1
|
Jobdeedamrong A, Crespy D. Release and Transport of Nanomaterials from Hydrogels Controlled by Temperature. Macromol Rapid Commun 2024; 45:e2400359. [PMID: 38897179 DOI: 10.1002/marc.202400359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Understanding the transport of nanoparticles from and within hydrogels is a key issue for the design of nanocomposite hydrogels for drug delivery systems and tissue engineering. To investigate the translocation of nanocarriers from and within hydrogel networks triggered by changes of temperature, ultrasmall (8 nm) and small (80 nm) silica nanocapsules are embedded in temperature-responsive hydrogels and non-responsive hydrogels. The ultrasmall silica nanocapsules are released from temperature-responsive hydrogels to water or transported to other hydrogels upon direct activation by heating or indirect activation by Joule heating; while, they are not released from non-responsive hydrogel. Programmable transport of nanocarriers from and in hydrogels provides insights for the development of complex biomedical devices and soft robotics.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
2
|
Amaral SI, Silva FALS, Costa-Almeida R, Timochenco L, Fernandes JR, Sarmento B, Gonçalves IC, Magalhães FD, Pinto AM. Pharmaceutical Formulations Containing Graphene and 5-Fluorouracil for Light-Emitting Diode-Based Photochemotherapy of Skin Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4333-4347. [PMID: 38240200 DOI: 10.1021/acsami.3c13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Nonmelanoma skin cancer (NMSC) is the most common cancer worldwide, among which 80% is basal cell carcinoma (BCC). Current therapies' low efficacy, side effects, and high recurrence highlight the need for alternative treatments. In this work, a partially reduced nanographene oxide (p-rGOn) developed in our laboratory was used. It has been achieved through a controlled reduction of nanographene oxide via UV-C irradiation that yields small nanometric particles (below 200 nm) that preserve the original water stability while acquiring high light-to-heat conversion efficiency. The latter is explained by a loss of carbon-oxygen single bonds (C-O) and the re-establishment of sp2 carbon bonds. p-rGOn was incorporated into a Carbopol hydrogel together with the anticancer drug 5-fluorouracil (5-FU) to evaluate a possible combined PTT and chemotherapeutic effect. Carbopol/p-rGOn/5-FU hydrogels were considered noncytotoxic toward normal skin cells (HFF-1). However, when A-431 skin cancer cells were exposed to NIR irradiation for 30 min in the presence of Carbopol/p-rGOn/5-FU hydrogels, almost complete eradication was achieved after 72 h, with a 90% reduction in cell number and 80% cell death of the remaining cells after a single treatment. NIR irradiation was performed with a light-emitting diode (LED) system, developed in our laboratory, which allows adjustment of applied light doses to achieve a safe and selective treatment, instead of the standard laser systems that are associated with damages in the healthy tissues in the tumor surroundings. Those are the first graphene-based materials containing pharmaceutical formulations developed for BCC phototherapy.
Collapse
Affiliation(s)
- Sara I Amaral
- LEPABE─Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Filipa A L S Silva
- LEPABE─Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Raquel Costa-Almeida
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Licínia Timochenco
- LEPABE─Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - José Ramiro Fernandes
- CQVR─Centro de Química Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Physical Department, University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5001-801 Vila Real, Portugal
| | - Bruno Sarmento
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CESPU, IINFACTS-Institute for Research and Advanced Training in Health Sciences and Technologies, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Inês C Gonçalves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernão D Magalhães
- LEPABE─Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
| | - Artur M Pinto
- LEPABE─Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| |
Collapse
|
3
|
Lacroce E, Bianchi L, Polito L, Korganbayev S, Molinelli A, Sacchetti A, Saccomandi P, Rossi F. On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation. NANOSCALE ADVANCES 2023; 5:6870-6879. [PMID: 38059037 PMCID: PMC10696932 DOI: 10.1039/d3na00353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 12/08/2023]
Abstract
Hydrogels are 3D cross-linked networks of polymeric chains designed to be used in the human body. Nowadays they find widespread applications in the biomedical field and are particularly attractive as drug delivery vectors. However, despite many good results, their release performance is sometimes very quick and uncontrolled, being forced by the high in vivo clearance of body fluids. In this direction, the development of novel responsive nanomaterials promises to overcome the drawbacks of common hydrogels, inducing responsive properties in three-dimensional polymeric devices. In this study, we synthesized and then loaded gold nanorods (Au NRs) within an agarose-carbomer (AC)-based hydrogel obtained from a microwave-assisted polycondensation reaction between carbomer 974P and agarose. The photothermal effect of the composite device was quantified in terms of maximum temperature and spatial-temporal temperature distribution, also during consecutive laser irradiations. This work shows that composite Au NRs loaded within AC hydrogels can serve as a stable photothermal treatment agent with enhanced photothermal efficiency and good thermal stability after consecutive laser irradiations. These results confirm that the composite system produced can exhibit an enhanced thermal effect under NIR laser irradiation, which is expected to lead to great therapeutic advantages for the localized treatment of different diseases.
Collapse
Affiliation(s)
- Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano via Giuseppe La Masa 1 20156 Milan Italy +39-02-2399-8470
| | - Laura Polito
- Consiglio Nazionale delle Ricerche, CNR-SCITEC via Gaudenzio Fantoli 16/15 20138 Milan Italy
| | - Sanzhar Korganbayev
- Department of Mechanical Engineering, Politecnico di Milano via Giuseppe La Masa 1 20156 Milan Italy +39-02-2399-8470
| | - Alessandro Molinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano via Giuseppe La Masa 1 20156 Milan Italy +39-02-2399-8470
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| |
Collapse
|
4
|
Pinelli F, Ponti M, Delleani S, Pizzetti F, Vanoli V, Vangosa FB, Castiglione F, Haugen H, Nogueira LP, Rossetti A, Rossi F, Sacchetti A. β-Cyclodextrin functionalized agarose-based hydrogels for multiple controlled drug delivery of ibuprofen. Int J Biol Macromol 2023; 252:126284. [PMID: 37572821 DOI: 10.1016/j.ijbiomac.2023.126284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Agarose hydrogels are three-dimensional hydrophilic polymeric frameworks characterised by high water content, viscoelastic properties, and excellent ability as cell and drug delivery systems. However, their hydrophilicity as gel systems makes loading of hydrophobic drugs difficult and often ineffective. The incorporation of amphiphilic molecules (e.g. cyclodextrins) into hydrogels as hosts able to form inclusion complexes with hydrophobic drugs could be a possible solution. However, if not properly confined, the host compounds can get out of the network resulting in uncontrolled release. Therefore, in this work, β-cyclodextrins-based host-guest supramolecular hydrogel systems were synthesised, with β-cyclodextrins (β-CD) covalently bound to the polymeric network, preventing leakage of the host molecules. Hydrogels were prepared at two different β-CD-functionalized polyvinyl alcohol (PVA)/agarose ratios, and characterised chemically and physically. Then ibuprofen, a drug often used as a gold standard in studies involving β-CD both in its hydrophilic and hydrophobic forms, was selected to investigate the release behavior of the synthesised hydrogels and the influence of β-CD on the release. The presence of β-CD linked to the polymeric 3D network ensured a higher and prolonged release profile for the hydrophobic drug and also seemed to have some influence on the hydrophilic one.
Collapse
Affiliation(s)
- Filippo Pinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Maddalena Ponti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Sara Delleani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Valeria Vanoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesco Briatico Vangosa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Franca Castiglione
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Havard Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Liebert P Nogueira
- Oral Research Laboratory, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Arianna Rossetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
5
|
Jia Z, Zeng H, Ye X, Dai M, Tang C, Liu L. Hydrogel-based treatments for spinal cord injuries. Heliyon 2023; 9:e19933. [PMID: 37809859 PMCID: PMC10559361 DOI: 10.1016/j.heliyon.2023.e19933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal cord injury (SCI) is characterized by damage resulting in dysfunction of the spinal cord. Hydrogels are common biomaterials that play an important role in the treatment of SCI. Hydrogels are biocompatible, and some have electrical conductivity that are compatible with spinal cord tissues. Hydrogels have a high drug-carrying capacity, allowing them to be used for SCI treatment through the loading of various types of active substances, drugs, or cells. We first discuss the basic anatomy and physiology of the human spinal cord and briefly discuss SCI and its treatment. Then, we describe different treatment strategies for SCI. We further discuss the crosslinking methods and classification of hydrogels and detail hydrogel biomaterials prepared using different processing methods for the treatment of SCI. Finally, we analyze the future applications and limitations of hydrogels for SCI. The development of biomaterials opens up new possibilities and options for the treatment of SCI. Thus, our findings will inspire scholars in related fields and promote the development of hydrogel therapy for SCI.
Collapse
Affiliation(s)
- Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
6
|
Ciciriello AJ, Surnar B, Medy GD, Su X, Dhar S, Dumont CM. Biomaterial-targeted precision nanoparticle delivery to the injured spinal cord. Acta Biomater 2022; 152:532-545. [PMID: 36087868 PMCID: PMC10551882 DOI: 10.1016/j.actbio.2022.08.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/01/2022]
Abstract
Drug delivery requires precision in timing, location, and dosage to achieve therapeutic benefits. Challenges in addressing all three of these critical criteria result in poor temporal dexterity, widespread accumulation and off-target effects, and high doses with the potential for toxicity. To address these challenges, we have developed the BiomatErial Accumulating Carriers for On-demand Nanotherapy (BEACON) platform that utilizes an implantable biomaterial to serve as a target for systemically delivered nanoparticles (NPs). With the BEACON system, administered NPs are conjugated with a ligand that has high affinity for a receptor in the implanted biomaterial. To test BEACON, an in vivo spinal cord injury (SCI) model was used as it provides an injury model where the three identified criteria can be tested as it is a dynamic and complicated injury model with no currently approved therapies. Through our work, we have demonstrated temporal dexterity in NP administration by injecting 6 days post-SCI, decreased off-target accumulation with a significant drop in liver accumulation, and retention of our NPs in the target biomaterial. The BEACON system can be applied broadly, beyond the nervous system, to improve systemically delivered NP accumulation at an implanted biomaterial target. STATEMENT OF SIGNIFICANCE: Targeted drug delivery approaches have the potential to improve therapeutic regimens for patients on a case-by-case basis. Improved localization of a therapeutic to site of interest can result in increased efficacy and limit the need for repeat dosing. Unfortunately, targeted strategies can fall short when receptors on cells or tissues are too widespread or change over the course of disease or injury progression. The BEACON system developed herein eliminates the need to target a cell or tissue receptor by targeting an implantable biomaterial with location-controllable accumulation and sustained presentation over time. The targeting paradigm presented by BEACON is widely applicable throughout tissue engineering and regenerative medicine without the need to retool for each new application.
Collapse
Affiliation(s)
- Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, United States; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW 7th Avenue, Miami, Florida 33136, United States
| | - Bapurao Surnar
- Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW 7th Avenue, Miami, Florida 33136, United States; Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Giovanni D Medy
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, United States
| | - Xiaoyu Su
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, United States
| | - Shanta Dhar
- Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW 7th Avenue, Miami, Florida 33136, United States; Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States; Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Avenue, Miami, Florida 33136, United States
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, United States; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW 7th Avenue, Miami, Florida 33136, United States; Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States.
| |
Collapse
|
7
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
8
|
Zarepour A, Bal Öztürk A, Koyuncu Irmak D, Yaşayan G, Gökmen A, Karaöz E, Zarepour A, Zarrabi A, Mostafavi E. Combination Therapy Using Nanomaterials and Stem Cells to Treat Spinal Cord Injuries. Eur J Pharm Biopharm 2022; 177:224-240. [PMID: 35850168 DOI: 10.1016/j.ejpb.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
As a part of the central nervous system, the spinal cord (SC) provides most of the communications between the brain and other parts of the body. Any damage to SC interrupts this communication, leading to serious problems, which may remain for the rest of their life. Due to its significant impact on patients' quality of life and its exorbitant medical costs, SC injury (SCI) is known as one of the most challengeable diseases in the world. Thus, it is critical to introduce highly translatable therapeutic platforms for SCI treatment. So far, different strategies have been introduced, among which utilizing various types of stem cells is one of the most interesting ones. The capability of stem cells to differentiate into several types of cell lines makes them promising candidates for the regeneration of injured tissues. One of the other interesting and novel strategies for SCI treatment is the application of nanomaterials, which could appear as a carrier for therapeutic agents or as a platform for culturing the cells. Combining these two approaches, stem cells and nanomaterials, could provide promising therapeutic strategies for SCI management. Accordingly, in this review we have summarized some of the recent advancements in which the applications of different types of stem cells and nanomaterials, alone and in combination forms, were evaluated for SCI treatment.
Collapse
Affiliation(s)
- Arezou Zarepour
- Radiology Department, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| | - Ayça Bal Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey; Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Zeytinburnu, Turkey
| | | | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Aylin Gökmen
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, Besiktas, Istanbul, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Manufacturing (LivMedCell), İstanbul, Turkey
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Tejeda G, Ciciriello AJ, Dumont CM. Biomaterial Strategies to Bolster Neural Stem Cell-Mediated Repair of the Central Nervous System. Cells Tissues Organs 2021; 211:655-669. [PMID: 34120118 DOI: 10.1159/000515351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/12/2021] [Indexed: 01/25/2023] Open
Abstract
Stem cell therapies have the potential to not only repair, but to regenerate tissue of the central nervous system (CNS). Recent studies demonstrate that transplanted stem cells can differentiate into neurons and integrate with the intact circuitry after traumatic injury. Unfortunately, the positive findings described in rodent models have not been replicated in clinical trials, where the burden to maintain the cell viability necessary for tissue repair becomes more challenging. Low transplant survival remains the greatest barrier to stem cell-mediated repair of the CNS, often with fewer than 1-2% of the transplanted cells remaining after 1 week. Strategic transplantation parameters, such as injection location, cell concentration, and transplant timing achieve only modest improvements in stem cell transplant survival and appear inconsistent across studies. Biomaterials provide researchers with a means to significantly improve stem cell transplant survival through two mechanisms: (1) a vehicle to deliver and protect the stem cells and (2) a substrate to control the cytotoxic injury environment. These biomaterial strategies can alleviate cell death associated with delivery to the injury and can be used to limit cell death after transplantation by limiting cell exposure to cytotoxic signals. Moreover, it is likely that control of the injury environment with biomaterials will lead to a more reliable support for transplanted cell populations. This review will highlight the challenges associated with cell delivery in the CNS and the advances in biomaterial development and deployment for stem cell therapies necessary to bolster stem cell-mediated repair.
Collapse
Affiliation(s)
- Giancarlo Tejeda
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| |
Collapse
|
10
|
Abstract
Spinal cord injury results in significant loss of motor, sensory, and autonomic functions. Although a wide range of therapeutic agents have been shown to attenuate secondary injury or promote regeneration/repair in animal models of spinal cord injury, clinical translation of these strategies has been limited, in part due to difficulty in safely and effectively achieving therapeutic concentrations in the injured spinal cord tissue. Hydrogel-based drug delivery systems offer unique opportunities to locally deliver drugs to the injured spinal cord with sufficient dose and duration, while avoiding deleterious side effects associated with systemic drug administration. Such local drug delivery systems can be readily fabricated from biocompatible and biodegradable materials. In this review, hydrogel-based strategies for local drug delivery to the injured spinal cord are extensively reviewed, and recommendations are made for implementation.
Collapse
Affiliation(s)
- Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University; Department of Neurosurgery; Department of Bioengineering, University of Pennsylvania; New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, Piscataway, NJ; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Huang F, Chen T, Chang J, Zhang C, Liao F, Wu L, Wang W, Yin Z. A conductive dual-network hydrogel composed of oxidized dextran and hyaluronic-hydrazide as BDNF delivery systems for potential spinal cord injury repair. Int J Biol Macromol 2020; 167:434-445. [PMID: 33278434 DOI: 10.1016/j.ijbiomac.2020.11.206] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) often causes neuronal death and axonal degeneration. In this study, we report a new strategy for preparing injectable and conductive polysaccharides-based hydrogels that could sustainably deliver brain-derived neurotrophic factor (BDNF) for SCI repair. We used poly(lactic-co-glycolic acid) (PLGA) as a carrier to encapsulate BDNF. The resulting microspheres were then modified with tannic acid (TA). The polysaccharides-based hydrogel composed of oxidized dextran (Dex) and hyaluronic acid-hydrazide (HA) was mixed with TA-modified microspheres to form the ultimate BDNF@TA-PLGA/Dex-HA hydrogel. Our results showed that the hydrogel had properties similar to natural spinal cords. Specifically, the hydrogel had soft mechanical properties and high electrical conductivity. The cross-sectional morphology of the hydrogel exhibited a continuous and porous structure. The swelling and degradation behaviors of the Dex-HA hydrogel in vitro indicated the incorporation of TA into hydrogel matrix could improve the stability of the hydrogel matrix as well as extend the release time of BDNF from the matrix. Furthermore, results from immunostaining and real-time PCR demonstrated that BDNF@TA-PLGA/Dex-HA hydrogel could promote the differentiation of neural stem cells (NSCs) into neurons and inhibit astrocyte differentiation in vitro. These results show the great potential of this hydrogel as a biomimetic material in SCI regeneration.
Collapse
Affiliation(s)
- Fei Huang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Taiying Chen
- Department of Liver Transplantation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jun Chang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chi Zhang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Faxue Liao
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Linwei Wu
- Department of Liver Transplantation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
12
|
Khan TI, Hemalatha S, Waseem M. Promising Role of Nano-Encapsulated Drugs for Spinal Cord Injury. Mol Neurobiol 2020; 57:1978-1985. [PMID: 31900861 DOI: 10.1007/s12035-019-01862-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022]
Abstract
Nanomaterials have been utilized for the drug delivery in the central nervous system (CNS), and many research investigators are currently focussing on this specified area. There has been a lot of advancement in the nanoparticle-mediated drug delivery to the brain. Neuronal injuries including spinal cord injury (SCI) and their targeted therapies are still in its infancy on this planet. SCI has been known to cause axonal damage followed by the loss of communication between CNS and other non-neuronal systems. SCI has been critically associated with prolonged inflammation, sensory dysfunction, and motor impairment in SCI patients. There has been a critical crosstalk in SCI and blood brain barriers (BBBs) for drug absorption and distribution in patients. There is a paucity of possible therapies for proper intervention of SCI due to selective permeability of the drugs across BBB. Nanomaterials are contemplated in the drug delivery system for SCI. In addition, self-assembled nanomicelles, lipid nanoparticles, and other co-polymers have now been explored for neuronal injuries. This review focuses on the promising approach and/or role of nanodrug delivery to target SCI in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Tasneem Ismail Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - S Hemalatha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Mohammad Waseem
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
13
|
Rossi F, Masi M. On the ability of chromatographic mass balance to predict solute diffusivity in drug delivery systems. AIChE J 2019. [DOI: 10.1002/aic.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di Milano Milan Italy
| | - Maurizio Masi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di Milano Milan Italy
| |
Collapse
|
14
|
Mauri E, Negri A, Rebellato E, Masi M, Perale G, Rossi F. Hydrogel-Nanoparticles Composite System for Controlled Drug Delivery. Gels 2018; 4:E74. [PMID: 30674850 PMCID: PMC6209253 DOI: 10.3390/gels4030074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/20/2018] [Accepted: 08/29/2018] [Indexed: 12/28/2022] Open
Abstract
Biodegradable poly(ethylene glycol)-block-poly(-lactic acid) (PEG-b-PLA) nanoparticles (NPs) were prepared by nanoprecipitation with controlled dimension and with different electric charges, as monitored by dynamic light scattering (DLS). Then NPs were loaded within hydrogels (HG) developed for biomedical applications in the central nervous system, with different pore sizes (30 and 90 nm). The characteristics of the resulting composite hydrogel-NPs system were firstly studied in terms of ability to control the release of small steric hindrance drug mimetic. Then, diffusion-controlled release of different charged NPs from different entangled hydrogels was studied in vitro and correlated with NPs electric charges and hydrogel mean mesh size. These studies showed different trends, that depend on NPs superficial charge and HG mesh size. Release experiments and diffusion studies, then rationalized by mathematical modeling, allowed us to build different drug delivery devices that can satisfy different medical needs.
Collapse
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | - Anna Negri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | - Erica Rebellato
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | - Maurizio Masi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | - Giuseppe Perale
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, SUPSI-University of Applied Sciences and Arts of Southern Switzerland, via Cantonale 2C, Galleria 2, 6928 Manno, Switzerland.
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| |
Collapse
|
15
|
Yao GT, Song LP, Xue WH, Su GH, Ning AH, Wang J. Nano-particle engineered atorvastatin delivery to support mesenchymal stem cell survival in infarcted myocardium. Saudi J Biol Sci 2018; 25:1016-1021. [PMID: 30174496 PMCID: PMC6117435 DOI: 10.1016/j.sjbs.2017.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 11/29/2022] Open
Abstract
Atorvastatin (ATV) may support mesenchymal stem cells (MSC) survival in post-infarct myocardium (MI) as inflammatory reactions, oxidative stress and hypoxia condition get started in such tissues after damage. However, limited aqueous insolubility and rapid first-pass metabolism reduce the systemic availability of ATV. The aim of the present investigation was to develop ATV loaded nanoparticles (ATVNPs) which might ensure the maximum availability of ATV in systemic circulation for longer duration and to strengthen the support to MSC survival. ATVNPs were synthesized using double emulsion solvent evaporation method and characterized as spherical shape, positive charged, nanoparticles of uniform size distribution and higher entrapment efficiency. ATVNPs were non-cytotoxic and showed sustained release (up to 28 days). Assessment of cardiac function (in terms of echocardiographic and left heart catheterization parameters) and cytokines estimation revealed efficient improvement in post-infarct myocardium condition of rat. In conclusion, ATVNP was developed successfully that may ensure safe, cost effective, and efficacious treatment of post-infarct myo-cardium when compared with that of MSC alone and MSC supplemented with ATV solution.
Collapse
Affiliation(s)
- Guang-tao Yao
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
- Department of Cardiology, Dezhou People's Hospital, Dezhou, 253014 Shandong, China
| | - Li-ping Song
- Department of Cardiology, Dezhou People's Hospital, Dezhou, 253014 Shandong, China
| | - Wan-hua Xue
- Department of Laboratory, Dezhou People's Hospital, Dezhou, 253014 Shandong, China
| | - Guo-hai Su
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
| | - Ai-hua Ning
- Department of Laboratory, Dezhou People's Hospital, Dezhou, 253014 Shandong, China
| | - Jin Wang
- Department of Laboratory, Dezhou People's Hospital, Dezhou, 253014 Shandong, China
| |
Collapse
|
16
|
Mauri E, Sacchetti A, Vicario N, Peruzzotti-Jametti L, Rossi F, Pluchino S. Evaluation of RGD functionalization in hybrid hydrogels as 3D neural stem cell culture systems. Biomater Sci 2018; 6:501-510. [PMID: 29368775 DOI: 10.1039/c7bm01056g] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The use of neural stem cells (NSCs) in cell therapy has become a powerful tool used for the treatment of central nervous system diseases, including traumatic brain and spinal cord injuries. However, a significant drawback is related to the limited viability after transplantation in situ. The design of three-dimensional (3D) scaffolds that are capable of resembling the architecture and physico-chemical features of an extracellular environment could be a suitable approach to improve cell survival and preserve their cellular active phase over time. In this study, we investigated NSC adhesion and proliferation in hydrogel systems. In particular, we evaluated the effect of RGD binding domains on cell fate within the polymeric scaffold. The introduction of a tripeptide via hydrogel chemical functionalization improved the percentage of proliferating cells until 8 days after seeding when compared to the unmodified scaffold. The beneficial effects of this 3D culture system was further evident when compared to a NSC monolayer (2D) culture, resulting in an approximately 40% increase in cells in the active phases at 4 and 8 days, and maintained a difference of 25% until 21 days after seeding.
Collapse
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Xiao X, Wang X, Liu Z, Wu Y, Yang Y, Hu W, Zhang Y. Local Administration of Methylated Prednisolone Comprising Solid Lipid Nanoparticles Improves Post Traumatic Spinal Cord Injury. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.624.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Karabin NB, Allen S, Kwon HK, Bobbala S, Firlar E, Shokuhfar T, Shull KR, Scott EA. Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat Commun 2018; 9:624. [PMID: 29434200 PMCID: PMC5809489 DOI: 10.1038/s41467-018-03001-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Nanocarrier administration has primarily been restricted to intermittent bolus injections with limited available options for sustained delivery in vivo. Here, we demonstrate that cylinder-to-sphere transitions of self-assembled filomicelle (FM) scaffolds can be employed for sustained delivery of monodisperse micellar nanocarriers with improved bioresorptive capacity and modularity for customization. Modular assembly of FMs from diverse block copolymer (BCP) chemistries allows in situ gelation into hydrogel scaffolds following subcutaneous injection into mice. Upon photo-oxidation or physiological oxidation, molecular payloads within FMs transfer to micellar vehicles during the morphological transition, as verified in vitro by electron microscopy and in vivo by flow cytometry. FMs composed of multiple distinct BCP fluorescent conjugates permit multimodal analysis of the scaffold's non-inflammatory bioresorption and micellar delivery to immune cell populations for one month. These scaffolds exhibit highly efficient bioresorption wherein all components participate in retention and transport of therapeutics, presenting previously unexplored mechanisms for controlled nanocarrier delivery.
Collapse
Affiliation(s)
- Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sean Allen
- Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Ha-Kyung Kwon
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Emre Firlar
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA
| | - Kenneth R Shull
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
Mauri E, Micotti E, Rossetti A, Melone L, Papa S, Azzolini G, Rimondo S, Veglianese P, Punta C, Rossi F, Sacchetti A. Microwave-assisted synthesis of TEMPO-labeled hydrogels traceable with MRI. SOFT MATTER 2018; 14:558-565. [PMID: 29333553 DOI: 10.1039/c7sm02292a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polymer functionalization strategies have recently attracted considerable attention for several applications in biomaterials science. In particular, technological advancements in medical imaging have focused on the design of polymeric matrices to improve non-invasive approaches and diagnostic accuracy. In this scenario, the use of microwave irradiation of aqueous solutions containing appropriate combinations of polymers is gaining increasing interest in the synthesis of sterile hydrogels without using monomers, eliminating the need to remove unreacted species. In this study, we developed a method for the in situ fabrication of TEMPO-labeled hydrogels based on a one-pot microwave reaction that can then be tracked by magnetic resonance imaging (MRI) without using toxic compounds that could be hostile for the target tissue. Click chemistry was used to link TEMPO to the polymeric scaffold. In an in vivo model, the system was able to preserve its TEMPO paramagnetic activity up to 1 month after hydrogel injection, showing a clear detectable signal on T1-weighted MRI with a longitudinal relaxivity value of 0.29 mM s-1, comparable to a value of 0.31 mM s-1 characteristic of TEMPO application. The uncleavable conjugation between the contrast agent and the polymeric scaffold is a leading point to record these results: the use of TEMPO only physically entrapped in the polymeric scaffold did not show MRI traceability even after few hours. Moreover, the use of TEMPO-labeled hydrogels can also help to reduce the number of animals sacrificed being a longitudinal non-invasive technique.
Collapse
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nejati-Koshki K, Mortazavi Y, Pilehvar-Soltanahmadi Y, Sheoran S, Zarghami N. An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomed Pharmacother 2017; 90:85-92. [DOI: 10.1016/j.biopha.2017.03.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 02/08/2023] Open
|
21
|
Bin S, Zhou N, Pan J, Pan F, Wu XF, Zhou ZH. Nano-carrier mediated co-delivery of methyl prednisolone and minocycline for improved post-traumatic spinal cord injury conditions in rats. Drug Dev Ind Pharm 2017; 43:1033-1041. [PMID: 28279078 DOI: 10.1080/03639045.2017.1291669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The objective of this study is to investigate the fate of albumin coupled nanoparticulate system over non-targeted drug carrier in the treatment of hemisectioned spinal cord injury (SCI). SIGNIFICANCE Targeted delivery of methyl prednisolone (MP) and minocycline (MC) portrayed improved therapeutic efficacy as compared with non-targeted nanoparticles (NPS). METHODS Albumin coupled, chitosan stabilized, and cationic NPS (albumin-MP + MC - NPS) of poly-(lactide-co-glycolic acid) were prepared using the emulsion solvent evaporation method. Prepared NPS were characterized for drug entrapment efficiency, particle size, poly-dispersity index (PDI), zeta potential, and morphological characteristics. Their evaluation was done based on the pharmaceutical, toxicological, and pharmacological parameters. RESULTS AND DISCUSSION In vitro release of MP + MC from albumin-MP + MC - NPS and MP + MC - NPS was observed to be very controlled for the period of eight days. Cell viability study portrayed non-toxic nature of the developed NPS. Albumin-MP + MC - NPS showed prominent anti-inflammatory potential as compared with non-targeted NPS (MP + MC - NPS) when studied in LPS-induced inflamed astrocytes. Albumin-MP + MC - NPS reduced lesional volume and improved behavioral outcomes significantly in rats with SCI (hemisectioned injury model) when compared with that of MP + MC - NPS. CONCLUSIONS Albumin-coupled NPS carrier offered an effective method of SCI treatment following safe co-administration of MP and MC. The in vitro and in vivo effectiveness of MP + MC was improved tremendously when compared with the effectiveness showed by MP + MC - NPS. That could be attributed to the site specific, controlled release of MP + MC to the inflammatory site.
Collapse
Affiliation(s)
- Shen Bin
- a Department of Spine Surgery , Shanghai East Hospital , Shanghai , China
| | - Ningfeng Zhou
- a Department of Spine Surgery , Shanghai East Hospital , Shanghai , China
| | - Jie Pan
- a Department of Spine Surgery , Shanghai East Hospital , Shanghai , China
| | - Fumin Pan
- a Department of Spine Surgery , Shanghai East Hospital , Shanghai , China
| | - Xiao-Feng Wu
- b Department of Orthopaedics , Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zi-Hui Zhou
- a Department of Spine Surgery , Shanghai East Hospital , Shanghai , China
| |
Collapse
|
22
|
Mauri E, Sacchetti A, Rossi F. The Synthesis of RGD-functionalized Hydrogels as a Tool for Therapeutic Applications. J Vis Exp 2016. [PMID: 27768038 DOI: 10.3791/54445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The use of polymers as biomaterials has provided significant advantages in therapeutic applications. In particular, the possibility to modify and functionalize polymer chains with compounds that are able to improve biocompatibility, mechanical properties, or cell viability allows the design of novel materials to meet new challenges in the biomedical field. With the polymer functionalization strategies, click chemistry is a powerful tool to improve cell-compatibility and drug delivery properties of polymeric devices. Similarly, the fundamental need of biomedicine to use sterile tools to avoid potential adverse-side effects, such as toxicity or contamination of the biological environment, gives rise to increasing interest in the microwave-assisted strategy. The combination of click chemistry and the microwave-assisted method is suitable to produce biocompatible hydrogels with desired functionalities and improved performances in biomedical applications. This work aims to synthesize RGD-functionalized hydrogels. RGD (arginylglycylaspartic acid) is a tripeptide that can mimic cell adhesion proteins and bind to cell-surface receptors, creating a hospitable microenvironment for cells within the 3D polymeric network of the hydrogels. RGD functionalization occurs through Huisgen 1,3-dipolar cycloaddition. Some PAA carboxyl groups are modified with an alkyne moiety, whereas RGD is functionalized with azido acid as the terminal residue of the peptide sequence. Finally, both products are used in a copper catalyzed click reaction to permanently link the peptide to PAA. This modified polymer is used with carbomer, agarose and polyethylene glycol (PEG) to synthesize a hydrogel matrix. The 3D structure is formed due to an esterification reaction involving carboxyl groups from PAA and carbomer and hydroxyl groups from agarose and PEG through microwave-assisted polycondensation. The efficiency of the gelation mechanism ensures a high degree of RGD functionalization. In addition, the procedure to load therapeutic compounds or biological tools within this functionalized network is very simple and reproducible.
Collapse
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano;
| |
Collapse
|
23
|
Mauri E, Moroni I, Magagnin L, Masi M, Sacchetti A, Rossi F. Comparison between two different click strategies to synthesize fluorescent nanogels for therapeutic applications. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Mauri E, Rossi F, Sacchetti A. Tunable drug delivery using chemoselective functionalization of hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:851-7. [DOI: 10.1016/j.msec.2016.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/16/2015] [Accepted: 01/09/2016] [Indexed: 01/01/2023]
|
25
|
Kamalov MI, Lavrov IA, Yergeshov AA, Siraeva ZY, Baltin ME, Rizvanov AA, Kuznetcova SV, Petrova NV, Savina IN, Abdullin TI. Non-invasive topical drug delivery to spinal cord with carboxyl-modified trifunctional copolymer of ethylene oxide and propylene oxide. Colloids Surf B Biointerfaces 2016; 140:196-203. [PMID: 26764102 DOI: 10.1016/j.colsurfb.2015.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/20/2015] [Accepted: 12/18/2015] [Indexed: 01/14/2023]
Abstract
In this study the effect of oxidative modification on micellar and drug delivery properties of copolymers of ethylene oxide (EO) and propylene oxide (PO) was investigated. Carboxylated trifunctional copolymers were synthesized in the reaction with chromium(VI) oxide. We found that carboxylation significantly improved the uniformity and stability of polymeric micelles by inhibiting the microphase transition. The cytotoxicity of copolymers was studied in relation to their aggregative state on two cell types (cancer line vs. primary fibroblasts). The accumulation of rhodamine 123 in neuroblastoma SH-SY5Y cells was dramatically increased in the presence of the oxidized block copolymer with the number of PO and EO units of 83.5 and 24.2, respectively. The copolymer was also tested as an enhancer for topical drug delivery to the spinal cord when applied subdurally. The oxidized copolymer facilitated the penetration of rhodamine 123 across spinal cord tissues and increased its intraspinal accumulation. These results show the potential of using oxidized EO/PO based polymers for non-invasive delivery of protective drugs after spinal cord injury.
Collapse
Affiliation(s)
- Marat I Kamalov
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Igor A Lavrov
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
| | - Abdulla A Yergeshov
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Zulfira Y Siraeva
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Maxim E Baltin
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Albert A Rizvanov
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | | | - Natalia V Petrova
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Irina N Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Timur I Abdullin
- Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
| |
Collapse
|
26
|
Trimaille T, Pertici V, Gigmes D. Recent advances in synthetic polymer based hydrogels for spinal cord repair. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:2054-2130. [PMID: 28347111 PMCID: PMC5304774 DOI: 10.3390/nano5042054] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs) were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed.
Collapse
Affiliation(s)
- Fuli Zhao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Dan Yao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ruiwei Guo
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liandong Deng
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
28
|
Effects on Proliferation and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells Engineered to Express Neurotrophic Factors. Stem Cells Int 2015; 2016:1801340. [PMID: 26649046 PMCID: PMC4663010 DOI: 10.1155/2016/1801340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/29/2015] [Accepted: 04/06/2015] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotential cells with capability to form colonies in vitro and differentiate into distinctive end-stage cell types. Although MSCs secrete many cytokines, the efficacy can be improved through combination with neurotrophic factors (NTFs). Moreover, MSCs are excellent opportunities for local delivery of NTFs into injured tissues. The aim of this present study is to evaluate the effects of overexpressing NTFs on proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells (HUMSCs). Overexpressing NTFs had no effect on cell proliferation. Overexpressing NT-3, BDNF, and NGF also had no significant effect on the differentiation of HUMSCs. Overexpressing NTFs all promoted the neurite outgrowth of embryonic chick E9 dorsal root ganglion (DRG). The gene expression profiles of the control and NT-3- and BDNF-modified HUMSCs were compared using RNA sequencing and biological processes and activities were revealed. This study provides novel information about the effects of overexpressing NTFs on HUMSCs and insight into the choice of optimal NTFs for combined cell and gene therapy.
Collapse
|
29
|
Rossi F, Castiglione F, Ferro M, Marchini P, Mauri E, Moioli M, Mele A, Masi M. Drug-Polymer Interactions in Hydrogel-based Drug-Delivery Systems: An Experimental and Theoretical Study. Chemphyschem 2015; 16:2818-2825. [DOI: 10.1002/cphc.201500526] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/19/2022]
|
30
|
Rossi F, Ferrari R, Castiglione F, Mele A, Perale G, Moscatelli D. Polymer hydrogel functionalized with biodegradable nanoparticles as composite system for controlled drug delivery. NANOTECHNOLOGY 2015; 26:015602. [PMID: 25490351 DOI: 10.1088/0957-4484/26/1/015602] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The possibility to direct pharmacological treatments targeting specific cell lines using polymer nanoparticles is one of the main novelties and perspectives in nanomedicine. However, sometimes, the ability to maintain NPs localized at the site of the injection that work as a drug reservoir can represent a good and complementary option. In this direction we built a composite material made of polymeric hydrogel functionalized with polymer NPs. ϵ-caprolactone and polyethylene glycol have been copolymerized in a two-step synthesis of PEGylated NPs, while hydrogel was synthesized through polycondensation between NPs, agarose and branched polyacrylic acid. NP functionalization was verified with Fourier transform infrared spectroscopy (FTIR), high resolution magic angle spinning-nuclear magnetic resonance (HRMAS-NMR) spectroscopy and release kinetics from a hydrogel matrix and compared with NPs only physically entrapped into a hydrogel matrix. The characteristics of the resulting composite hydrogel-NPs system were studied both in terms of rheological properties and in its ability to sustain the release of To-Pro3, used as a drug mimetic compound to represent a promising drug delivery device.
Collapse
|
31
|
Sacchetti A, Mauri E, Sani M, Masi M, Rossi F. Microwave-assisted synthesis and click chemistry as simple and efficient strategy for RGD functionalized hydrogels. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Papa S, Ferrari R, De Paola M, Rossi F, Mariani A, Caron I, Sammali E, Peviani M, Dell'Oro V, Colombo C, Morbidelli M, Forloni G, Perale G, Moscatelli D, Veglianese P. Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. J Control Release 2013; 174:15-26. [PMID: 24225226 DOI: 10.1016/j.jconrel.2013.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/11/2013] [Accepted: 11/01/2013] [Indexed: 01/24/2023]
Abstract
The possibility to control the fate of the cells responsible for secondary mechanisms following spinal cord injury (SCI) is one of the most relevant challenges to reduce the post traumatic degeneration of the spinal cord. In particular, microglia/macrophages associated inflammation appears to be a self-propelling mechanism which leads to progressive neurodegeneration and development of persisting pain state. In this study we analyzed the interactions between poly(methyl methacrylate) nanoparticles (PMMA-NPs) and microglia/macrophages in vitro and in vivo, characterizing the features that influence their internalization and ability to deliver drugs. The uptake mechanisms of PMMA-NPs were in-depth investigated, together with their possible toxic effects on microglia/macrophages. In addition, the possibility to deliver a mimetic drug within microglia/macrophages was characterized in vitro and in vivo. Drug-loaded polymeric NPs resulted to be a promising tool for the selective administration of pharmacological compounds in activated microglia/macrophages and thus potentially able to counteract relevant secondary inflammatory events in SCI.
Collapse
Affiliation(s)
- Simonetta Papa
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Raffaele Ferrari
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Massimiliano De Paola
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Ambiente e Salute, via La Masa 19, 20156 Milan, Italy
| | - Filippo Rossi
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Alessandro Mariani
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Ambiente e Salute, via La Masa 19, 20156 Milan, Italy
| | - Ilaria Caron
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Eliana Sammali
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Marco Peviani
- Università di Pavia, Dipartimento di Biologia e Biotecnologie "L. Spallanzani", via Ferrata, 9, 27100 Pavia, Italy
| | - Valentina Dell'Oro
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Claudio Colombo
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, ETH Zurich, Campus Hoenggerberg, HCI F125, Wolfgang Pauli Str. 10, 8093 Zurich, Switzerland
| | - Gianluigi Forloni
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Giuseppe Perale
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy; Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, via Cantonale, CH-6928 Manno, Switzerland; Swiss Institute for Regenerative Medicine, CH-6807 Taverne, Switzerland
| | - Davide Moscatelli
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Pietro Veglianese
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy.
| |
Collapse
|