1
|
Bao Z, Kim J, Kwok C, Le Devedec F, Allen C. A dataset on formulation parameters and characteristics of drug-loaded PLGA microparticles. Sci Data 2025; 12:364. [PMID: 40025040 PMCID: PMC11873201 DOI: 10.1038/s41597-025-04621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025] Open
Abstract
Polymer microparticles (MPs) are widely used to create long-acting injectable formulations due to their ability to enable sustained drug release. This feature can significantly benefit chronic disease management by reducing dosing frequency and improving patient adherence. To support the design and development of polymer MPs, we have compiled a dataset on MPs formed from poly(lactide-co-glycolide) (PLGA), the most commonly used polymer in commercial MP drug products. This dataset, derived from the literature, covers 321 in vitro release studies involving 89 different drugs. It aims to streamline future MP development by providing a reference for the current PLGA MP design space and supporting data-driven approaches such as machine learning. Published with open access, this dataset encourages broad utilization and aims to expand the range of available MP formulations.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada
| | - Jongwhi Kim
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Candice Kwok
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | | | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada.
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
2
|
Zhang Z, Ekanem EE, Nakajima M, Bolognesi G, Vladisavljević GT. Monodispersed Sirolimus-Loaded PLGA Microspheres with a Controlled Degree of Drug–Polymer Phase Separation for Drug-Coated Implantable Medical Devices and Subcutaneous Injection. ACS APPLIED BIO MATERIALS 2022; 5:3766-3777. [PMID: 35848106 PMCID: PMC9382632 DOI: 10.1021/acsabm.2c00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Monodispersed sirolimus (SRL)-loaded poly(lactic-co-glycolic acid) microspheres with a diameter of 1.8, 3.8,
and 8.5
μm were produced by high-throughput microfluidic step emulsification—solvent
evaporation using single crystal silicon chips consisted of 540–1710
terraced microchannels with a depth of 2, 4, or 5 μm arranged
in 10 parallel arrays. Uniform sized droplets were generated over
25 h across all channels. Nearly 15% of the total drug was released
by the initial burst release during an accelerated drug release testing
performed at 37 °C using a hydrotropic solution containing 5.8
M N,N-diethylnicotinamide. After
24 h, 71% of the drug was still entrapped in the particles. The internal
morphology of microspheres was investigated by fluorescence microscopy
using Nile red as a selective fluorescent stain with higher binding
affinity toward SRL. By increasing the drug loading from 33 to 50
wt %, the particle morphology evolved from homogeneous microspheres,
in which the drug and polymer were perfectly mixed, to patchy particles,
with amorphous drug patches embedded within a polymer matrix to anisotropic
patchy Janus particles. Janus particles with fully segregated drug
and polymer regions were achieved by pre-saturating the aqueous phase
with the organic solvent, which decreased the rate of solvent evaporation
and allowed enough time for complete phase separation. This approach
to manufacturing drug-loaded monodisperse microparticles can enable
the development of more effective implantable drug-delivery devices
and improved methods for subcutaneous drug administration, which can
lead to better therapeutic treatments.
Collapse
Affiliation(s)
- Zilin Zhang
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, U.K
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Ekanem E. Ekanem
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, U.K
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Mitsutoshi Nakajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guido Bolognesi
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, U.K
| | | |
Collapse
|
3
|
Sheffey VV, Siew EB, Tanner EEL, Eniola‐Adefeso O. PLGA's Plight and the Role of Stealth Surface Modification Strategies in Its Use for Intravenous Particulate Drug Delivery. Adv Healthc Mater 2022; 11:e2101536. [PMID: 35032406 PMCID: PMC9035064 DOI: 10.1002/adhm.202101536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Numerous human disorders can benefit from targeted, intravenous (IV) drug delivery. Polymeric nanoparticles have been designed to undergo systemic circulation and deliver their therapeutic cargo to target sites in a controlled manner. Poly(lactic-co-glycolic) acid (PLGA) is a particularly promising biomaterial for designing intravenous drug carriers due to its biocompatibility, biodegradability, and history of clinical success across other routes of administration. Despite these merits, PLGA remains markedly absent in clinically approved IV drug delivery formulations. A prominent factor in PLGA particles' inability to succeed intravenously may lie in the hydrophobic character of the polyester, leading to the adsorption of serum proteins (i.e., opsonization) and a cascade of events that end in their premature clearance from the bloodstream. PEGylation, or surface-attached polyethylene glycol chains, is a common strategy for shielding particles from opsonization. Polyethylene glycol (PEG) continues to be regarded as the ultimate "stealth" solution despite the lack of clinical progress of PEGylated PLGA carriers. This review reflects on some of the reasons for the clinical failure of PLGA, particularly the drawbacks of PEGylation, and highlights alternative surface coatings on PLGA particles. Ultimately, a new approach will be needed to harness the potential of PLGA nanoparticles and allow their widespread clinical adoption.
Collapse
Affiliation(s)
- Violet V. Sheffey
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Emily B. Siew
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Eden E. L. Tanner
- Department of Chemistry and Biochemistry University of Mississippi 179 Coulter Hall University MS 38677 USA
| | - Omolola Eniola‐Adefeso
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| |
Collapse
|
4
|
Kim NA, Yu HW, Noh GY, Park SK, Kang W, Jeong SH. Protein microbeadification to achieve highly concentrated protein formulation with reversible properties and in vivo pharmacokinetics after reconstitution. Int J Biol Macromol 2021; 185:935-948. [PMID: 34237365 DOI: 10.1016/j.ijbiomac.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
A protein precipitation technique was optimized to produce biophysically stable 'protein microbeads', applicable to highly concentrated protein formulation. Initially, production of BSA microbeads was performed using rapid dehydration by vortexing in organic solvents followed by cold ethanol treatment and a vacuum drying. Out of four solvents, n-octanol produced the most reversible microbeads upon reconstitution. A Shirasu porous glass (SPG) membrane emulsification technique was utilized to enhance the size distribution and manufacturing process of the protein microbeads with a marketized human IgG solution. Process variants such as dehydration time, temperature, excipients, drying conditions, and initial protein concentration were evaluated in terms of the quality of IgG microbeads and their reversibility. The hydrophobized SPG membrane produced a narrow size distribution of the microbeads, which were further enhanced by shorter dehydration time, low temperature, minimized the residual solvents, lower initial protein concentration, and addition of trehalose to the IgG solution. Final reversibility of the IgG microbeads with trehalose was over 99% at both low and high protein concentrations. Moreover, the formulation was highly stable under repeated mechanical shocks and at an elevated temperature compared to its liquid state. Its in vivo pharmacokinetic profiles in rats were consistent before and after the 'microbeadification'.
Collapse
Affiliation(s)
- Nam Ah Kim
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea.
| | - Hyun Woo Yu
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea
| | - Ga Yeon Noh
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea
| | - Sang-Koo Park
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea.
| |
Collapse
|
5
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
6
|
Ohta S, Matsuura M, Kawashima Y, Cai X, Taniguchi M, Okochi H, Asano Y, Sato S, Ito T. Facile fabrication of PEG-coated PLGA microspheres via SPG membrane emulsification for the treatment of scleroderma by ECM degrading enzymes. Colloids Surf B Biointerfaces 2019; 179:453-461. [DOI: 10.1016/j.colsurfb.2019.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
|
7
|
Ragusa J, Gonzalez D, Li S, Noriega S, Skotak M, Larsen G. Glucosamine/L-lactide copolymers as potential carriers for the development of a sustained rifampicin release system using Mycobacterium smegmatis as a tuberculosis model. Heliyon 2019; 5:e01539. [PMID: 31183418 PMCID: PMC6488545 DOI: 10.1016/j.heliyon.2019.e01539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 01/09/2023] Open
Abstract
The present study aims at developing a new, ultrafine particle-based efficient antibiotic delivery system for the treatment of tuberculosis. The carrier material to make the rifampicin (RIF)-loaded particles is a low molecular weight star-shaped polymer produced from glucosamine (core building unit) and L-lactide (GluN-LLA). Particles were made via electrohydrodynamic atomization. Prolonged release (for up to 14 days) of RIF from these particles is reported. Drug release data fits the Korsmeyer-Peppas equation, which suggests the occurrence of a modified diffusion-controlled RIF release mechanism in vitro and is also supported by differential scanning calorimetry and drug leaching tests. Cytotoxicity tests on Mycobacterium smegmatis showed that antibiotic-free GluN-LLA and polylactides (PLA) particles (reference materials) did not show any significant anti-bacterial activity. The minimum inhibitory concentration and minimum bactericidal concentration values obtained for RIF-loaded particles showed 2- to 4-fold improvements in the anti-bacterial activity relative to the free drug. Cytotoxicity tests on macrophages indicated that cell death correlates with an increase of particle concentration but is not significantly affected by material type or particle size. Confocal microscopy was used to track internalization and localization of particles in the macrophages. The uptake of GluN-LLA particles is higher than those of their PLA counterparts. In addition, after phagocytosis, the GluN-LLA particles stayed in the cytoplasm and showed favorable long-term drug release behavior, which facilitated the killing of intracellular bacteria when compared to free RIF. The present studies suggest that these drug carrier materials are potentially very attractive candidates for the development of high-payload, sustained-release antibiotic/resorbable polymer particle systems for treating bacterial lung infections.
Collapse
Affiliation(s)
- Jorge Ragusa
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Daniela Gonzalez
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Sumin Li
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA
| | - Sandra Noriega
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA
| | - Maciej Skotak
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Gustavo Larsen
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| |
Collapse
|
8
|
Brzeziński M, Socka M, Kost B. Microfluidics for producing polylactide nanoparticles and microparticles and their drug delivery application. POLYM INT 2019. [DOI: 10.1002/pi.5753] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marek Brzeziński
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| | - Marta Socka
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| | - Bartłomiej Kost
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| |
Collapse
|
9
|
Ito F, Yamada H, Kanamura K, Kawakami H. Preparation of Biodegradable Polymer Nanospheres Containing Manganese Porphyrin (Mn-Porphyrin). J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0991-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Miranda MS, Rodrigues MT, Domingues RMA, Torrado E, Reis RL, Pedrosa J, Gomes ME. Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1090-1103. [PMID: 30274040 DOI: 10.1016/j.msec.2018.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022]
Abstract
The growing interest on polymeric delivery systems for pulmonary administration of drugs anticipates a more direct and efficient treatment of diseases such as tuberculosis (TB) that uses the pulmonary route as the natural route of infection. Polymeric microparticles or nano-in-microparticles offer target delivery of drugs to the lungs and the potential to control and sustain drug release within TB infected macrophages improving the efficiency of the anti-TB treatment and reducing side effects. In a dry powder form these inhalable delivery systems have increased stability and prolonged storage time without requiring refrigeration, besides being cost-effective and patient convenient. Thus, this review aims to compile the recent innovations of inhalable polymeric dry powder systems for the delivery of anti-TB drugs exploring the methods of production, aerodynamic characterization and the efficacy of targeted drug delivery systems using in vitro and in vivo models of the disease. Advanced knowledge and promising outcomes of these systems are anticipated to simplify and revolutionize the pulmonary drug delivery and to contribute towards more effective anti-TB treatments.
Collapse
Affiliation(s)
- Margarida S Miranda
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Egídio Torrado
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Jorge Pedrosa
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
11
|
Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BR. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Mycobacterium tuberculosis H37Rv strain. Int J Nanomedicine 2018; 13:4303-4318. [PMID: 30087562 PMCID: PMC6061404 DOI: 10.2147/ijn.s163925] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Tuberculosis (TB) is the single largest infectious disease which requires a prolonged treatment regime with multiple drugs. The present treatment for TB includes frequent administration of a combination of four drugs for a duration of 6 months. This leads to patient's noncompliance, in addition to developing drug-resistant strains which makes treatment more difficult. The formulation of drugs with biodegradable polymeric nanoparticles (NPs) promises to overcome this problem. MATERIALS AND METHODS In this study, we focus on two important drugs used for TB treatment - rifampicin (RIF) and isoniazid (INH) - and report a detailed study of RIF-loaded poly lactic-co-glycolic acid (PLGA) NPs and INH modified as INH benz-hydrazone (IH2) which gives the same therapeutic effect as INH but is more stable and enhances the drug loading in PLGA NPs by 15-fold compared to INH. The optimized formulation was characterized using particle size analyzer, scanning electron microscopy and transmission electron microscopy. The drug release from NPs and stability of drug were tested in different pH conditions. RESULTS It was found that RIF and IH2 loaded in NPs release in a slow and sustained manner over a period of 1 month and they are more stable in NPs formulation compared to the free form. RIF- and IH2-loaded NPs were tested for antimicrobial susceptibility against Mycobacterium tuberculosis H37Rv strain. RIF loaded in PLGA NPs consistently inhibited the growth at 70% of the minimum inhibitory concentration (MIC) of pure RIF (MIC level 1 µg/mL), and pure IH2 and IH2-loaded NPs showed inhibition at MIC equivalent to the MIC of INH (0.1 µg/mL). CONCLUSION These results show that NP formulations will improve the efficacy of drug delivery for TB treatment.
Collapse
Affiliation(s)
- Sushruta S Hakkimane
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India,
| | - Vishnu Prasad Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Santosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Indira Bairy
- Department of Microbiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Bharath Raja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India,
- Manipal McGill Center for Infectious Diseases, Manipal Academy of Higher Education, Manipal, India,
| |
Collapse
|
12
|
Mohammadi M, Patel K, Alaie SP, Shmueli RB, Besirli CG, Larson RG, Green JJ. Injectable drug depot engineered to release multiple ophthalmic therapeutic agents with precise time profiles for postoperative treatment following ocular surgery. Acta Biomater 2018; 73:90-102. [PMID: 29684622 PMCID: PMC6218335 DOI: 10.1016/j.actbio.2018.04.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
A multi-drug delivery platform is developed to address current shortcomings of post-operative ocular drug delivery. The sustained biodegradable drug release system is composed of biodegradable polymeric microparticles (MPs) incorporated into a bulk biodegradable hydrogel made from triblock copolymers with poly(ethylene glycol) (PEG) center blocks and hydrophobic biodegradable polyester blocks such as poly(lactide-co-glycolide) (PLGA), Poly(lactic acid) (PLA), or Poly(lactide-co-caprolactone) (PLCL) blocks. This system is engineered to flow as a liquid solution at room temperature for facile injection into the eye and then quickly gel as it warms to physiological body temperatures (approximately 37 °C). The hydrogel acts as an ocular depot that can release three different drug molecules at programmed rates and times to provide optimal release of each species. In this manuscript, the hydrogel is configured to release a broad-spectrum antibiotic, a potent corticosteroid, and an ocular hypotensive, three ophthalmic therapeutic agents that are essential for post-operative management after ocular surgery, each drug released at its own timescale. The delivery platform is designed to mimic current topical application of postoperative ocular formulations, releasing the antibiotic for up to a week, and the corticosteroid and the ocular hypotensive agents for at least a month. Hydrophobic blocks, such as PLCL, were utilized to prolong the release duration of the biomolecules. This system also enables customization by being able to vary the initial drug loading to linearly tune the drug dose released, while maintaining a constant drug release profile over time. This minimally invasive biodegradable multi-drug delivery system is capable of replacing a complex ocular treatment regimen with a simple injection. Such a depot system has the potential to increase patient medication compliance and reduce both the immediate and late term complications following ophthalmic surgery. STATEMENT OF SIGNIFICANCE After ocular surgery, patients routinely receive multiple medications including antibiotics, steroids and ocular hypotensives to ensure optimal surgical outcomes. The current standard of care for postoperative treatment after ocular surgery involves using eye drops daily, which has limited effectiveness mainly due to poor patient adherence. To improve patient experience and outcomes, this article presents the first thermoresponsive hydrogel able to release multiple drug molecules for the application of post-operative treatment following ocular surgery. By varying the parameters such as hydrogel type and polymer hydrophobicity, the drug release profile, duration and dosage can finely be tuned. The approach presented in this article can readily be applied to other applications by simply changing the drug loaded in the drug delivery system.
Collapse
Affiliation(s)
- Maziar Mohammadi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kisha Patel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Seyedeh P Alaie
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Howard University College of Medicine, Washington, DC 20001, USA
| | - Ron B Shmueli
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor MI 48105, USA
| | - Ronald G Larson
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor MI 48109, USA.
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Oncology, Neurosurgery, Chemical & Biomolecular Engineering, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
13
|
Mancer D, Allemann E, Daoud K. Metformin hydrochloride microencapsulation by complex coacervation: Study of size distribution and encapsulation yield using response surface methodology. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Deshmukh S, Sangawar V. One-step synthesis of polyethylene microspheres using a modified chemical route for pulmonary drug delivery. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2015.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S.S. Deshmukh
- Department of Physics, Proff. Ram Meghe Institute of Tech. & Research, Badnera, Amravati, India
| | - V.S. Sangawar
- Department of Physics, Govt. Vidarbh Institute of Science & Humanities, Amravati, India
| |
Collapse
|
15
|
Praphakar RA, Shakila H, Azger Dusthackeer VN, Munusamy MA, Kumar S, Rajan M. A mannose-conjugated multi-layered polymeric nanocarrier system for controlled and targeted release on alveolar macrophages. Polym Chem 2018. [DOI: 10.1039/c7py02000g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To improve the performance of drug delivery systems in macrophages, targeted ligand-conjugated polymeric carriers have been realized to be vital for targeted, sustainable and controlled drug release with remarkable biocompatibility and bioavailability.
Collapse
Affiliation(s)
- Rajendran Amarnath Praphakar
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| | - Harshavardhan Shakila
- Department of Molecular Microbiology
- School of Biotechnology
- Madurai Kamaraj University
- Madurai-625021
- India
| | | | - Murugan A. Munusamy
- Department of Botany and Microbiology
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology
- Universiti Putra Malaysia
- 43400 Serdang
- Malaysia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| |
Collapse
|
16
|
Microencapsulation of rifampicin for the prevention of endophthalmitis: In vitro release studies and antibacterial assessment. Int J Pharm 2016; 505:262-70. [PMID: 26997423 DOI: 10.1016/j.ijpharm.2016.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/23/2022]
Abstract
Rifampicin encapsulated microparticles were designed for intraocular injection after cataract surgery to prevent postoperative endophthalmitis. Microparticles were formulated by emulsification diffusion method using poly(lactic acid-co-glycolic acid) (PLGA) as polymer in order to propose a new form of rifampicin that overcome its limitations in intraocular delivery. Depending on processing formulation, different types of microparticles were prepared, characterized and evaluated by in vitro release studies. Two types of microparticles were selected to get a burst release of rifampicin, to reach minimal inhibitory concentrations to inhibit 90% of Staphylococcus epidermidis mainly involved in postoperative endophthalmitis, combined with a sustained release to maintain rifampicin concentration over 24h. The antibacterial activity and antiadhesive property on intraocular lenses were evaluated on S. epidermidis. Microparticles, with a rapid rifampicin release profile, showed an effect towards bacteria development similar to free rifampicin over 48h. However, slow-release profile microparticles exhibited a similar antibacterial effect during the first 24h, and were able to destroy all the S epidermidis in the medium after 30h. The association of the two formulations allowed obtaining interesting antibacterial profile. Moreover, rifampicin-loaded microparticles have shown a very efficient anti-adherent effect of S. epidermidis on intraocular lenses at 24h. These results propose rifampicin microparticles as suitable for antibioprophylaxis of the postoperative endophthalmitis.
Collapse
|
17
|
Preparation of Uniform-Sized and Dual Stimuli-Responsive Microspheres of Poly( N-Isopropylacrylamide)/Poly(Acrylic acid) with Semi-IPN Structure by One-Step Method. Polymers (Basel) 2016; 8:polym8030090. [PMID: 30979184 PMCID: PMC6432549 DOI: 10.3390/polym8030090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/31/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
A novel strategy was developed to synthesize uniform semi-interpenetrating polymer network (semi-IPN) microspheres by premix membrane emulsification combined with one-step polymerization. Synthesized poly(acrylic acid) (PAAc) polymer chains were added prior to the inner water phase, which contained N-isopropylacrylamide (NIPAM) monomer, N,N′-methylene bisacrylamide (MBA) cross-linker, and ammonium persulfate (APS) initiator. The mixtures were pressed through a microporous membrane to form a uniform water-in-oil emulsion. By crosslinking the NIPAM in a PAAc-containing solution, microspheres with temperature- and pH-responsive properties were fabricated. The semi-IPN structure and morphology of the microspheres were confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The average diameter of the obtained microspheres was approximately 6.5 μm, with Span values of less than 1. Stimuli-responsive behaviors of the microspheres were studied by the cloud-point method. The results demonstrated that semi-IPN microspheres could respond independently to both pH and temperature changes. After storing in a PBS solution (pH 7.0) at 4 °C for 6 months, the semi-IPN microspheres remained stable without a change in morphology or particle size. This study demonstrated a promising method for controlling the synthesis of semi-IPN structure microspheres with a uniform size and multiple functionalities.
Collapse
|
18
|
Ramazani F, Chen W, van Nostrum CF, Storm G, Kiessling F, Lammers T, Hennink WE, Kok RJ. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. Int J Pharm 2016; 499:358-367. [DOI: 10.1016/j.ijpharm.2016.01.020] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 11/27/2022]
|
19
|
Potential of aerosolized rifampicin lipospheres for modulation of pulmonary pharmacokinetics and bio-distribution. Int J Pharm 2015; 495:627-32. [DOI: 10.1016/j.ijpharm.2015.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
|
20
|
Vladisavljević GT. Structured microparticles with tailored properties produced by membrane emulsification. Adv Colloid Interface Sci 2015; 225:53-87. [PMID: 26329593 DOI: 10.1016/j.cis.2015.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 01/30/2023]
Abstract
This paper provides an overview of membrane emulsification routes for fabrication of structured microparticles with tailored properties for specific applications. Direct (bottom-up) and premix (top-down) membrane emulsification processes are discussed including operational, formulation and membrane factors that control the droplet size and droplet generation regimes. A special emphasis was put on different methods of controlled shear generation on membrane surface, such as cross flow on the membrane surface, swirl flow, forward and backward flow pulsations in the continuous phase and membrane oscillations and rotations. Droplets produced by membrane emulsification can be used for synthesis of particles with versatile morphology (solid and hollow, matrix and core/shell, spherical and non-spherical, porous and coherent, composite and homogeneous), which can be surface functionalised and coated or loaded with macromolecules, nanoparticles, quantum dots, drugs, phase change materials and high molecular weight gases to achieve controlled/targeted drug release and impart special optical, chemical, electrical, acoustic, thermal and magnetic properties. The template emulsions including metal-in-oil, solid-in-oil-in-water, oil-in-oil, multilayer, and Pickering emulsions can be produced with high encapsulation efficiency of encapsulated materials and narrow size distribution and transformed into structured particles using a variety of solidification processes, such as polymerisation (suspension, mini-emulsion, interfacial and in-situ), ionic gelation, chemical crosslinking, melt solidification, internal phase separation, layer-by-layer electrostatic deposition, particle self-assembly, complex coacervation, spray drying, sol-gel processing, and molecular imprinting. Particles fabricated from droplets produced by membrane emulsification include nanoclusters, colloidosomes, carbon aerogel particles, nanoshells, polymeric (molecularly imprinted, hypercrosslinked, Janus and core/shell) particles, solder metal powders and inorganic particles. Membrane emulsification devices operate under constant temperature due to low shear rates on the membrane surface, which range from (1-10)×10(3) s(-1) in a direct process to (1-10)×10(4) s(-1) in a premix process.
Collapse
Affiliation(s)
- Goran T Vladisavljević
- Chemical Engineering Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom; Laboratory of Chemical Dynamics, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| |
Collapse
|
21
|
Ito F, Kawakami H. Facile technique for the preparation of monodispersed biodegradable polymer nanospheres using a solvent evaporation method. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Teng L, Nie W, Zhou Y, Song L, Chen P. Synthesis and characterization of star-shaped PLLA with sorbitol as core and its microspheres application in controlled drug release. J Appl Polym Sci 2015. [DOI: 10.1002/app.42213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lijing Teng
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials; School of Chemistry & Chemical Engineering, Anhui University; Hefei 230601 People's Republic of China
| | - Wangyan Nie
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials; School of Chemistry & Chemical Engineering, Anhui University; Hefei 230601 People's Republic of China
| | - Yifeng Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials; School of Chemistry & Chemical Engineering, Anhui University; Hefei 230601 People's Republic of China
| | - Linyong Song
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials; School of Chemistry & Chemical Engineering, Anhui University; Hefei 230601 People's Republic of China
| | - Pengpeng Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials; School of Chemistry & Chemical Engineering, Anhui University; Hefei 230601 People's Republic of China
| |
Collapse
|
23
|
Shilpi S, Vimal VD, Soni V. Assessment of lactoferrin-conjugated solid lipid nanoparticles for efficient targeting to the lung. Prog Biomater 2015; 4:55-63. [PMID: 29470795 PMCID: PMC5151107 DOI: 10.1007/s40204-015-0037-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/16/2015] [Indexed: 01/27/2023] Open
Abstract
The aim of the present study was to develop a target oriented drug delivery system for the lungs. Lactoferrin (Lf)-coupled solid lipid nanoparticles (SLNs) bearing rifampicin was prepared by a solvent injection method. The prepared nanoparticles were characterized for shape, particle size, polydispersity and percentage drug entrapment. An optimized formulation was then studied for its in vivo performance in animals and to determine its targeting efficiency. It was observed that, upon coupling with Lf, the size of SLNs increased while the percent entrapment efficiency decreases. In in vitro release, determined by a dialysis technique, analysis showed that uncoupled SLNs exhibited higher drug release as compared to coupled SLNs. An in vivo biodistribution study shows 47.7 ±0.4 drug uptakes by the lungs, which was 3.05 times higher in comparison to uncoupled SLNs. These biodistribution studies are further supported by the fluorescence study that revealed enhanced uptake of Lf-coupled SLNs in the lung. From the presented results, it can be concluded that Lf-coupled SLNs enhanced drug uptake in the lung. Moreover, lactoferrin is an efficient molecule that can be used for targeting active agents directly to the lung.
Collapse
Affiliation(s)
- Satish Shilpi
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, 470 003, Madhya Pradesh, India. .,Ravishankar College of Pharmacy, Bhopal, 462 010, Madhya Pradesh, India.
| | - Vishnoo Dayal Vimal
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, 470 003, Madhya Pradesh, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, 470 003, Madhya Pradesh, India
| |
Collapse
|
24
|
Spyropoulos F, Lloyd DM, Hancocks RD, Pawlik AK. Advances in membrane emulsification. Part A: recent developments in processing aspects and microstructural design approaches. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:613-627. [PMID: 24122870 DOI: 10.1002/jsfa.6444] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/05/2013] [Accepted: 10/10/2013] [Indexed: 06/02/2023]
Abstract
Modern emulsion processing technology is strongly influenced by the market demands for products that are microstructure-driven and possess precisely controlled properties. Novel cost-effective processing techniques, such as membrane emulsification, have been explored and customised in the search for better control over the microstructure, and subsequently the quality of the final product. Part A of this review reports on the state of the art in membrane emulsification techniques, focusing on novel membrane materials and proof of concept experimental set-ups. Engineering advantages and limitations of a range of membrane techniques are critically discussed and linked to a variety of simple and complex structures (e.g. foams, particulates, liposomes etc.) produced specifically using those techniques.
Collapse
Affiliation(s)
- Fotis Spyropoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
25
|
Ito F, Fujimori H, Makino K. Preparation of (hydrophilic) INZ/PLGA particles (microcapsules) employing a unique frozen water phase — investigation of optimal formulation. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Fattahi P, Borhan A, Abidian MR. Microencapsulation of chemotherapeutics into monodisperse and tunable biodegradable polymers via electrified liquid jets: control of size, shape, and drug release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4555-4560. [PMID: 23824544 DOI: 10.1002/adma.201301033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/21/2013] [Indexed: 06/02/2023]
Abstract
This paper describes microencapsulation of antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, Carmustine) into biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) using an electrojetting technique. The resulting BCNU-loaded PLGA microcapsules have significantly higher drug encapsulation efficiency, more tunable drug loading capacity, and (3) narrower size distribution than those generated using other encapsulation methods.
Collapse
Affiliation(s)
- Pouria Fattahi
- Departments of Bioengineering and Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
27
|
Serra CA, Cortese B, Khan IU, Anton N, de Croon MHJM, Hessel V, Ono T, Vandamme T. Coupling Microreaction Technologies, Polymer Chemistry, and Processing to Produce Polymeric Micro and Nanoparticles with Controlled Size, Morphology, and Composition. MACROMOL REACT ENG 2013. [DOI: 10.1002/mren.201300101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Christophe A. Serra
- Université de Strasbourg (UdS), Ecole de Chimie Polymères et Matériaux (ECPM), Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) - UMR 7515 CNRS, Groupe d'Intensification et d'Intégration des Procédés Polymères (G2IP); F-67087 Strasbourg France
| | - Bruno Cortese
- Eindhoven University of Technology, Micro Flow Chemistry/Chemical Reaction Engineering Groups- Eindhoven; The Netherlands
| | - Ikram Ullah Khan
- Université de Strasbourg (UdS), Ecole de Chimie Polymères et Matériaux (ECPM), Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) - UMR 7515 CNRS, Groupe d'Intensification et d'Intégration des Procédés Polymères (G2IP); F-67087 Strasbourg France
- Université de Strasbourg (UdS), Faculté de Pharmacie, Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Pharmacie Biogalénique - CNRS 7199; 74 route du Rhin BP 60024 F-67401 Illkirch Cedex France
- College of Pharmacy, Government College University; Faisalabad Pakistan
| | - Nicolas Anton
- Université de Strasbourg (UdS), Faculté de Pharmacie, Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Pharmacie Biogalénique - CNRS 7199; 74 route du Rhin BP 60024 F-67401 Illkirch Cedex France
| | - Mart H. J. M. de Croon
- Eindhoven University of Technology, Micro Flow Chemistry/Chemical Reaction Engineering Groups- Eindhoven; The Netherlands
| | - Volker Hessel
- Eindhoven University of Technology, Micro Flow Chemistry/Chemical Reaction Engineering Groups- Eindhoven; The Netherlands
| | - Tsutomu Ono
- Department of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushima-naka Okayama 700-8530 Japan
| | - Thierry Vandamme
- Université de Strasbourg (UdS), Faculté de Pharmacie, Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Pharmacie Biogalénique - CNRS 7199; 74 route du Rhin BP 60024 F-67401 Illkirch Cedex France
| |
Collapse
|
28
|
Della Porta G, Campardelli R, Reverchon E. Monodisperse biopolymer nanoparticles by Continuous Supercritical Emulsion Extraction. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2013.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Vladisavljević GT, Duncanson WJ, Shum HC, Weitz DA. Emulsion templating of poly(lactic acid) particles: droplet formation behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12948-12954. [PMID: 22860633 DOI: 10.1021/la302092f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Monodisperse poly(DL-lactic acid) (PLA) particles of diameters between 11 and 121 μm were fabricated in flow focusing glass microcapillary devices by evaporation of dichloromethane (DCM) from emulsion droplets at room temperature. The dispersed phase was 5% (w/w) PLA in DCM containing 0.1-2 mM Nile Red and the continuous phase was 5% (w/w) poly(vinyl alcohol) in reverse osmosis water. Particle diameter was 2.7 times smaller than the diameter of the emulsion droplet template, indicating very low particle porosity. Monodisperse droplets have only been produced under dripping regime using a wide range of dispersed phase flow rates (0.002-7.2 cm(3)·h(-1)), continuous phase flow rates (0.3-30 cm(3)·h(-1)), and orifice diameters (50-237 μm). In the dripping regime, the ratio of droplet diameter to orifice diameter was inversely proportional to the 0.39 power of the ratio of the continuous phase flow rate to dispersed phase flow rate. Highly uniform droplets with a coefficient of variation (CV) below 2% and a ratio of the droplet diameter to orifice diameter of 0.5-1 were obtained at flow rate ratios of 4-25. Under jetting regime, polydisperse droplets (CV > 6%) were formed by detachment from relatively long jets (between 4 and 10 times longer than droplet diameter) and a ratio of the droplet size to orifice size of 2-5.
Collapse
Affiliation(s)
- Goran T Vladisavljević
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom.
| | | | | | | |
Collapse
|
30
|
Zhang X, Wang C, Fang S, Sun J, Li C, Hu Y. Synthesis and characterization of well-defined star PLLA with a POSS core and their microspheres for controlled release. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2790-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Son YJ, McConville JT. Preparation of sustained release rifampicin microparticles for inhalation. J Pharm Pharmacol 2012; 64:1291-302. [DOI: 10.1111/j.2042-7158.2012.01531.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Objectives
The aim of this research was to develop a novel carrier-free dry powder formulation of rifampicin for inhalation with controlled-release properties.
Methods
Rifampicin dihydrate (RFDH) microcrystals were prepared by a polymorphic transformation of rifampicin. The prepared RFDH microcrystals were coated with poly (dl-lactide-co-glycolide) or poly (dl-lactide), using a spray-dryer equipped with two different types of three-fluid (3F) spray nozzles. The physicochemical and aerodynamic properties of the coated RFDH microcrystals were compared with those of conventional matrix microparticles.
Key findings
The coated RFDH powder, encapsulating 50% of rifampicin, was successfully prepared by simple in-situ coating methods using two different types of 3F nozzles and had mass median aerodynamic diameter values of 3.5–4.5 µm. The thin flaky morphology of RFDH powders, providing good aerosolization properties, was maintained after coating. The coated RFDH formulations showed relatively low initial rifampicin release, compared with the uncoated RFDH crystals, followed by slow rifampicin release (about 70%) over 8 h in phosphate-buffered saline media (pH 7.4). Significant chemical degradations were not observed from the crystalline-structured RFDH formulations, while the amorphous-structured matrix formulations showed chemical degradation in six months.
Conclusions
These polymer coated RFDH formulations may be a valuable alternative in the treatment of tuberculosis since the carrier-free formulation offers the benefit of delivering a maximum-potency formulation of the antibiotic directly to the site of infection, and long drug residence times may be achieved by the controlled release of the drug.
Collapse
Affiliation(s)
- Yoen-Ju Son
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
32
|
Ito F, Takahashi T, Kanamura K, Kawakami H. Possibility for the development of cosmetics with PLGA nanospheres. Drug Dev Ind Pharm 2012; 39:752-61. [DOI: 10.3109/03639045.2012.696653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: In vitro and in vivo evaluation. Eur J Pharm Biopharm 2012; 81:248-56. [DOI: 10.1016/j.ejpb.2012.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 03/04/2012] [Accepted: 03/06/2012] [Indexed: 11/24/2022]
|
34
|
Biopolymer Particles for Proteins and Peptides Sustained Release Produced by Supercritical Emulsion Extraction. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2012.07.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Babiuch K, Gottschaldt M, Werz O, Schubert US. Particulate transepithelial drug carriers: barriers and functional polymers. RSC Adv 2012. [DOI: 10.1039/c2ra20726e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
36
|
Takami T, Murakami Y. Development of PEG–PLA/PLGA microparticles for pulmonary drug delivery prepared by a novel emulsification technique assisted with amphiphilic block copolymers. Colloids Surf B Biointerfaces 2011; 87:433-8. [DOI: 10.1016/j.colsurfb.2011.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|
37
|
A new respirable form of rifampicin. Eur J Pharm Biopharm 2011; 78:366-76. [DOI: 10.1016/j.ejpb.2011.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/22/2022]
|
38
|
Ito F, Kanakubo Y, Murakami Y. Rapid preparation of monodisperse biodegradable polymer nanospheres using a membrane emulsification technique under low gas pressure. JOURNAL OF POLYMER RESEARCH 2011. [DOI: 10.1007/s10965-011-9617-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Oh DH, Balakrishnan P, Oh YK, Kim DD, Yong CS, Choi HG. Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification. Int J Pharm 2011; 404:191-7. [DOI: 10.1016/j.ijpharm.2010.10.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/11/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
40
|
Building Membrane Emulsification into Pulmonary Drug Delivery and Targeting. Pharm Res 2010; 27:2505-8. [DOI: 10.1007/s11095-010-0240-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
|
41
|
Liu W, Yang XL, Ho WSW. Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification. J Pharm Sci 2010; 100:75-93. [PMID: 20589949 DOI: 10.1002/jps.22272] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/17/2022]
Abstract
Much attention has in recent years been paid to fine applications of drug delivery systems, such as multiple emulsions, micro/nano solid lipid and polymer particles (spheres or capsules). Precise control of particle size and size distribution is especially important in such fine applications. Membrane emulsification can be used to prepare uniform-sized multiple emulsions and micro/nano particulates for drug delivery. It is a promising technique because of the better control of size and size distribution, the mildness of the process, the low energy consumption, easy operation and simple equipment, and amendable for large scale production. This review describes the state of the art of membrane emulsification in the preparation of monodisperse multiple emulsions and micro/nano particulates for drug delivery in recent years. The principles, influence of process parameters, advantages and disadvantages, and applications in preparing different types of drug delivery systems are reviewed. It can be concluded that the membrane emulsification technique in preparing emulsion/particulate products for drug delivery will further expand in the near future in conjunction with more basic investigations on this technique.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | |
Collapse
|
42
|
Abstract
Particle engineering for biomedical applications has unfolded the roles of attributes such as size, surface chemistry, and shape for modulating particle interactions with cells. Recently, dynamic manipulation of such key properties has gained attention in view of the need to precisely control particle interaction with cells. With increasing recognition of the pivotal role of particle shape in determining their biomedical applications, we report on polymeric particles that are able to switch their shape in real time in a stimulus-responsive manner. The shape-switching behavior was driven by a subtle balance between polymer viscosity and interfacial tension. The balance between the two forces was modulated by application of an external stimulus chosen from temperature, pH, or chemical additives. The dynamics of shape switch was precisely controlled over minutes to days under physiological conditions. Shape-switching particles exhibited unique interactions with cells. Elliptical disk-shaped particles that are not phagocytosed by macrophages were made to internalize through shape switch, demonstrating the ability of shape-switchable particles in modulating interaction with cells.
Collapse
|
43
|
Ito F, Fujimori H, Honnami H, Kawakami H, Kanamura K, Makino K. Control of drug loading efficiency and drug release behavior in preparation of hydrophilic-drug-containing monodisperse PLGA microspheres. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1563-1571. [PMID: 20221788 DOI: 10.1007/s10856-010-3995-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 01/08/2010] [Indexed: 05/27/2023]
Abstract
We prepared monodisperse poly(lactide-co-glycolide) (PLGA) microspheres containing blue dextran (BLD)--a hydrophilic drug--by membrane emulsification technique. The effects of electrolyte addition to the w(2) phase and significance of the droplet size ratio between primary (w(1)/o) and secondary (w(1)/o/w(2)) emulsions during the preparation of these microspheres was examined. The droplet size ratio was evaluated from the effect of stirring rate of the homogenizer when preparing the primary emulsion. The drug loading efficiency of BLD in these microspheres increased with stirring rate. It increased to approximately 90% when 2.0% NaCl was added to the w(2) phase. Drug release from these microspheres was slower than that when they were prepared without electrolyte addition. Despite the very high efficiency drug release was gradual because BLD was distributed at the microspheres core. Relatively monodisperse hydrophilic-drug-containing PLGA microspheres with controlled drug loading efficiency and drug release behavior were prepared.
Collapse
Affiliation(s)
- Fuminori Ito
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Facile technique for preparing organic–inorganic composite particles: Monodisperse poly(lactide-co-glycolide) (PLGA) particles having silica nanoparticles on the surface. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Onoshita T, Shimizu Y, Yamaya N, Miyazaki M, Yokoyama M, Fujiwara N, Nakajima T, Makino K, Terada H, Haga M. The behavior of PLGA microspheres containing rifampicin in alveolar macrophages. Colloids Surf B Biointerfaces 2010; 76:151-7. [DOI: 10.1016/j.colsurfb.2009.10.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 10/16/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
|
46
|
Endocytosis and Intracellular Distribution of PLGA Particles in Endothelial Cells: Effect of Particle Geometry. Macromol Rapid Commun 2009; 31:142-8. [DOI: 10.1002/marc.200900592] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 09/21/2009] [Indexed: 11/07/2022]
|
47
|
PLGA particle production for water-soluble drug encapsulation: degradation and release behaviour. Colloids Surf B Biointerfaces 2009; 75:557-64. [PMID: 19853423 DOI: 10.1016/j.colsurfb.2009.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 09/24/2009] [Indexed: 11/20/2022]
Abstract
Particles for subcutaneous depot use encapsulating a model water-soluble drug have been produced from poly(lactic-glycolic acid) (PLGA) using a membrane emulsification-solvent evaporation technique. The release behaviour, mainly the change in size and inner morphology are reported. During release, the particles initially swelled in size, then reduced. A diffusion based model, taking in to account the change in particle size, is presented. Surface erosion is evident from the particle size and image evidence, and the diffusion model provides a fit to the data even during the surface erosion period, suggesting that the model drug diffuses before the particle degrades.
Collapse
|
48
|
Ito F, Fujimori H, Honnami H, Kawakami H, Kanamura K, Makino K. Study of types and mixture ratio of organic solvent used to dissolve polymers for preparation of drug-containing PLGA microspheres. Eur Polym J 2009. [DOI: 10.1016/j.eurpolymj.2008.12.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Durán N, Alvarenga MA, Da Silva EC, Melo PS, Marcato PD. Microencapsulation of antibiotic rifampicin in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Arch Pharm Res 2008; 31:1509-16. [PMID: 19023549 DOI: 10.1007/s12272-001-2137-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
Abstract
The aim of this study was the preparation of microparticles containing rifampicin using a biodegradable polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) for oral administration produced by a bacteria. The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microparticles with and without rifampicin were prepared by the emulsification and solvent evaporation method, in which chloroform and polyvinyl alcohol are used as the solvent and emulsifier, respectively. Microparticles were obtained within a size range of 20-60 microm by changing the initial poly(3-hydroxybutyrate-co-3-hydroxyvalerate), polyvinyl alcohol and rifampicin concentrations. An encapsulation efficiency value of 14% was obtained. The optimized total yield of 60% of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/ rifampicin was obtained. A load of 0.035 mg/1 mg of PHBV was reached. Almost 90% of the drug loaded in the microparticles was released after 24 h. The size, encapsulation efficiency and ribampicin release of the microparticles varied as a function of the initial poly(3-hydroxybutyrate-co-3-hydroxyvalerate), polyvinyl alcohol and rifampicin concentrations. It was demonstrated that the microencapsulated rifampicin, although was not totally available in the medium, exhibited a similar inhibition value as free rifampicin at 24 h of incubation with S. aureus. Cytotoxicity assays demonstrated a reduction of the toxicity when rifampicin was microencapsulated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) while maintaining its antibacterial activity.
Collapse
Affiliation(s)
- N Durán
- Instituto de Quimica, Biological Chemistry Laboratory, Universidade Estadual de Campinas, C.P. 6154, Campinas CEP 13083-970, S.P, Brazil.
| | | | | | | | | |
Collapse
|
50
|
Ito F, Fujimori H, Honnami H, Kawakami H, Kanamura K, Makino K. Effect of polyethylene glycol on preparation of rifampicin-loaded PLGA microspheres with membrane emulsification technique. Colloids Surf B Biointerfaces 2008; 66:65-70. [DOI: 10.1016/j.colsurfb.2008.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/13/2008] [Accepted: 05/17/2008] [Indexed: 10/22/2022]
|