1
|
Mohanto N, Mondal H, Park YJ, Jee JP. Therapeutic delivery of oxygen using artificial oxygen carriers demonstrates the possibility of treating a wide range of diseases. J Nanobiotechnology 2025; 23:25. [PMID: 39827150 PMCID: PMC11742488 DOI: 10.1186/s12951-024-03060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Artificial oxygen carriers have emerged as potential substitutes for red blood cells in situations of major blood loss, including accidents, surgical procedures, trauma, childbirth, stomach ulcers, hemorrhagic shock, and blood vessel ruptures which can lead to sudden reduction in blood volume. The therapeutic delivery of oxygen utilizing artificial oxygen carriers as red blood cell substitutes presents a promising avenue for treating a spectrum of disease models. Apart from that, the recent advancement of artificial oxygen carriers intended to supplant conventional blood transfusions draws significant attention due to the exigencies of warfare and the ongoing challenges posed by the COVID-19 pandemic. However, there is a pressing need to formulate stable, non-toxic, and immunologically inert oxygen carriers. Even though numerous challenges are encountered in the development of artificial oxygen carriers, their applicability extends to various medical treatments, encompassing elective and cardiovascular surgeries, hemorrhagic shock, decompression illness, acute stroke, myocardial infarction, sickle cell crisis, and proficient addressing conditions such as cerebral hypoxia. Therefore, this paper provides an overview of therapeutic oxygen delivery using assorted types of artificial oxygen carriers, including hemoglobin-based, perfluorocarbon-based, stem cell-derived, and oxygen micro/nanobubbles, in the treatment of diverse disease models. Additionally, it discusses the potential side effects and limitations associated with these interventions, while incorporating completed and ongoing research and recent clinical developments. Finally, the prospective solutions and general demands of the perfect artificial oxygen carriers were anticipated to be a reference for subsequent research endeavors.
Collapse
Affiliation(s)
- Nijaya Mohanto
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
| | - Himangsu Mondal
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Lee YH, Huang CY. Engineered Perfluorochemical Cancer-Derived Exosomes Loaded with Indocyanine Green and Camptothecin Provide Targeted Photochemotherapy for Effective Cancer Treatment. Int J Nanomedicine 2025; 20:327-342. [PMID: 39802383 PMCID: PMC11725285 DOI: 10.2147/ijn.s505458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Background Cancer treatments are still limited by various challenges, such as off-target drug delivery, posttreatment inflammation, and the hypoxic conditions in the tumor microenvironment; thus, the development of effective therapeutics remains highly desirable. Exosomes are extracellular vesicles with a size of 30-200 nm that have been widely applied as drug carriers over the last decade. In this study, melanoma-derived exosomes were used to develop a perfluorocarbon (PFC) drug nanocarriers loaded with indocyanine green (ICG) and camptothecin (CPT) (ICFESs) for targeted cancer photochemotherapy. Methods The ICFESs were fabricated by emulsification approach and characterized through instrumental detection. The capabilities of the ICFESs on tumor targeting, intratumoral retention, and cancer photochemotherapy were evaluated using melanoma tumor-bearing mice in association with histological studies and serum marker analyses. Results ICFESs can be rapidly internalized by homologous melanoma cells, induce hyperthermia and increase the yield of singlet oxygen upon exposure to near-infrared (NIR) irradiation. After 5 min of NIR exposure and 24 h of in vitro culture, ICFESs encapsulating ≥ 10/10 μM [ICG]/[CPT] effectively killed more than 70% of the cancer cells, inducing greater mortality than that caused by a 4-fold higher dose of CPT alone. In a murine melanoma model, we demonstrated that ICFESs indeed targeted homologous tumors with prolonged intratumoral retention compared with free ICG in vivo. Moreover, tumor growth was significantly arrested by ICFESs containing 40/40 μM [ICG]/[CPT] in combination with 30 sec of NIR exposure without systemic toxicity, and the resulting tumors were approximately 15-fold smaller than those treated for 14 days with 40 μM free CPT alone. Conclusion We suggest that the aforementioned anticancer efficacy was achieved via a dual-stage mechanism, phototherapy followed by chemotherapy. Taken together, the developed ICFESs are anticipated to be highly applicable for clinical cancer treatment.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China
- Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan, Republic of China
- Department of Medical Research, Cathay General Hospital, Taipei City, Taiwan, Republic of China
| | - Cheng-You Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China
| |
Collapse
|
3
|
Lee YH, Chen CS. Carcinomembrane-Camouflaged Perfluorochemical Dual-Layer Nanopolymersomes Bearing Indocyanine Green and Camptothecin Effectuate Targeting Photochemotherapy of Cancer. ACS Biomater Sci Eng 2024; 10:6332-6343. [PMID: 39264032 PMCID: PMC11480933 DOI: 10.1021/acsbiomaterials.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Photochemotherapy has been recognized as a promising combinational modality for cancer treatment. However, difficulties such as off-target drug delivery, systemic toxicity, and the hypoxic nature of the tumor microenvironment remain hindrances to its application. To overcome these challenges, cancer cell membrane camouflaged perfluorooctyl bromide (PFOB) dual-layer nanopolymersomes bearing indocyanine green (ICG) and camptothecin (CPT), named MICFNS, were developed in this study, and melanoma was exploited as the model for MICFNS manufacture and therapeutic application. Our data showed that MICFNS were able to stabilize both ICG and CPT in the nanocarriers and can be quickly internalized by B16F10 cells due to melanoma membrane-mediated homology. Upon NIR irradiation, MICFNS can trigger hyperthermia and offer enhanced singlet oxygen production due to the incorporation of PFOB. With ≥10/2.5 μM ICG/CPT, MICFNS + NIR can provide comparable in vitro cancericidal effects to those caused by using an 8-fold higher dose of encapsulated CPT alone. Through the animal study, we further demonstrated that MICFNS can be quickly brought to tumors and have a longer retention time than those of free agents in vivo. Moreover, the MICFNS with 40/10 μM ICG/CPT in combination with 30 s NIR irradiation can successfully inhibit tumor growth without systemic toxicity in mice within the 14 day treatment. We speculate that such an antitumoral effect was achieved by phototherapy followed by chemotherapy, a two-stage tumoricidal process performed by MICFNS. Taken together, we anticipate that MICFNS, a photochemotherapeutic nanoplatform, has high potential for use in clinical anticancer treatment.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department
of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan R.O.C
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan
City 32001, Taiwan R.O.C
| | - Cai-Sin Chen
- Department
of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan R.O.C
| |
Collapse
|
4
|
Zhang J, Feng Q, Xiao J, Zhang J, Lin J, Wang J. Microneedle-assisted transdermal delivery of perfluorotripropylamine-based oxygenated emulsion gel loaded with 5-aminolevulinic acid for enhanced photodynamic therapy of cutaneous squamous cell carcinoma. Eur J Pharm Sci 2023; 188:106493. [PMID: 37302770 DOI: 10.1016/j.ejps.2023.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Topical photodynamic therapy (TPDT) is a clinical treatment for cutaneous squamous cell carcinoma (CSCC). However, the therapeutic efficacy of TPDT for CSCC is significantly weakened by hypoxia, which is caused by the oxygen-poor environment of the skin and CSCC and by the high oxygen consumption of TPDT itself. To overcome these problems, we developed a topically applied perfluorotripropylamine-based oxygenated emulsion gel loaded with the photosensitizer 5-ALA (5-ALA-PBOEG) by a simple ultrasound-assisted emulsion method. With the aid of the microneedle roller, 5-ALA-PBOEG dramatically increased the accumulation of 5-ALA in the epidermis and the dermis, as well as throughout the dermis; a total of 67.6% ± 9.97% of the applied dose penetrated into and through the dermis, which is 19.1±3.2-fold that of the 5-ALA-PBOEG without microneedle treatment group, and 16.9±0.3-fold that of the aminolevulinic acid hydrochloride topical powder treatment group (p<0.001). Meanwhile, PBOEG enhanced the singlet oxygen yield of 5-ALA-induced protoporphyrin IX. The results of in vivo antitumor activity in human epidermoid carcinoma (A431) bearing mice showed that by increasing the oxygen content in tumor tissues, the developed 5-ALA-PBOEG plus microneedle treatment and laser irradiation showed better tumor growth inhibition than the respective control formulations. In addition, the results of safety studies, including the multiple-dose skin irritation study, allergy tests, and skin H&E staining, demonstrated the safety of 5-ALA-PBOEG plus microneedle treatment. In conclusion, the 5-ALA-PBOEG plus microneedle treatment shows great potential in the fight against CSCC and other skin cancers.
Collapse
Affiliation(s)
- Jialiang Zhang
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China; Innovation center for cancer research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, PR China
| | - Qiang Feng
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China; Innovation center for cancer research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, PR China
| | - Jianbin Xiao
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China; Innovation center for cancer research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, PR China
| | - Jinyu Zhang
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China; Innovation center for cancer research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, PR China
| | - Jiao Lin
- College of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Jianmin Wang
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China; Innovation center for cancer research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, PR China.
| |
Collapse
|
5
|
Niu Y, Gao Y, Xiao Z, Mao C, Wang H, Geng Y, Ye Y, Kou X. Preparation and characterisation of linalool oil-in-water starch-based Pickering emulsions and the effects of the addition of cellulose nanocrystals on their stability. Int J Biol Macromol 2023; 247:125732. [PMID: 37423446 DOI: 10.1016/j.ijbiomac.2023.125732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Creaming could be generated during storage of the starch-based Pickering emulsions. And cellulose nanocrystals in the solution are usually dispersed by relatively strong mechanical force, otherwise they may appear in the form of aggregates. In this work, we investigated the effects of cellulose nanocrystals on the stability of the starch-based Pickering emulsions. Results showed that the stability of Pickering emulsions was significantly improved by adding cellulose nanocrystals. Cellulose nanocrystals increased the viscosity, electrostatic repulsion and steric hindrance of the emulsions, which delayed the movement of droplets and obstructed the contact between droplets. This study provides new insights into the preparation and stabilisation of starch-based Pickering emulsions.
Collapse
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yuchen Gao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengting Mao
- China Tobacco Jiangsu Industrial Co. Ltd, Nanjing 210019, China
| | - Huiting Wang
- China Tobacco Jiangsu Industrial Co. Ltd, Nanjing 210019, China
| | - Yijia Geng
- China Tobacco Jiangsu Industrial Co. Ltd, Nanjing 210019, China
| | - Yuanqing Ye
- China Tobacco Jiangsu Industrial Co. Ltd, Nanjing 210019, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
6
|
Nguyen MT, Guseva EV, Ataeva AN, Sigan AL, Shibaeva AV, Dmitrieva MV, Burtsev ID, Volodina YL, Radchenko AS, Egorov AE, Kostyukov AA, Melnikov PV, Chkanikov ND, Kuzmin VA, Shtil AA, Markova AA. Perfluorocarbon Nanoemulsions with Fluorous Chlorin-Type Photosensitizers for Antitumor Photodynamic Therapy in Hypoxia. Int J Mol Sci 2023; 24:ijms24097995. [PMID: 37175700 PMCID: PMC10178184 DOI: 10.3390/ijms24097995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The efficacy of photodynamic therapy (PDT) strictly depends on the availability of molecular oxygen to trigger the light-induced generation of reactive species. Fluorocarbons have an increased ability to dissolve oxygen and are attractive tools for gas delivery. We synthesized three fluorous derivatives of chlorin with peripheral polyfluoroalkyl substituents. These compounds were used as precursors for preparing nanoemulsions with perfluorodecalin as an oxygen depot. Therefore, our formulations contained hydrophobic photosensitizers capable of absorbing monochromatic light in the long wavelength region and the oxygen carrier. These modifications did not alter the photosensitizing characteristics of chlorin such as the generation of singlet oxygen, the major cytocidal species in PDT. Emulsions readily entered HCT116 colon carcinoma cells and accumulated largely in mitochondria. Illumination of cells loaded with emulsions rapidly caused peroxidation of lipids and the loss of the plasma membrane integrity (photonecrosis). Most importantly, in PDT settings, emulsions potently sensitized cells cultured under prolonged (8 weeks) hypoxia as well as cells after oxygen depletion with sodium sulfite (acute hypoxia). The photodamaging potency of emulsions in hypoxia was significantly more pronounced compared to emulsion-free counterparts. Considering a negligible dark cytotoxicity, our materials emerge as efficient and biocompatible instruments for PDT-assisted eradication of hypoxic cells.
Collapse
Affiliation(s)
- Minh Tuan Nguyen
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
| | - Elizaveta V Guseva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia
| | - Aida N Ataeva
- Department of Faculty Surgery № 1, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Andrey L Sigan
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia
| | - Anna V Shibaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
| | - Maria V Dmitrieva
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115522 Moscow, Russia
| | - Ivan D Burtsev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
| | - Yulia L Volodina
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115522 Moscow, Russia
| | - Alexandra S Radchenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
| | - Anton E Egorov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
| | - Pavel V Melnikov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Nikolai D Chkanikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115522 Moscow, Russia
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia
| |
Collapse
|
7
|
Mohanto N, Park YJ, Jee JP. Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:153-190. [PMID: 35935469 PMCID: PMC9344254 DOI: 10.1007/s40005-022-00590-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/02/2022] [Indexed: 01/06/2023]
Abstract
Background Several circumstances such as accidents, surgery, traumatic hemorrhagic shock, and other causalities cause major blood loss. Allogenic blood transfusion can be resuscitative for such conditions; however, it has numerous ambivalent effects, including supply shortage, needs for more time, cost for blood grouping, the possibility of spreading an infection, and short shelf-life. Hypoxia or ischemia causes heart failure, neurological problems, and organ damage in many patients. To address this emergent medical need for resuscitation and to treat hypoxic conditions as well as to enhance oxygen transportation, researchers aspire to achieve a robust technology aimed to develop safe and feasible red blood cell substitutes for effective oxygen transport. Area covered This review article provides an overview of the formulation, storage, shelf-life, clinical application, side effects, and current perspectives of artificial oxygen carriers (AOCs) as red blood cell substitutes. Moreover, the pre-clinical (in vitro and in vivo) assessments for the evaluation of the efficacy and safety of oxygen transport through AOCs are key considerations in this study. With the most significant technologies, hemoglobin- and perfluorocarbon-based oxygen carriers as well as other modern technologies, such as synthetically produced porphyrin-based AOCs and oxygen-carrying micro/nanobubbles, have also been elucidated. Expert opinion Both hemoglobin- and perfluorocarbon-based oxygen carriers are significant, despite having the latter acting as safeguards; they are cost-effective, facile formulations which penetrate small blood vessels and remove arterial blockages due to their nano-size. They also show better biocompatibility and longer half-life circulation than other similar technologies.
Collapse
Affiliation(s)
- Nijaya Mohanto
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452 Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
8
|
Chitosan/PVA Hetero-Composite Hydrogel Containing Antimicrobials, Perfluorocarbon Nanoemulsions, and Growth Factor-Loaded Nanoparticles as a Multifunctional Dressing for Diabetic Wound Healing: Synthesis, Characterization, and In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:pharmaceutics14030537. [PMID: 35335913 PMCID: PMC8951566 DOI: 10.3390/pharmaceutics14030537] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetic foot ulcers remain one of the most difficult-to-treat complications of diabetes and may seriously threaten the life of patients since it frequently results in limb loss due to amputation, suggesting that an effective therapeutic strategy is still urgently needed. In this study, a chitosan-based heterogeneous composite hydrogel encapsulating perfluorocarbon emulsions, epidermal growth factor (EGF)-loaded chitosan nanoparticles, and polyhexamethylene biguanide (PHMB) named PEENPPCH was developed for diabetic wound healing. The PEENPPCH could sustainably release EGF and PHMB in an ion-rich environment to exert antibacterial effects and promote cell growth for wound repair. In addition, the PEENPPCH can provide anti-inflammatory effects functioned by its main constituent of chitosan. Moreover, the PEENPPCH can proactively offer oxygen delivery through the incorporation of perfluorocarbon and, therefore, is able to alleviate hypoxia conditions on diabetic wounds. These functionalities enabled a markedly enhanced wound healing efficacy on diabetic rats treated with the PEENPPCHs, including thorough re-epithelization, a reduced inflammatory response, faster collagen deposition, and advanced collagen maturation resulting in a 95% of wound closure degree after 15 days that was 12.6% (p < 0.05) higher than the value of the group treated with the commercial dressing HeraDerm. Given the aforementioned advantages, together with the known merits of hydrogels, the developed PEENPPCH is anticipated to be a feasible tool for clinical diabetic wound treatment.
Collapse
|
9
|
Optical sensor arrays designed for guided manufacture of perfluorocarbon nanoemulsions with a non-synthetic stabilizer. Acta Biomater 2021; 136:558-569. [PMID: 34563723 DOI: 10.1016/j.actbio.2021.09.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Hydrophobic drugs are incorporated into oil-in-water nanoemulsions (OIW) either as new formulations or repurposed for intravenous delivery. Typically, these are manufactured through stepwise processes of sonication or high-pressure homogenization (HPH). The guiding criteria for most nanoemulsion manufacture are the size and homogeneity/polydispersity of the drug-laden particles with strict requirements for clinical injectables. To date, most formulation optimization is done through trial and error with stepwise sampling during processing utilizing dynamic light scattering (DLS), light obscuration sensing (LOS) or laser particle tracking (LPT) to assess manufacturing progress. The objective of this work was to develop and implement an in-line optical turbidity/nephelometry sensor array for the longitudinal in-process monitoring of nanoemulsion manufacture. A further objective was the use of this sensor array to rapidly optimize the manufacture of a sub-120 nm oxygen carrying perfluorocarbon nanoemulsion with a non-synthetic stabilizer. During processing, samples were taken for particle size measurement and further characterization. There was a significant correlation and agreement between particle size and sensor signal as well as improved process reproducibility through sensor-guided manufacture. Given the cost associated with nanoemulsion development and scale-up manufacture, our sensor arrays could be an invaluable tool for efficient and cost-effective drug development. Sensor-guided manufacturing was used to optimize oxygen-carrying nanoemulsions. These were tested, in vitro, for their ability to improve the viability of encapsulated endocrine clusters (mouse insulinoma, Min6) and to eliminate hypoxia due to oxygen mass transfer limitations. The nanomulsions significantly improved encapsulated cluster viability and reduced hypoxia within the microcapsule environment. STATEMENT OF SIGNIFICANCE: Nanoemulsions are rapidly becoming vehicles for the controlled release delivery of both hydrophilic and hydrophobic drugs given their large surface area for exchange. As work shifts from bench to large scale manufacturing, there is a critical need for technologies that can monitor and accumulate data during processing, particularly regarding the endpoint criteria of particle size and stability. To date, no such technology has been implemented in nanoemulsion manufacture. In this paper we develop and implement an optical sensor array for in-line nanoemulsion process monitoring and then use the array to optimize the development and manufacture of novel reproducible oxygen carrying nanoemulsions lacking synthetic surfactants.
Collapse
|
10
|
Gong Z, Tootoonchi MH, Fraker CA, Walls JD. Reverse-dialysis can be misleading for drug release studies in emulsions as demonstrated by NMR dilution experiments. Int J Pharm 2021; 608:121093. [PMID: 34534630 PMCID: PMC8511114 DOI: 10.1016/j.ijpharm.2021.121093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/04/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022]
Abstract
Emulsions are an important class of carriers for the delivery of hydrophobic drugs. While knowledge of drug release kinetics is critical to optimizing drug carrying emulsions, there remain many open questions about the validity of standard characterization methods such as the commonly used reverse-dialysis. In this paper, the kinetic parameters of isoflurane release in perfluorotributylamine emulsions determined from both reverse-dialysis and nuclear magnetic resonance (NMR) dilution experiments are compared. The NMR-determined kinetic parameters of isoflurane release were found to be approximately seven orders of magnitude larger than those determined from conventional reverse-dialysis and were also shown to be consistent with prior in vivo observations of the anesthetization of rats.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Department of Chemistry, University of Miami, Coral Gables FL 33146, United States
| | | | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami FL 33136, United States
| | - Jamie D Walls
- Department of Chemistry, University of Miami, Coral Gables FL 33146, United States.
| |
Collapse
|
11
|
Vidallon MLP, Giles LW, Pottage MJ, Butler CSG, Crawford SA, Bishop AI, Tabor RF, de Campo L, Teo BM. Tracking the heat-triggered phase change of polydopamine-shelled, perfluorocarbon emulsion droplets into microbubbles using neutron scattering. J Colloid Interface Sci 2021; 607:836-847. [PMID: 34536938 DOI: 10.1016/j.jcis.2021.08.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023]
Abstract
Perfluorocarbon emulsion droplets are hybrid colloidal materials with vast applications, ranging from imaging to drug delivery, due to their controllable phase transition into microbubbles via heat application or acoustic droplet vapourisation. The current work highlights the application of small- and ultra-small-angle neutron scattering (SANS and USANS), in combination with contrast variation techniques, in observing the in situ phase transition of polydopamine-shelled, perfluorocarbon (PDA/PFC) emulsion droplets with controlled polydispersity into microbubbles upon heating. We correlate these measurements with optical and transmission electron microscopy imaging, dynamic light scattering, and thermogravimetric analysis to characterise these emulsions, and observe their phase transition into microbubbles. Results show that the phase transition of PDA/PFC droplets with perfluorohexane (PFH), perfluoropentane (PFP), and PFH-PFP mixtures occur at temperatures that are around 30-40 °C higher than the boiling points of pure liquid PFCs, and this is influenced by the specific PFC compositions (perfluorohexane, perfluoropentane, and mixtures of these PFCs). Analysis and model fitting of neutron scattering data allowed us to monitor droplet size distributions at different temperatures, giving valuable insights into the transformation of these polydisperse, emulsion droplet systems.
Collapse
Affiliation(s)
| | - Luke W Giles
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Pottage
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Calum S G Butler
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Simon A Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Liliana de Campo
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW 2234, Australia.
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
12
|
Gong Z, Tootoonchi MH, Fraker CA, Walls JD. Determining chemical exchange rate constants in nanoemulsions using nuclear magnetic resonance. Phys Chem Chem Phys 2021; 23:19244-19254. [PMID: 34525142 PMCID: PMC8442839 DOI: 10.1039/d1cp02077c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
In this work, the second-order kinetics of molecules exchanging between chemically distinct microenvironments, such as those found in nanoemulsions, is studied using nuclear magnetic resonance (NMR). A unique aspect of NMR exchange studies in nanoemulsions is that the difference in molecular resonance frequencies between the two phases, which determines whether the exchange is fast, intermediate, or slow on the NMR timescale, can depend upon the emulsion droplet composition, which is also determined by the kinetic exchange constants themselves. Within the fast-exchange regime, changes in resonance frequencies and line widths with dilution were used to extract the exchange rate constants from the NMR spectra in a manner analogous to determining the kinetic parameters in NMR ligand binding experiments. As a demonstration, the kinetic exchange parameters of isoflurane release from an emulsification of isoflurane and perflurotributylamine (FC43) were determined using NMR dilution and diffusion studies.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33124, USA
| | - Jamie D Walls
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
13
|
Trace Analysis of Anions in Perfluorodecalin by Green Liquid–Liquid Extraction Combined with Ion Chromatography. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Szymczyk K, Zdziennicka A, Jańczuk B. Properties of some nonionic fluorocarbon surfactants and their mixtures with hydrocarbon ones. Adv Colloid Interface Sci 2021; 292:102421. [PMID: 33957391 DOI: 10.1016/j.cis.2021.102421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The adsorption of Zonyl FSN-100 (FSN100, having an average 14 oxyethylene units and 6 -CF2 groups) and Zonyl FSO-100 (FSO100, having an average 10 oxyethylene units and 5 -CF2 groups) as well as of their mixtures with p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethylene glycols) having 10, 16 and 8 oxyethylene groups in molecule (TX100, TX165, TX114) and cetyltrimethylammonium bromide (CTAB) at the solution-air and polytetrafluoroethylene (PTFE)-solution and polymethyl methacrylate (PMMA)-solution interfaces as well as the composition of the surface mixed layer was discussed based on the literature data. The adsorption properties of nonionic fluorocarbon surfactants were compared to those of the classical ones on the basis of the Gibbs standard free energy of adsorption determined by different ways and the intermolecular interactions of the surfactant molecules through the water phase. The synergetic effect in the reduction of the water surface tension by the mixture of fluorocarbon and classical nonionic surfactant was shown and explained by the comparison of the composition of the mixed surface layer to those in the bulk phase. The composition of the mixed fluorocarbon and classical surfactant layer at the solution-air interface was compared to that formed at the PTFE-solution and PMMA-solution interfaces. The changes of the surface tension of the aqueous solution of the fluorocarbon surfactants and their mixtures with classical hydrocarbon ones and their adsorption were analyzed taking into account the PTFE and PMMA surface wettability. This analysis was also based on the components and parameters of the head and tail of the surfactants surface tension as well as those of PTFE and PMMA. Apart from adsorption and wetting properties the aggregation of the fluorocarbon surfactants and their mixtures was discussed. A specific attention was paid to the possibility of two CMC values in the case of nonionic fluorocarbon surfactants as well as the synergism in CMC of mixtures of nonionic fluorocarbon and hydrocarbon surfactants.
Collapse
Affiliation(s)
- Katarzyna Szymczyk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Anna Zdziennicka
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Bronisław Jańczuk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
15
|
Lee AL, Lee SH, Nguyen H, Cahill M, Kappel E, Pomerantz WCK, Haynes CL. Investigation of the Post-Synthetic Confinement of Fluorous Liquids Inside Mesoporous Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5222-5231. [PMID: 33886317 PMCID: PMC9682517 DOI: 10.1021/acs.langmuir.1c00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perfluorocarbon (PFC) filled nanoparticles are increasingly being investigated for various biomedical applications. Common approaches for PFC liquid entrapment involve surfactant-based emulsification and Pickering emulsions. Alternatively, PFC liquids are capable of being entrapped inside hollow nanoparticles via a postsynthetic loading method (PSLM). While the methodology for the PSLM is straightforward, the effect each loading parameter has on the PFC entrapment has yet to be investigated. Previous work revealed incomplete filling of the hollow nanoparticles. Changing the loading parameters was expected to influence the ability of the PFC to fill the core of the nanoparticles. Hence, it would be possible to model the loading mechanism and determine the influence each factor has on PFC entrapment by tracking the change in loading yield and efficiency of PFC-filled nanoparticles. Herein, neat PFC liquid was loaded into silica nanoparticles and extracted into aqueous phases while varying the sonication time, concentration of nanoparticles, volume ratio between aqueous and fluorous phases, and pH of the extraction water. Loading yields and efficiency were determined via 19F nuclear magnetic resonance and N2 physisorption isotherms. Sonication time was indicated to have the strongest correlation to loading yield and efficiency; however, method validation revealed that the current model does not fully explain the loading capabilities of the PSLM. Confounding variables and more finely controlled parameters need to be considered to better predict the behavior and loading capacity by the PSLM and warrants further study.
Collapse
Affiliation(s)
- Amani L Lee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sang-Hyuk Lee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Huan Nguyen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Meghan Cahill
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elaine Kappel
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
A Multiscale Approach to the Design and Manipulation of Oil-in-Water Emulsion-Based Products. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/8897983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Advances in computational technology and high-throughput modeling software have given rise to the tailored design of products that require accurate mathematical relationships for their assessment. Industrial emulsion-based products, ubiquitous to everyday life, are complex systems driven by interfacial phenomena that require quick property-prediction tools for their commercialization. In this work, by means of a multiscale approach, mathematical relationships to model oil-in-water emulsions and that can be applied to any commercial emulsion-based product are proposed. The energy consumption during the emulsification process (
, which transitions from monotonic increase to exponential growth at 80%
), a parameter responsible for finished product performance, was linked to final product properties at three different levels: (i) molecular, through the dynamics of the interdroplet interactions given their distribution and structure at a microscopic level; (ii) microscopic, through average droplet size yielding an inversely proportional exponential relationship (
); and (iii) macroscopic, through the plateau value of the elastic modulus and the flow behavior index leading to inversely proportional quadratic relationships (
and
, respectively). These relationships are valid at dispersed phase concentrations beyond the 60%
threshold where the packing of the droplets changes the emulsion’s microscopic structure giving rise to Van der Waals forces-driven phenomena. Finding this threshold allowed expanding the concentration ranges of previously reported models. The main expectation is that these results will aid researchers and process/product designers to optimize their work in different industrial applications.
Collapse
|
17
|
Shen J, Pan X, Bhatia SR. Self-assembly and thermoreversible rheology of perfluorocarbon nanoemulsion-based gels with amphiphilic copolymers. Colloids Surf B Biointerfaces 2021; 202:111641. [PMID: 33706161 DOI: 10.1016/j.colsurfb.2021.111641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/28/2020] [Accepted: 02/13/2021] [Indexed: 01/23/2023]
Abstract
Perfluorocarbon (PFC) nanoemulsions have great potential in biomedical applications due to their unique chemical stability, biocompatibility, and possibilities for enhanced oxygen supply. The addition of amphiphilic block copolymers promotes the formation and long-term stability of emulsion-based gels. In this work, we report the systematic study of the impact of adding amphiphilic triblock copolymers to water-in-perfluorocarbon nanoemulsions on their structure and viscoelasticity, utilizing small-angle neutron and X-ray scattering (SANS and SAXS) and rheology. We find that an intermediate concentration of copolymer yields the highest strength of attraction between droplets, corresponding to a maximum in the elasticity and storage modulus. The stability and viscoelastic moduli can be tuned via the amount of copolymer and surfactant along with the volume fraction of aqueous phase. SANS provides the detail on nanostructure and can be fit to a spherical core-shell form factor with a square-well hard sphere structure factor. The PFC nanoemulsion system displays thermoresponsive and thermoreversible properties in temperature sweeps.
Collapse
Affiliation(s)
- Jiachun Shen
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Xiaoming Pan
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
18
|
Lambert E, Janjic JM. Quality by design approach identifies critical parameters driving oxygen delivery performance in vitro for perfluorocarbon based artificial oxygen carriers. Sci Rep 2021; 11:5569. [PMID: 33692373 PMCID: PMC7946885 DOI: 10.1038/s41598-021-84076-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 01/15/2023] Open
Abstract
Perfluorocarbons (PFCs) exhibiting high solubility for oxygen are attractive materials as artificial oxygen carriers (AOC), an alternative to whole blood or Haemoglobin-based oxygen carriers (HBOCs). PFC-based AOCs, however, met clinical translation roadblocks due to product quality control challenges. To overcome these issues, we present an adaptation of Quality by Design (QbD) practices to optimization of PFC nanoemulsions (PFC-NEs) as AOCs. QbD elements including quality risk management, design of experiments (DoE), and multivariate data analysis facilitated the identification of composition and process parameters that strongly impacted PFC colloidal stability and oxygen transport function. Resulting quantitative relationships indicated a composition-driven tradeoff between stability and oxygen transport. It was found that PFC content was most predictive of in vitro oxygen release, but the PFC type (perfluoro-15-crown-5-ether, PCE or perfluorooctyl bromide, PFOB) had no effect on oxygen release. Furthermore, we found, under constant processing conditions, all PFC-NEs, comprised of varied PFC and hydrocarbon content, exhibited narrow droplet size range (100–150 nm) and narrow size distribution. Representative PFOB-NE maintained colloidal attributes upon manufacturing on larger scale (100 mL). QbD approach offers unique insights into PFC AOC performance, which will overcome current product development challenges and accelerate clinical translation.
Collapse
Affiliation(s)
- Eric Lambert
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
19
|
Perfluorocarbon-based oxygen carriers: from physics to physiology. Pflugers Arch 2020; 473:139-150. [PMID: 33141239 PMCID: PMC7607370 DOI: 10.1007/s00424-020-02482-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022]
Abstract
Developing biocompatible, synthetic oxygen carriers is a consistently challenging task that researchers have been pursuing for decades. Perfluorocarbons (PFC) are fascinating compounds with a huge capacity to dissolve gases, where the respiratory gases are of special interest for current investigations. Although largely chemically and biologically inert, pure PFCs are not suitable for injection into the vascular system. Extensive research created stable PFC nano-emulsions that avoid (i) fast clearance from the blood and (ii) long organ retention time, which leads to undesired transient side effects. PFC-based oxygen carriers (PFOCs) show a variety of application fields, which are worthwhile to investigate. To understand the difficulties that challenge researchers in creating formulations for clinical applications, this review provides the physical background of PFCs’ properties and then illuminates the reasons for instabilities of PFC emulsions. By linking the unique properties of PFCs and PFOCs to physiology, it elaborates on the response, processing and dysregulation, which the body experiences through intravascular PFOCs. Thereby the reader will receive a scientific and easily comprehensible overview why PFOCs are precious tools for so many diverse application areas from cancer therapeutics to blood substitutes up to organ preservation and diving disease.
Collapse
|
20
|
Lambert E, Gorantla VS, Janjic JM. Pharmaceutical design and development of perfluorocarbon nanocolloids for oxygen delivery in regenerative medicine. Nanomedicine (Lond) 2019; 14:2697-2712. [PMID: 31657273 DOI: 10.2217/nnm-2019-0260] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Perfluorocarbons (PFCs) have been investigated as oxygen carriers for several decades in varied biomedical applications. PFCs are chemically and biologically inert, temperature and storage stable, pose low to no infectious risk, can be commercially manufactured, and have well established gas transport properties. In this review, we highlight design and development strategies for their successful application in regenerative medicine, transplantation and organ preservation. Effective tissue preservation strategies are key to improving outcomes of extremity salvage and organ transplantation. Maintaining tissue integrity requires adequate oxygenation to support aerobic metabolism. The use of whole blood for oxygen delivery is fraught with limitations of poor shelf stability, infectious risk, religious exclusions and product shortages. Other agents also face clinical challenges in their implementation. As a solution, we discuss new ways of designing and developing PFC-based artificial oxygen carriers by implementing modern pharmaceutical quality by design and scale up manufacturing methodologies.
Collapse
Affiliation(s)
- Eric Lambert
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| | - Vijay S Gorantla
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA.,AIRMED Program, 59th Medical Wing, United States Air Force, United States Army Institute of Surgical Research, San Antonio, TX 78234, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA.,AIRMED Program, 59th Medical Wing, United States Air Force, United States Army Institute of Surgical Research, San Antonio, TX 78234, USA
| |
Collapse
|
21
|
Lambert E, Janjic JM. Multiple linear regression applied to predicting droplet size of complex perfluorocarbon nanoemulsions for biomedical applications. Pharm Dev Technol 2019; 24:700-710. [PMID: 30724654 PMCID: PMC10182475 DOI: 10.1080/10837450.2019.1578372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Multiple linear regression (MLR) modeling as a novel methodological advancement for design, development, and optimization of perfluorocarbon nanoemulsions (PFC NEs) is presented. The goal of the presented work is to develop MLR methods applicable to design, development, and optimization of PFC NEs in broad range of biomedical uses. Depending on the intended use of PFC NEs as either therapeutics or diagnostics, NE composition differs in respect to specific applications (e.g. magnetic resonance imaging, drug delivery, etc). PFC NE composition can significantly impact on PFC NE droplet size which impacts the NE performance and quality. We demonstrated earlier that microfluidization combined with sonication produces stable emulsions with high level of reproducibility. The goal of the presented work was to establish correlation between droplet size and composition in complex PFC-in-oil-in-water NEs while manufacturing process parameters are kept constant. Under these conditions, we demonstrate that MLR model can predict droplet size based on formulation variables such as amount and type of PFC oil and hydrocarbon oil. To the best of our knowledge, this is the first report where PFC NE composition was directly related to its colloidal properties and MLR used to predict colloidal properties from composition variables.
Collapse
Affiliation(s)
- Eric Lambert
- a Graduate School of Pharmaceutical Sciences , Duquesne University , Pittsburgh , PA , USA
| | - Jelena M Janjic
- a Graduate School of Pharmaceutical Sciences , Duquesne University , Pittsburgh , PA , USA
- b Chronic Pain Research Consortium , Duquesne University , Pittsburgh , PA , USA
| |
Collapse
|
22
|
Grządka E, Matusiak J, Stankevič M. Interactions between fluorocarbon surfactants and polysaccharides. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Xiang Y, Bernards N, Hoang B, Zheng J, Matsuura N. Perfluorocarbon nanodroplets can reoxygenate hypoxic tumors in vivo without carbogen breathing. Nanotheranostics 2019; 3:135-144. [PMID: 31008022 PMCID: PMC6470341 DOI: 10.7150/ntno.29908] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
Nanoscale perfluorocarbon (PFC) droplets have enormous potential as clinical theranostic agents. They are biocompatible and are currently used in vivo as contrast agents for a variety of medical imaging modalities, including ultrasound, computed tomography, photoacoustic and 19F-magnetic resonance imaging. PFC nanodroplets can also carry molecular and nanoparticulate drugs and be activated in situ by ultrasound or light for targeted therapy. Recently, there has been renewed interest in using PFC nanodroplets for hypoxic tumor reoxygenation towards radiosensitization based on the high oxygen solubility of PFCs. Previous studies showed that tumor oxygenation using PFC agents only occurs in combination with enhanced oxygen breathing. However, recent studies suggest that PFC agents that accumulate in solid tumors can contribute to radiosensitization, presumably due to tumor reoxygenation without enhanced oxygen breathing. In this study, we quantify the impact of oxygenation due to PFC nanodroplet accumulation in tumors alone in comparison with other reoxygenation methodologies, in particular, carbogen breathing. Methods: Lipid-stabilized, PFC (i.e., perfluorooctyl bromide, CF3(CF2)7Br, PFOB) nanoscale droplets were synthesized and evaluated in xenograft prostate (DU145) tumors in male mice. Biodistribution assessment of the nanodroplets was achieved using a fluorescent lipophilic indocarbocyanine dye label (i.e., DiI dye) on the lipid shell in combination with fluorescence imaging in mice (n≥3 per group). Hypoxia reduction in tumors was measured using PET imaging and a known hypoxia radiotracer, [18F]FAZA (n≥ 3 per group). Results: Lipid-stabilized nanoscale PFOB emulsions (mean diameter of ~250 nm), accumulated in the xenograft prostate tumors in mice 24 hours post-injection. In vivo PET imaging with [18F]FAZA showed that the accumulation of the PFOB nanodroplets in the tumor tissues alone significantly reduced tumor hypoxia, without enhanced oxygen (i.e., carbogen) breathing. This reoxygenation effect was found to be comparable with carbogen breathing alone. Conclusion: Accumulation of nanoscale PFOB agents in solid tumors alone successfully reoxygenated hypoxic tumors to levels comparable with carbogen breathing alone, an established tumor oxygenation method. This study confirms that PFC agents can be used to reoxygenate hypoxic tumors in addition to their current applications as multifunctional theranostic agents.
Collapse
Affiliation(s)
- Yun Xiang
- Department of Medical Imaging, University of Toronto, Ontario, Canada
| | - Nicholas Bernards
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario, Canada
| | - Bryan Hoang
- Department of Medical Imaging, University of Toronto, Ontario, Canada
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario, Canada
| | - Jinzi Zheng
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Naomi Matsuura
- Department of Medical Imaging, University of Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
- Department of Materials Science and Engineering, University of Toronto, Ontario, Canada
| |
Collapse
|
24
|
Mackie G, Gao L, Yau S, Leslie DC, Waterhouse A. Clinical Potential of Immobilized Liquid Interfaces: Perspectives on Biological Interactions. Trends Biotechnol 2019; 37:268-280. [DOI: 10.1016/j.tibtech.2018.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
|
25
|
Stable perfluorocarbon emulsions for the delivery of halogenated ether anesthetics. Colloids Surf B Biointerfaces 2018; 172:797-805. [PMID: 30342412 DOI: 10.1016/j.colsurfb.2018.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Research into injectable volatile anesthetics has been ongoing for approximately 40 years, with limited success, in an attempt to address the deficiencies of inhalational anesthesia. The purpose of this work was to formulate and optimize volatile anesthetic carrier emulsions based on our prior work in perfluorocarbon emulsions. METHODS Perfluorocarbons were screened for their volatilty and emulsion stability. Optimal anesthetic emulsions were manufactured by high pressure homogenization of a select, clinically relevant perfluorocarbon, isoflurane and a surfactant-containing aqueous phase. Longitudinal particle size, polydispersity and isoflurane content analysis was performed. Observational studies of in vivo efficacy and safety were performed in 225-300 g Lewis Rats (n = 34) with blood chemistry and post study tissue pathology analysis. RESULTS Emulsion particle size and isolflurane content in select emulsions were stable at room temperature greater than 300 days. This stability was depedent on perfluorocarbon molecular weight and boiling point. in vivo, emulsions demonstrated a rapid onset and offset. Variability in onset metrics (loss of righting reflex, pain reflexes and time to recovery) was less than 40% amongst individual emulsion preparations (n = 9) utilized in induction trials. No adverse effects due to the intravenous administration of emulsions were observed in blood chemistry results or post-study pathological examination. CONCLUSIONS These formulations showed stability, safety and efficacy. In addition to induction and general anesthesia, these emulsions could have utility in global health or in military applications where equipment and resources are limited.
Collapse
|
26
|
The chemical structure of triblock copolymers and the adsorption capacity of perfluorocarbon—core nanoparticles stabilized by them. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-017-4245-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Wrobeln A, Laudien J, Groß-Heitfeld C, Linders J, Mayer C, Wilde B, Knoll T, Naglav D, Kirsch M, Ferenz KB. Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility. Eur J Pharm Biopharm 2017; 115:52-64. [DOI: 10.1016/j.ejpb.2017.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 01/28/2023]
|
28
|
Lee YH, Ma YT. Synthesis, characterization, and biological verification of anti-HER2 indocyanine green-doxorubicin-loaded polyethyleneimine-coated perfluorocarbon double nanoemulsions for targeted photochemotherapy of breast cancer cells. J Nanobiotechnology 2017; 15:41. [PMID: 28521752 PMCID: PMC5437512 DOI: 10.1186/s12951-017-0274-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/08/2017] [Indexed: 11/22/2022] Open
Abstract
Background Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females worldwide. Among various types of breast cancer, the human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer is known to be more aggressive and often resistant to medicinal treatment, leading to an insufficient prognosis and poor susceptibility to chemotherapy and/or hormonal therapy in the current clinic. These circumstances implicate that developing an improved therapeutic strategy rather than persistently changing the anticancer drugs for trying is truly needed to successfully cure this type of breast cancer. In this study, we aimed to fabricate anti-HER2 indocyanine green (ICG)–doxorubicin (DOX)-loaded polyethyleneimine-coated perfluorocarbon double nanoemulsions (HIDPPDNEs) to explore the co-administration of phototherapy and chemotherapy for HER2-overexpressing breast cancer in vitro. Results The HIDPPDNE was first characterized as a sphere-like nanoparticle with surface charge of −57.1 ± 5.6 mV and size of 340.6 ± 4.5 nm, whereas the DOX release rates for the nanodroplets within 48 h in 4 and 37 °C were obtained by 8.13 ± 2.46% and 19.88 ± 2.75%, respectively. We then examined the target-ability of the nanostructure and found that the adhesion efficiency of the HIDPPDNEs onto HER2+ MDA-MB-453 cells was threefold higher than the nanodroplets without anti-HER2 antibody, indicating that the HIDPPDNEs are the product with HER2 binding specificity. In comparison to freely dissolved ICG, the HIDPPDNEs conferred an enhanced thermal stability to the entrapped ICG, and were able to provide a comparable hyperthermia effect and markedly increased production of singlet oxygen under near infrared irradiation (808 nm; 6 W/cm2). Based on the viability analyses, the results showed that the HIDPPDNEs were effective on cell eradication upon near infrared irradiation (808 nm; 6 W/cm2), and the resulting cell mortality was even higher than that caused by using twice amount of encapsulated DOX or ICG alone. Conclusions This work demonstrates that the HIDPPDNEs are able to provide improved ICG stability, binding specificity, and enhanced anticancer efficacy as compared to equal dosage of free ICG and/or DOX, showing a high potential for use in HER2 breast cancer therapy with reduced chemotoxicity. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0274-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Taoyuan City, 32001, Taiwan, ROC. .,Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan, ROC.
| | - Yun-Ting Ma
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Taoyuan City, 32001, Taiwan, ROC
| |
Collapse
|
29
|
Paciello A, Amalfitano G, Garziano A, Urciuolo F, Netti PA. Hemoglobin-Conjugated Gelatin Microsphere as a Smart Oxygen Releasing Biomaterial. Adv Healthc Mater 2016; 5:2655-2666. [PMID: 27594116 DOI: 10.1002/adhm.201600559] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Indexed: 12/12/2022]
Abstract
In this study, a novel micrometric biomaterial acting as a cyclic oxygen releasing system is designed. Human hemoglobin (Hb) is conjugated to the surface of gelatin microspheres (GM) to produce gelatin hemoglobin oxygen depot (G-HbOD). G-HbOD is obtained by means of two different conjugation strategies. The degree of conjugation of GM surfaces in terms of free amino groups by using HPLC is first evaluated. By following the strategy A (G-HbOD_A), Hb is conjugated to GM by means of the formation of a polyurethane linker. In the strategy B (G-HbOD_B) the conjugation occurs via amide bound formation. Physical and morphological differences between G-HbOD_A and G-HbOD_B are investigated by means of Fourier Transform Infrared Spectroscopy (FTIR), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Differences in oxygen uptake/release kinetics are found depending on the conjugation strategy and it is proved that G-HbOD works under repeated cycles in microfluidic chip. Moreover, G-HbOD is also able to work as oxygen depot in the early stages of 3D cell cultures.
Collapse
Affiliation(s)
- Antonio Paciello
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 80125 Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
| | - Giuseppe Amalfitano
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 80125 Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
| | - Alessandro Garziano
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 80125 Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 80125 Napoli Italy
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 80125 Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
- Department of Chemical; Materials and Industrial Production Engineering (DICMAPI); University of Napoli Federico II; P.le Tecchio 80 80125 Napoli Italy
| |
Collapse
|
30
|
Preparation and Characterization of Novel Perfluorooctyl Bromide Nanoparticle as Ultrasound Contrast Agent via Layer-by-Layer Self-Assembly for Folate-Receptor-Mediated Tumor Imaging. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6381464. [PMID: 27652265 PMCID: PMC5019893 DOI: 10.1155/2016/6381464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 06/27/2016] [Indexed: 12/04/2022]
Abstract
A folate-polyethylene glycol-chitosan derivative was synthesized and its structure was characterized. An optimal perfluorooctyl bromide nanocore template was obtained via utilizing the ultrasonic emulsification method combining with orthogonal design. The targeted nanoparticles containing targeted shell of folate-polyethylene glycol-chitosan derivative and perfluorooctyl bromide nanocore template of ultrasound imaging were prepared successfully by exploiting layer-by-layer self-assembly as contrast agent for ultrasound. Properties of the novel perfluorooctyl bromide nanoparticle were extensively studied by Dynamic Light Scattering and Transmission Electron Microscopy. The targeted nanoparticle diameter, polydispersity, and zeta potential are around 229.5 nm, 0.205, and 44.7 ± 0.6 mV, respectively. The study revealed that spherical core-shell morphology was preserved. Excellent stability of targeted nanoparticle is evidenced by two weeks of room temperature stability tests. The results of the cell viability assay and the hemolysis test confirmed that the targeted nanoparticle has an excellent biocompatibility for using in cell studies and ultrasound imaging in vivo. Most importantly, in vitro cell experiments demonstrated that an increased amount of targeted nanoparticles was accumulated in hepatocellular carcinoma cell line Bel7402 relative to hepatoma cell line L02. And targeted nanoparticles had also shown better ultrasound imaging abilities in vitro. The data suggest that the novel targeted nanoparticle may be applicable to ultrasonic molecular imaging of folate-receptor overexpressed tumor.
Collapse
|
31
|
Que Y, Liu Y, Tan W, Feng C, Shi P, Li Y, Xiaoyu H. Enhancing Photodynamic Therapy Efficacy by Using Fluorinated Nanoplatform. ACS Macro Lett 2016; 5:168-173. [PMID: 35614693 DOI: 10.1021/acsmacrolett.5b00935] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Photodynamic therapy (PDT) is a noninvasive therapeutic modality with fast healing process and little or no scarring. The production of reactive oxygen species is highly dependent on oxygen concentration, and thus, the therapeutic efficacy of PDT would be retarded by inefficient oxygen supply in hypoxic tumor cell and the oxygen self-consuming mechanism of PDT. It is well-known that perfluorocarbons are endowed with properties of enhanced oxygen solubility and transfer capacity. Herein, we prepared a series of nanoplatforms of spherical micelles with different ratios of pentafluorophenyl to porphyrin in the core and utilized these micelles as models to examine the influence of content of fluorinated segments on the PDT effect of porphyrins. It was found for the first time, as far as we are aware, that the production efficacy of singlet oxygen increased with the rising in the ratio of pentafluorophenyl to porphyrin. Thus, this work presents a new avenue to improve PDT efficacy by enhancing oxygen solubility and diffusivity of nanoplatforms with the incorporation of perfluorocarbon segments.
Collapse
Affiliation(s)
- Yurong Que
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Yajing Liu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Wei Tan
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Chun Feng
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ping Shi
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Yongjun Li
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Huang Xiaoyu
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
32
|
Reduction of oxygen inhibition effect for microalgal growth using fluoroalkylated methoxy polyethylene glycol-stabilized perfluorocarbon nano-oxygen carriers. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Abstract
Theranostic nanomedicines are a promising new technological advancement toward personalized medicine. Although much progress has been made in pre-clinical studies, their clinical utilization is still under development. A key ingredient for successful theranostic clinical translation is pharmaceutical process design for production on a sufficient scale for clinical testing. In this study, we report, for the first time, a successful scale-up of a model theranostic nanoemulsion. Celecoxib-loaded near-infrared-labeled perfluorocarbon nanoemulsion was produced on three levels of scale (small at 54 mL, medium at 270 mL, and large at 1,000 mL) using microfluidization. The average size and polydispersity were not affected by the equipment used or production scale. The overall nanoemulsion stability was maintained for 90 days upon storage and was not impacted by nanoemulsion production scale or composition. Cell-based evaluations show comparable results for all nanoemulsions with no significant impact of nanoemulsion scale on cell toxicity and their pharmacological effects. This report serves as the first example of a successful scale-up of a theranostic nanoemulsion and a model for future studies on theranostic nanomedicine production and development.
Collapse
Affiliation(s)
- Lu Liu
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University , Pittsburgh, Pennsylvania
| | - Christina Bagia
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University , Pittsburgh, Pennsylvania
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University , Pittsburgh, Pennsylvania. ; Chronic Pain Research Consortium, Duquesne University , Pittsburgh, Pennsylvania. ; McGowan Research Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Re-engineering islet cell transplantation. Pharmacol Res 2015; 98:76-85. [PMID: 25814189 DOI: 10.1016/j.phrs.2015.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
We are living exciting times in the field of beta cell replacement therapies for the treatment of diabetes. While steady progress has been recorded thus far in clinical islet transplantation, novel approaches are needed to make cell-based therapies more reproducible and leading to long-lasting success. The multiple facets of diabetes impose the need for a transdisciplinary approach to attain this goal, by targeting immunity, promoting engraftment and sustained functional potency. We discuss herein the emerging technologies applied to this rapidly evolving field.
Collapse
|
35
|
New strategy to apply perfluorodecalin as an oxygen carrier in lipase production: minimisation and reuse. Bioprocess Biosyst Eng 2014; 38:721-8. [DOI: 10.1007/s00449-014-1312-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
36
|
Fluoro- vs hydrocarbon surfactants: why do they differ in wetting performance? Adv Colloid Interface Sci 2014; 210:65-71. [PMID: 24814169 DOI: 10.1016/j.cis.2014.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 11/21/2022]
Abstract
Fluorosurfactants are the most effective compounds to lower the surface tension of aqueous solutions, but their wetting properties as related to low energy hydrocarbon solids are inferior to hydrocarbon trisiloxane surfactants, although the latter demonstrate higher surface tension in aqueous solutions. To explain this inconsistency available data on the adsorption of fluorosurfactants on liquid/vapour, solid/liquid and solid/vapour interfaces are discussed in comparison to those of hydrocarbon surfactants. The low free energy of adsorption of fluorosurfactants on hydrocarbon solid/water interface should be of a substantial importance for their wetting properties.
Collapse
|
37
|
White JC, Godsey ME, Bhatia SR. Perfluorocarbons enhance oxygen transport in alginate-based hydrogels. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Joseph C. White
- Department of Chemical Engineering; University of Massachusetts Amherst; Amherst MA 01003 USA
| | - Megan E. Godsey
- Department of Chemical Engineering; University of Massachusetts Amherst; Amherst MA 01003 USA
| | - Surita R. Bhatia
- Department of Chemical Engineering; University of Massachusetts Amherst; Amherst MA 01003 USA
- Department of Chemistry; Stony Brook University; Stony Brook NY 11794 USA
- Center for Functional Nanomaterials; Brookhaven National Laboratory; Upton NY 11793 USA
| |
Collapse
|
38
|
Colton CK. Oxygen supply to encapsulated therapeutic cells. Adv Drug Deliv Rev 2014; 67-68:93-110. [PMID: 24582600 DOI: 10.1016/j.addr.2014.02.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 02/07/2023]
Abstract
Therapeutic cells encapsulated in immunobarrier devices have promise for treatment of a variety of human diseases without immunosuppression. The absence of sufficient oxygen supply to maintain viability and function of encapsulated tissue has been the most critical impediment to progress. Within the framework of oxygen supply limitations, we review the major issues related to development of these devices, primarily in the context of encapsulated islets of Langerhans for treating diabetes, including device designs and materials, supply of tissue, protection from immune rejection, and maintenance of cell viability and function. We describe various defensive measures investigated to enhance survival of transplanted tissue, and we review the diverse approaches to enhancement of oxygen transport to encapsulated tissue, including manipulation of diffusion distances and oxygen permeability of materials, induction of neovascularization with angiogenic factors and vascularizing membranes, and methods for increasing the oxygen concentration adjacent to encapsulated tissue so as to exceed that in the microvasculature. Recent developments, particularly in this latter area, suggest that the field is ready for clinical trials of encapsulated therapeutic cells to treat diabetes.
Collapse
|
39
|
Chin LS, Lim M, Hung TT, Marquis CP, Amal R. Perfluorodecalin nanocapsule as an oxygen carrier and contrast agent for ultrasound imaging. RSC Adv 2014. [DOI: 10.1039/c3ra47595f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
40
|
An HZ, Safai ER, Burak Eral H, Doyle PS. Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography. LAB ON A CHIP 2013; 13:4765-74. [PMID: 24141406 DOI: 10.1039/c3lc50610j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®) F-68. The nanoemulsions are generated using high-pressure homogenization and are osmotically stabilized by the trapped species method. The presence of PFC droplets increases the solubility and diffusivity of oxygen in the prepolymer solution, thereby enhancing the rate of O2 inhibition during microparticle synthesis. We develop a simple model that successfully predicts the augmented O2 mass transport, which agrees well with experimental data. Informed by our analytical results, cell-sized composite microgels are generated by controlling the oxygen environment around the polydimethylsiloxane (PDMS) microfluidic synthesis device. These nanoemulsion composites are functionally similar to red blood cells as oxygen carriers. Such bio-inspired polymeric particles with controlled physical properties are promising vehicles for drug delivery and clinical diagnostics.
Collapse
Affiliation(s)
- Harry Z An
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
41
|
Choi JY, Kim JY, Moon HJ, Park MH, Jeong B. CO2
- and O2
-Sensitive Fluorophenyl End-Capped Poly(ethylene glycol). Macromol Rapid Commun 2013; 35:66-70. [DOI: 10.1002/marc.201300700] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/16/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Jung Yoon Choi
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| | - Jin Young Kim
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| | - Hyo Jung Moon
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| | - Min Hee Park
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| |
Collapse
|
42
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Sang YYC, Lorenceau E, Wahl S, Stoffel M, Angelescu DE, Höhler R. A microfluidic technique for generating monodisperse submicron-sized drops. RSC Adv 2013. [DOI: 10.1039/c2ra23090a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|