Biol Macromol 2024; 280:135677. [PMID: 39293627 DOI: 10.1016/j.ijbiomac.2024.135677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
With the development of superhydrophobic materials for oil-water separation, there is an urgent need to develop environmentally friendly, low-cost, and novel hydrophobic materials. In this paper, based on bovine bone biomass raw materials, bone ash particles are obtained by calcination and grinding, and then bovine bone ash/cotton fabric cellulose membranes are prepared by vacuum filtration and impregnation methods. The pore size of the membrane is regulated and the hydrophobicity of the material is enhanced by constructing the surface microstructures. Results indicate that the membranes possess good hydrophobicity with a contact angle of 161° and the flux can reach 53,635.2 L/m2h for light oil. The separation efficiencies for petroleum ether, cyclohexane, kerosene, and dichloromethane all reach >99 %. In addition, the separation efficiency of the cellulose membrane is still >99 % in the 40-day separation test and always exceeds 90 % for 30 cycling test, indicating that it has good stability and recoverability. Interestingly, the cellulose membrane is prepared from biodegradable and renewable raw materials, which reduces environmental pollution and effectively utilize natural resources.
Collapse
Affiliation(s)
- Xin Zhang
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
| | - Jijun Ding
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China.
| | - Haixia Chen
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
| | - Haiwei Fu
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
| | - Jiayuan Xu
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
| |
Collapse
|
4
|
Liu L, Yang D, Bai Y, Li X, Tan F, Ma J, Wang Y. Construction of biodegradable superhydrophilic/underwater superoleophobic materials with CNF (cellulose nanofiber) fence-like attached on the surface for efficient oil/water emulsion separation. Int J Biol Macromol 2024; 269:132175. [PMID: 38729497 DOI: 10.1016/j.ijbiomac.2024.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Superhydrophilic/underwater superoleophobic materials for the separation of oil-water emulsions by filtration have received much attention in order to solve the pollution problem of oil-water emulsion. In this paper, a fence-like structure on the surface of CNF/KGM (Konjac Glucomannan) materials by a simple method using CNF instead of metal nanowires was successfully developed based on the hydrogen bonding of KGM and CNF. The resulted organic CNF/KGM materials surface has outstanding superhydrophilic (WCA = 0°) in air and superoleophobicity (OCA≥151°) in water, which could separate oil-water mixtures with high separation efficiency above 99.14 % under the pressure of the emulsion itself. The material shows good mechanical properties because of the addition of CNF and has outstanding anti-fouling property and reusability. More importantly, the material can be completely biodegraded after buried in soil for 4 weeks since both of KGM and CNF are organic substances. Therefore, it may have a broad application prospect in the separation of oil-water emulsion because of its outstanding separation properties, simply preparation method and biodegradability.
Collapse
Affiliation(s)
- Lei Liu
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Di Yang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yue Bai
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Li
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengzhi Tan
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yuanhao Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Sheng X, Chen S, Zhao Z, Li L, Zou Y, Shi H, Shao P, Yang L, Wu J, Tan Y, Lai X, Luo X, Cui F. Rationally designed calcium carbonate multifunctional trap for contaminants adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166142. [PMID: 37574061 DOI: 10.1016/j.scitotenv.2023.166142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Adsorption technology has been widely developed to control environmental pollution, which plays an important role in the sustainable development of modern society. Calcium carbonate (CaCO3) is characterized by its flexible pore design and functional group modification, which meet the high capacity and targeting requirements of adsorption. Therefore, its charm of "small materials for great use" makes it a suitable candidate for adsorption. Firstly, we comprehensively review the research progress of controlled synthesis and surface modification of CaCO3, and its application for adsorbing contaminants from water and air. Then, we systematically examine the structure-effect relationship between CaCO3 adsorbents and contaminants, while also intrinsic mechanism of remarkable capacity and targeted adsorption. Finally, from the perspective of material design and engineering application, we offer insightful discussion on the prospects and challenges of calcium carbonate adsorbents, providing a valuable reference for the further research in this field.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Shengnan Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Li Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanpeng Zou
- School of Foreign Languages and Cultures, Chongqing University, 400044, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingsheng Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yaofu Tan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xinyuan Lai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| | - Fuyi Cui
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
7
|
Xie H, Chen B, Lin H, Li R, Shen L, Yu G, Yang L. Efficient oil-water emulsion treatment via novel composite membranes fabricated by CaCO 3-based biomineralization and TA-Ti(IV) coating strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159183. [PMID: 36202361 DOI: 10.1016/j.scitotenv.2022.159183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Continuous increasing discharge of industrial oily wastewater and frequent occurrence of oil spill accidents have taken heavy tolls on global environment and human health. Organic-inorganic modifications can fabricate superhydrophilic/submerged superoleophobic membranes for efficient oil-water separation/treatment though they still suffer from complex operation, non-environmental friendliness, expensive cost or uneven distribution. Herein, a new strategy regarding tannic acid (TA)-Ti(IV) coating and CaCO3-based biomineralization through simple inkjet printing processes was proposed to modify polyvinylidene fluoride (PVDF) membrane, endowing the membrane with high hydrophilicity (water contact angle (WCA) decreased from 86.01° to 14.94°) and underwater superoleophobicity (underwater contact angle (UOCA) > 155°). The optimized TA-Ti(IV)-CaCO3 modified membrane possessed perfect water permeation to various oil/water emulsions (e.g., 355.7 L·m-2·h-1 for gasoline emulsion) under gravity with superior separation efficiency (>98.8 %), leading the way in oil/water emulsion separation performance of PVDF membranes modified with polyphenolic surfaces to our knowledge. Moreover, the modified membrane displayed rather high flux recovery after eight cycles of filtration while maintaining the original excellent separation efficiency. The modification process proposed in this study is almost independent of the nature of the substrate, and meets the demand for simple, inexpensive, rapid preparation of highly hydrophilic antifouling membranes, showing abroad application prospect for oil-water emulsion separation/treatment.
Collapse
Affiliation(s)
- Hongli Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lining Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
8
|
In-situ growth strategy to fabricate superhydrophobic wood by Na3(Cu2(CO3)3OH)∙4H2O for oil/water separation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Ghadhban MY, Rashid KT, A AbdulRazak A, Alsalhy QF. Recent progress and future directions of membranes green polymers for oily wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:57-82. [PMID: 36640024 DOI: 10.2166/wst.2022.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The preparation, modification and application of green polymers such as poly-lactic acid (PLA), chitosan (CS), and cellulose acetate (CA) for oily wastewater treatment is summed up in this review. Due to the low environmental pollution, good chemical resistivity, high hydrophobicity, and good capacity for water-oil emulsion separation of the presented polymers, it then highlights the various membrane production methods and their role in producing effective membranes, with a focus on recent advances in improving membrane properties through the addition of various Nano materials. As a result, the hydrophilic/hydrophobic properties that are critical in the oil separation mechanism are highlighted. Finally, it looks at the predictions and challenges in oil/water separation and recovery. These ideas are discussed with a focus on modern production methods and oil separation proficiency.
Collapse
Affiliation(s)
- Maryam Y Ghadhban
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Iraq, Al-sinaa Street 52, Baghdad 10066, Iraq E-mail:
| | - Khalid T Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Iraq, Al-sinaa Street 52, Baghdad 10066, Iraq E-mail:
| | - Adnan A AbdulRazak
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Iraq, Al-sinaa Street 52, Baghdad 10066, Iraq E-mail:
| | - Qusay F Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Iraq, Al-sinaa Street 52, Baghdad 10066, Iraq E-mail:
| |
Collapse
|
10
|
Wang Y, He Y, Yu J, Li H, Li S, Tian S. A freestanding dual-cross-linked membrane with robust anti-crude oil-fouling performance for highly efficient crude oil-in-water emulsion separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Kang Z, Liu Q, Zhang X, Zhang X, Yang DP, Chen X. Designing waste Bioresource-derived value-added Nanohybrids for efficient photocatalysis water treatment. CHEMOSPHERE 2022; 307:135789. [PMID: 35872059 DOI: 10.1016/j.chemosphere.2022.135789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Although photocatalysis with ultraviolet-visible (UV-vis) light has made considerable advances, it is limited by the low efficiency of UV-vis energy conversion. To overcome this problem, UV-vis light can be replaced with near-infrared (NIR) light. Herein, we coupled eggshell-derived CaCO3 with a NIR-absorbing CuSe semiconductor and fabricated an insulator-based heterojunction structure. In application case studies of 4-nitrophenol (4-NP) and bacteria, the nanocomposites showed enhanced photocatalysis activity under NIR light induction. A first-principles calculation indicated that photoexcited electrons could transfer from the conduction band of CuSe to the conduction band of CaCO3. The main reactive species generated by the photocatalysis were ·CO3-, and ·OH free radicals. The antibacterial mechanisms of photocatalysis on the cell permeability and DNA layers of the bacterial cells were also revealed. Besides providing novel perspectives and mechanistic understanding of the fabrication of NIR light-driven photocatalysts, this study demonstrates the valorization of eggshell bio-wastes in environmental remediation.
Collapse
Affiliation(s)
- Zewen Kang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, PR China
| | - Qiaoling Liu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362400, Fujian Province, PR China
| | - Xiaohui Zhang
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, Hebei Province, PR China
| | - Xiaoyan Zhang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, PR China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, PR China.
| | - Xiaofang Chen
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362400, Fujian Province, PR China
| |
Collapse
|
12
|
Xi J, Lou Y, Chu Y, Meng L, Wei H, Dai H, Xu Z, Xiao H, Wu W. High-flux bacterial cellulose ultrafiltration membrane with controllable pore structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
14
|
Gao Q, Cheng S, Wang X, Tang Y, Yuan Y, Li A, Guan S. Three‐dimensional hierarchical nanostructured porous epoxidized natural rubber latex/poly(vinyl alcohol) material for oil/water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiangmin Gao
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Shangru Cheng
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Xincheng Wang
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Yaokai Tang
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Yingxin Yuan
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Anqi Li
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Shanshan Guan
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
15
|
A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation. Adv Colloid Interface Sci 2022; 303:102635. [PMID: 35325601 DOI: 10.1016/j.cis.2022.102635] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
Appropriate surface wettability of membranes and materials are of an extreme importance for targeting separation of mixtures/emulsions such as oil from water or conversely water from oil. The development of super-wettable membranes and materials surfaces have shown remarkable potential for recovering water from oil-water emulsion while offering maximum resistance to fouling. The availability of clean and potable water has been regarded as an important global challenge for coming human generations. Oil and gas industry is continuously producing immense quantities of waste stream regarded as produced water which contains oil dispersed in water along with other several components. Treating such immense quantities of oily wastewater is of utmost need for recovering precious water for possible reuse or safe disposal. Various technologies have been developed for targeting the separation of oil-water emulsions or mixtures to harness useful potable water and oil as products. Membrane-based separations or use of porous materials such as mesh have been explored in literature for separation of oil-water mixtures/emulsions. Given the unique features of special hydrophilicity, ease of tunability, control of molecular weight, abundant availability, and potential for commercial scale up, chitosan has been extensively used for modifying membranes/meshes or preparing composites with other materials for oil-water separations. This review has described in detail the synthesis, methods of modification and application of chitosan-based super-wettable membranes/meshes and porous materials for oil-water separation. The special wettability features including super-hydrophobicity/superoleophilicity, super-oleophobicity/super-hydrophilicity and super-hydrophilicity/underwater super-oleophobicity of various chitosan-based membranes and materials have been discussed in detail in the review. The strategies for enhancing or developing special wettability for target specific applications have also been discussed. Finally, the challenges, their respective importance have been identified along with a discussion on possible solutions to these challenges.
Collapse
|
16
|
Fabrication of polypropylene fabric with green composite coating for water/oil mixture and emulsion separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Li Y, Ping H, Lei L, Xie J, Zou Z, Wang W, Wang K, Fu Z. Room-temperature growth of fluorapatite/CaCO 3 heterogeneous structured composites inspired by human tooth. RSC Adv 2022; 12:11084-11089. [PMID: 35425040 PMCID: PMC8992358 DOI: 10.1039/d2ra00374k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Organisms can synthesize heterogeneous structures with excellent mechanical properties through mineralization, the most typical of which are teeth. The tooth is an extraordinarily resilient bi-layered material that is composed of external enamel perpendicular to the tooth surface and internal dentin parallel to the tooth surface. The synthesis of enamel-like heterostructures with good mechanical properties remains an elusive challenge. In this study, we applied a biomimetic mineralization method to grow fluorapatite/CaCO3 (FAP/CaCO3) heterogeneous structured thin films that mimic their biogenic counterparts found in teeth through a three-step pathway: coating a polymer substrate, growing a layered calcite film, and mineralization of a fluorapatite columnar array on the calcite layer. The synthetic heterostructure composites combine well and exhibit good mechanical properties comparable to their biogenic counterparts. The FAP/CaCO3 heterogeneous structured composite exhibits excellent mechanical properties, with a hardness and Young's modulus of 1.99 ± 0.02 GPa and 47.5 ± 0.6 GPa, respectively. This study provides a reasonable new idea for unique heterogeneous structured materials designed at room temperature. Fluorapatite/CaCO3 thin films were synthesized by mimicking their biogenic counterparts found in teeth using a biomimetic mineralization method. The synthetic heterostructure composites combine well and exhibit excellent mechanical properties.![]()
Collapse
Affiliation(s)
- Yidi Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology 122 Luoshi Road Wuhan P. R. China
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology 122 Luoshi Road Wuhan P. R. China
| | - Liwen Lei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology 122 Luoshi Road Wuhan P. R. China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology 122 Luoshi Road Wuhan P. R. China
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology 122 Luoshi Road Wuhan P. R. China
| | - Weimin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology 122 Luoshi Road Wuhan P. R. China
| | - Kun Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology 122 Luoshi Road Wuhan P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology 122 Luoshi Road Wuhan P. R. China
| |
Collapse
|
18
|
Yin Z, Chen X, Zhou T, Xue M, Li M, Liu K, Zhou D, Ou J, Xie Y, Ren Z, Luo Y, Hong Z. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
PAN/PVA composite nanofibrous membranes for separating oil-in-water emulsion. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
MnO -mineralized oxidized-polypropylene membranes for highly efficient oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Steamed bun-derived microporous carbon for oil-water separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Influence of Membrane Vibration on Particles Rejection Using a Slotted Pore Membrane Microfiltration. MEMBRANES 2021; 11:membranes11090709. [PMID: 34564526 PMCID: PMC8470867 DOI: 10.3390/membranes11090709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022]
Abstract
A new method is proposed to increase the rejection in microfiltration by applying membrane oscillation, using a new type of microfiltration membrane with slotted pores. The oscillations applied to the membrane surface result in reduced membrane fouling and increased separation efficiency. An exact mathematical solution of the flow in the surrounding solution outside the oscillating membrane is developed. The oscillation results in the appearance of a lift velocity, which moves oil particles away from the membrane. The latter results in both reduced membrane fouling and increased oil droplet rejection. This developed model was supported by the experimental results for oil water separation in the produced water treatment. It was proven that the oil droplet concentration was reduced notably in the permeate, due to the membrane oscillation, and that the applied shear rate caused by the membrane oscillation also reduced pore blockage. A four-times lower oil concentration was recorded in the permeate when the membrane vibration frequency was 25 Hz, compared to without membrane vibration. Newly generated microfiltration membranes with slotted pores were used in the experiments.
Collapse
|
23
|
Cellulose-based special wetting materials for oil/water separation: A review. Int J Biol Macromol 2021; 185:890-906. [PMID: 34214576 DOI: 10.1016/j.ijbiomac.2021.06.167] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Oil spill accidents and oily wastewater discharged by petrochemical industries have severely wasted water resources and damaged the environment. The use of special wetting materials to separate oil and water is efficient and environment-friendly. Cellulose is the most abundant renewable resource and has natural advantages in removing pollutants from oily wastewater. The application and modification of cellulose as special wetting materials have attracted considerable research attention. Therefore, we summarized cellulose-based superlipophilic/superhydrophobic and superhydrophilic/superoleophobic materials exhibiting special wetting properties for oil/water separation. The treatment mechanism, preparation technology, treatment effect, and representative projects of oil-bearing wastewater are discussed. Moreover, cellulose-based intelligent-responsive materials for application to oil/water separation and the removal of other pollutants from oily wastewater have also been summarized. The prospects and potential challenges of all the materials have been highlighted.
Collapse
|
24
|
Synthesis of Si-Based High-Efficiency and High-Durability Superhydrophilic-Underwater Superoleophobic Membrane of Oil-Water Separation. MATERIALS 2021; 14:ma14102628. [PMID: 34069760 PMCID: PMC8156734 DOI: 10.3390/ma14102628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
Oil pollution is caused by the frequent discharge of contaminated industrial wastewater and accidental oil spills and is a severe environmental and health concern. Therefore, efficient materials and processes for effective oil–water separation are being developed. Herein, SiO2-Na2SiO3-coated stainless steel fibers (SSF) with underwater superoleophobic and low-adhesion properties were successfully prepared via a one-step hydrothermal process. The modified surfaces were characterized with scanning electron microscopy (SEM), and contact angle measurements to observe the surface morphology, confirm the successful incorporation of SiO2, and evaluate the wettability, as well as with X-ray diffraction (XRD). The results revealed that SiO2 nanoparticles were successfully grown on the stainless-steel fiber surface through the facile hydrothermal synthesis, and the formation of sodium silicate was detected with XRD. The SiO2-Na2SiO3-coated SSF surface exhibited superior underwater superoleophobic properties (153–162°), super-hydrophilicity and high separation efficiency for dichloromethane–water, n-hexane–water, tetrachloromethane–water, paroline–water, and hexadecane–water mixtures. In addition, the as-prepared SiO2-Na2SiO3-coated SSF demonstrated superior wear resistance, long-term stability, and re-usability. We suggest that the improved durability may be due to the presence of sodium silicate that enhanced the membrane strength. The SiO2-Na2SiO3-coated SSF also exhibited desirable corrosion resistance in salty and acidic environments; however, further optimization is needed for their use in basic media. The current study presents a novel approach to fabricate high-performance oil–water separation membranes.
Collapse
|
25
|
Wahid F, Zhao XJ, Duan YX, Zhao XQ, Jia SR, Zhong C. Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation. Carbohydr Polym 2021; 257:117611. [DOI: 10.1016/j.carbpol.2020.117611] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
|