1
|
Zhang S, Zuo K, Zhang L, Zhang C, Shi J. Preparation and Properties of Chitosan Complexes Consisting of Artemisia argyi Volatile Oil Nanoemulsion. Molecules 2025; 30:585. [PMID: 39942687 PMCID: PMC11820023 DOI: 10.3390/molecules30030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Artemisia argyi volatile oil (AAVO) is a kind of natural oil with abundant active components and remarkable medicinal and healthcare value. However, AAVO has low solubility, stability, and bioavailability. Here, to address these issues, a nanoemulsion system of Artemisia argyi volatile oil (AAVO-Ne) is constructed using phase transition titration, and the conditions are continuously optimized to combine it with chitosan, forming a chitosan composite of the volatile oil nanoemulsion (AAVO-NeCs). The structure was analyzed using Fourier transform infrared (FT-IR) spectroscopy, and the performance was evaluated through in vitro antibacterial tests, in vitro release experiments, and antioxidant assays. The results indicated that the typical characteristic absorption peaks of AAVO shifted in the AAVO-Ne spectrum and new absorption peaks appeared in the AAVO-NeCs, which implied that the formation of AAVO-NeCs involved not only a physical encapsulation process but also certain chemical interactions, thus enhancing the stability and bioactivity of the composites. Compared to AAVO, AAVO-NeCs exhibited a 1.87-fold increase in antibacterial activity against antibiotic-resistant bacteria. Meanwhile, the in vitro release study demonstrated that AAVO-NeCs exhibited a biphasic release pattern. Compared to AAVO-Ne and AAVO, AAVO-NeCs also showed a significant enhancement in antioxidant activity. Overall, AAVO-NeCs demonstrate improved solubility and efficacy of AAVO, as well as high-efficiency delivery, antibacterial, sustained-release, and antioxidant properties. These attributes position AAVO-NeCs as a promising candidate for applications in drug delivery, food preservation, and other fields, offering innovative solutions and contributing to the sustainable development of related industries.
Collapse
Affiliation(s)
- Shun Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (S.Z.); (K.Z.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723000, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723000, China
| | - Kewei Zuo
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (S.Z.); (K.Z.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723000, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723000, China
| | - Lijun Zhang
- School of Chemical and environmental Science, Shaanxi University of Technology, Hanzhong 723000, China;
- Shaanxi Provincial Key Laboratory of Catalysis Basis and Application, Hanzhong 723000, China
| | - Chenlu Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (S.Z.); (K.Z.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723000, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723000, China
| | - Juan Shi
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723000, China
- School of Chemical and environmental Science, Shaanxi University of Technology, Hanzhong 723000, China;
- Shaanxi Provincial Key Laboratory of Catalysis Basis and Application, Hanzhong 723000, China
| |
Collapse
|
2
|
Abla KK, Alamoudi MK, Soliman GA, Abdel-Kader MS, Aldawsari MF, Mehanna MM. Alopecia Management Potential of Rosemary-Based Nanoemulgel Loaded with Metformin: Approach Combining Active Essential Oil and Repurposed Drug. Int J Nanomedicine 2025; 20:605-624. [PMID: 39835177 PMCID: PMC11745075 DOI: 10.2147/ijn.s500487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs. Metformin is an anti-diabetic drug, that can promote hair follicle regeneration via upregulation of the hair-inductive capability. Hence, the current study aims to fabricate a safe and effective nanoemulsion to improve metformin efficacy in targeting AGA. Methods Rosemary oil was selected as the oily phase due to its ability to increase blood flow and hair growth. Rosemary-based nanoemulsions were statistically optimized by Box-Behnken experimental design, loaded with metformin, and incorporated into a hydrogel to form a nanoemulgel. Metformin-loaded nanoemulsions were assessed for their diametric size, uniformity, zeta potential, and metformin characteristics within the formulated nanosystem. The nanoemulgel was then evaluated in terms of its pH, percentage drug content, and in-vitro release performance. In-vivo study assessed the nanoemulgel's ability to augment hair growth in rats. Results The experimental design displayed that using 50%w/w, 20%w/w, and 10%w/w of Cremophor®, Labrafil®, and deionized water, respectively, resulted in nanoemulsion formulation with the smallest globule size (125.01 ± 0.534 nm), unimodal size distribution (PDI=0.103), negative surface charge (-19.9 ± 2.01 mV) with a spherical morphological structure. Rosemary-based nanoemulgel displayed acceptable physicochemical characterizations namely; a neutral pH value of 6.7±0.15, high drug content (92.9± 2.3%), and controlled metformin in-vitro release. Besides, the formulated nanoemulgel significantly increased the number of hair follicles in the animal model compared with other controls and tested groups. Conclusion The designed nanoemulgel is a promising approach for treating androgenic alopecia.
Collapse
Affiliation(s)
- Kawthar K Abla
- Department of Pharmaceutical Science, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mariam K Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gamal A Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Maged S Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohammed F Aldawsari
- Department Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed M Mehanna
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Jacob S, Kather FS, Boddu SHS, Shah J, Nair AB. Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics 2024; 16:1333. [PMID: 39458662 PMCID: PMC11510719 DOI: 10.3390/pharmaceutics16101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Nanoemulsions (NEs) are submicron-sized heterogeneous biphasic liquid systems stabilized by surfactants. They are physically transparent or translucent, optically isotropic, and kinetically stable, with droplet sizes ranging from 20 to 500 nm. Their unique properties, such as high surface area, small droplet size, enhanced bioavailability, excellent physical stability, and rapid digestibility, make them ideal for encapsulating various active substances. This review focuses on recent advancements, future prospects, and challenges in the field of NEs, particularly in oral, parenteral, and ophthalmic delivery. It also discusses recent clinical trials and patents. Different types of in vitro and in vivo NE characterization techniques are summarized. High-energy and low-energy preparation methods are briefly described with diagrams. Formulation considerations and commonly used excipients for oral, ocular, and ophthalmic drug delivery are presented. The review emphasizes the need for new functional excipients to improve the permeation of large molecular weight unstable proteins, oligonucleotides, and hydrophilic drugs to advance drug delivery rapidly.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
4
|
Chong Y, Yu D, Han R, Li Y, Gu Y, Lu Z, Nie F, Wang L, Cui H. Preparation of Luvangetin Nanoemulsions: Antimicrobial Mechanism and Role in Infected Wound Healing. Int J Nanomedicine 2024; 19:5493-5509. [PMID: 38882542 PMCID: PMC11178095 DOI: 10.2147/ijn.s457322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose Incorporation of luvangetin in nanoemulsions for antimicrobial and therapeutic use in infected wound healing. Patients and Methods Luvangetin nanoemulsions were prepared by high-speed shear method and characterized based on their appearance structure, average droplet size, polydispersity index (PDI), electric potential, storage stability. Optimized formulation of luvangetin nanoemulsion by Box-Behnken design (BBD). The antimicrobial activity and antimicrobial mechanism of luvangetin nanoemulsions against common hospital pathogens, ie, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), were investigated using luvangetin nanoemulsions. The biosafety of luvangetin nanoemulsion was evaluated through cytotoxicity, apoptosis, and reactive oxygen species (ROS) assay experiments using human normal epidermal cells and endothelial cells. Finally, the effect of luvangetin nanoemulsion on healing of infected wounds was investigated in B6 mice. Results Luvangetin nanoemulsion formulation consists of 2.5% sunflower seed oil, 10% emulsifier Span-20 and 7 minutes of shear time, and with good stability. Luvangetin nanoemulsion produces antibacterial activity against S. aureus and E. coli by disrupting the structure of bacterial cell membranes. Luvangetin nanoemulsion are biologically safe for HaCat and HUVEC. Luvangetin nanoemulsion showed good therapeutic effect on MRSA infected wounds in mice. Conclusion For the first time, developed a new formulation called luvangetin nanoemulsion, which exhibited superior antibacterial effects against Gram-positive bacteria. Luvangetin nanoemulsion has a favorable effect in promoting infected wound healing. We have combined luvangetin, which has multiple activities, with nanoemulsions to provide a new topical fungicidal formulation, and have comprehensively evaluated its effectiveness and safety, opening up new possibilities for further applications of luvangetin.
Collapse
Affiliation(s)
- Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Rui Han
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yanxu Li
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Yali Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Fengsong Nie
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Lingli Wang
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| |
Collapse
|
5
|
Fan L, Su W, Zhang X, Yang S, Zhu Y, Liu X. Self-assembly of sophorolipid and eugenol into stable nanoemulsions for synergetic antibacterial properties through alerting membrane integrity. Colloids Surf B Biointerfaces 2024; 234:113749. [PMID: 38241893 DOI: 10.1016/j.colsurfb.2024.113749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Exploring the natural, safe, and effective antimicrobial is one of the preferable ways to control foodborne bacteria. In this work, novel oil-in-water nanoemulsions were formulated with sophorolipids and eugenol without any co-surfactant using a self-assembling strategy. These nanoemulsions showed high stability with sizes less than 200 nm when exposure to low concentrations of salt ions, various pH values (5.0, 7.0, 10.0), storage temperature and time. The synergistic antibacterial effects against both Gram-negative Escherichia coli and Gram-positive Bacillus cereus were determined with a minimum inhibitory concentration (MIC) value of 0.5 mg/mL and 0.125 mg/mL, respectively. Further microscopy (SEM, TEM, LCSM) examination and ATP/Na+-K+-ATPase assay results showed that the morphological changes, intensive cell membrane permeability, leakage of ATP, and decreased Na+-K+-ATPase contributed to the antibacterial effects. Moreover, the bonding mechanism between nanoemulsions and cell membranes were further evaluated by FTIR and ITC using a DPPC vesicle model, which demonstrated that the nanoemulsions adsorbed on the surface of bilayer, interacted with the hydrophobic chains of DPPC membrane mainly through the hydrophobic interaction, and altered the structural integrity of the lipid bilayer. These results not only provide a facile green strategy for fabricating stable nanoemulsions, but also highlight a new perspective for stabilizing essential oils for their widely application in food industry.
Collapse
Affiliation(s)
- Linlin Fan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Wei Su
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoqian Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Suqun Yang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yongsheng Zhu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Xiaoli Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
6
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
7
|
Ximango PB, da Rocha EBD, de Sousa AMF, Scofield CF, Paredes MLL, Lima ERDA. Preparation and characterization of patauá and pracaxi Brazilian vegetable oil emulsions. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2095284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Patricia Braz Ximango
- Programa de Pós-Graduação em Engenharia Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Cep 20550-013
| | | | - Ana Maria Furtado de Sousa
- Programa de Pós-Graduação em Engenharia Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Cep 20550-013
| | - Cynthia Fraga Scofield
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Cep 20550-013
| | - Márcio Luis Lyra Paredes
- Programa de Pós-Graduação em Engenharia Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Cep 20550-013
| | - Eduardo Rocha de Almeida Lima
- Programa de Pós-Graduação em Engenharia Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Cep 20550-013
| |
Collapse
|