1
|
Leon-Ramos JR, Diosdado-Cano JM, López-Santos C, Barranco A, Torres-Lagares D, Serrera-Figallo MÁ. Influence of Titanium Oxide Pillar Array Nanometric Structures and Ultraviolet Irradiation on the Properties of the Surface of Dental Implants-A Pilot Study. NANOMATERIALS 2019; 9:nano9101458. [PMID: 31615097 PMCID: PMC6835777 DOI: 10.3390/nano9101458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022]
Abstract
Aim: Titanium implants are commonly used as replacement therapy for lost teeth and much current research is focusing on the improvement of the chemical and physical properties of their surfaces in order to improve the osseointegration process. TiO2, when it is deposited in the form of pillar array nanometric structures, has photocatalytic properties and wet surface control, which, together with UV irradiation, provide it with superhydrophilic surfaces, which may be of interest for improving cell adhesion on the peri-implant surface. In this article, we address the influence of this type of surface treatment on type IV and type V titanium discs on their surface energy and cell growth on them. Materials and methods: Samples from titanium rods used for making dental implants were used. There were two types of samples: grade IV and grade V. In turn, within each grade, two types of samples were differentiated: untreated and treated with sand blasting and subjected to double acid etching. Synthesis of the film consisting of titanium oxide pillar array structures was carried out using plasma-enhanced chemical vapor deposition equipment. The plasma was generated in a quartz vessel by an external SLAN-1 microwave source with a frequency of 2.45 GHz. Five specimens from each group were used (40 discs in total). On the surfaces to be studied, the following determinations were carried out: (a) X-ray photoelectron spectroscopy, (b) scanning electron microscopy, (c) energy dispersive X-ray spectroscopy, (d) profilometry, (e) contact angle measurement or surface wettability, (f) progression of contact angle on applying ultraviolet irradiation, and (g) a biocompatibility test and cytotoxicity with cell cultures. Results: The application of ultraviolet light decreased the hydrophobicity of all the surfaces studied, although it did so to a greater extent on the surfaces with the studied modification applied, this being more evident in samples manufactured in grade V titanium. In samples made in grade IV titanium, this difference was less evident, and even in the sample manufactured with grade IV and SLA treatment, the application of the nanometric modification of the surface made the surface optically less active. Regarding cell growth, all the surfaces studied, grouped in relation to the presence or not of the nanometric treatment, showed similar growth. Conclusions. Treatment of titanium oxide surfaces with ultraviolet irradiation made them change temporarily into superhydrophilic ones, which confirms that their biocompatibility could be improved in this way, or at least be maintained.
Collapse
Affiliation(s)
- Juan-Rey Leon-Ramos
- Institute of Materials Science of Seville, CSIC-University of Seville, Américo Vespucio Street n 49, 41092 Seville, Spain.
| | | | - Carmen López-Santos
- Institute of Materials Science of Seville, CSIC-University of Seville, Américo Vespucio Street n 49, 41092 Seville, Spain.
- Department of Atomic, Molecular and Nuclear Physics, Faculty of Physics, University of Seville, Reina Mercedes Street, 41012 Seville, Spain.
| | - Angel Barranco
- Institute of Materials Science of Seville, CSIC-University of Seville, Américo Vespucio Street n 49, 41092 Seville, Spain.
| | | | | |
Collapse
|
2
|
Parracino M, Pellacani P, Colpo P, Ceccone G, Valsesia A, Rossi F, Manso Silvan M. Biofouling Properties of Nitroxide-Modified Amorphous Carbon Surfaces. ACS Biomater Sci Eng 2016; 2:1976-1982. [DOI: 10.1021/acsbiomaterials.6b00381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Paola Pellacani
- Departamento
de Física Aplicada and Instituto Nicolás Cabrera, C/Francisco
Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pascal Colpo
- Joint
Research Center, European Commission, Via Enrico Fermi, 21020 Ispra, Varese, Italy
| | - Giacomo Ceccone
- Joint
Research Center, European Commission, Via Enrico Fermi, 21020 Ispra, Varese, Italy
| | - Andrea Valsesia
- Joint
Research Center, European Commission, Via Enrico Fermi, 21020 Ispra, Varese, Italy
| | - François Rossi
- Joint
Research Center, European Commission, Via Enrico Fermi, 21020 Ispra, Varese, Italy
| | - Miguel Manso Silvan
- Departamento
de Física Aplicada and Instituto Nicolás Cabrera, C/Francisco
Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Shi X, Xiao Y, Xiao H, Harris G, Wang T, Che J. Topographic guidance based on microgrooved electroactive composite films for neural interface. Colloids Surf B Biointerfaces 2016; 145:768-776. [PMID: 27295493 DOI: 10.1016/j.colsurfb.2016.05.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/20/2016] [Accepted: 05/28/2016] [Indexed: 01/19/2023]
Abstract
Topographical features are essential to neural interface for better neuron attachment and growth. This paper presents a facile and feasible route to fabricate an electroactive and biocompatible micro-patterned Single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) composite films (SWNT/PEDOT) for interface of neural electrodes. The uniform SWNT/PEDOT composite films with nanoscale pores and microscale grooves significantly enlarged the electrode-electrolyte interface, facilitated ion transfer within the bulk film, and more importantly, provided topology cues for the proliferation and differentiation of neural cells. Electrochemical analyses indicated that the introduction of PEDOT greatly improved the stability of the SWNT/PEDOT composite film and decreased the electrode/electrolyte interfacial impedance. Further, in vitro culture of rat pheochromocytoma (PC12) cells and MTT testing showed that the grooved SWNT/PEDOT composite film was non-toxic and favorable to guide the growth and extension of neurite. Our results demonstrated that the fabricated microscale groove patterns were not only beneficial in the development of models for nervous system biology, but also in creating therapeutic approaches for nerve injuries.
Collapse
Affiliation(s)
- Xiaoyao Shi
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210014, China
| | - Yinghong Xiao
- College of Dentistry, Howard University, Washington, DC 20059, USA; Collaborative Innovation Center for Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China
| | - Hengyang Xiao
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210014, China
| | - Gary Harris
- College of Engineering, Howard University, Washington, DC 20059, USA
| | - Tongxin Wang
- College of Dentistry, Howard University, Washington, DC 20059, USA; College of Engineering, Howard University, Washington, DC 20059, USA.
| | - Jianfei Che
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210014, China; College of Engineering, Howard University, Washington, DC 20059, USA.
| |
Collapse
|
4
|
He XL, Zhao YX, Ge LL, An HQ, Su Y, Jin ZL, Wei DS, Chen L. Micropatterned fabrication of chitosan-based thermoresponsive membranes for improving cell adhesion and gene expression. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515623080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A simple, rapid, and economical method to fabricate micropatterned thermoresponsive chitosan membranes was developed. Porous polystyrene films were prepared by liquid-induced phase separation. The size of pores on polystyrene films could be regulated by adjusting the composition of coagulation bath and changing the solvent evaporation rate. Subsequently, chitosan-based thermoresponsive membranes with island protrusions were fabricated using porous polystyrene films as templates. The effects of the micropatterns on the behaviors of mouse fibroblast L929 were investigated. The presence of micropatterns altered the cell cycle distribution and enhanced the gene expression of cyclin D1 and integrin β1. The micro-convex surface could promote the adhesion and proliferation of L929 cells. These results provided valuable guidance to design appropriate topographic surfaces for tissue engineering applications.
Collapse
Affiliation(s)
- Xiao-Ling He
- School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin, China
| | - Yu-Xin Zhao
- School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Li-Li Ge
- School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Hui-qin An
- School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Yu Su
- School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Zhen-Li Jin
- School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Dong-Sheng Wei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin, China
| |
Collapse
|
5
|
Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype. Acta Biomater 2016; 30:26-48. [PMID: 26596568 DOI: 10.1016/j.actbio.2015.11.027] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022]
Abstract
The chemistry, geometry, topography and mechanical properties of biomaterials modulate biochemical signals (in particular ligand-receptor binding events) that control cells-matrix interactions. In turn, the regulation of cell adhesion by the biochemical and physical properties of the matrix controls cell phenotypes such as proliferation, motility and differentiation. In particular, nanoscale geometrical, topographical and mechanical properties of biomaterials are essential to achieve control of the cell-biomaterials interface. The design of such nanoscale architectures and platforms requires understanding the molecular mechanisms underlying adhesion formation and the assembly of the actin cytoskeleton. This review presents some of the important molecular mechanisms underlying cell adhesion to biomaterials mediated by integrins and discusses the nanoscale engineered platforms used to control these processes. Such nanoscale understanding of the cell-biomaterials interface offers exciting opportunities for the design of biomaterials and their application to the field of tissue engineering. STATEMENT OF SIGNIFICANCE Biomaterials design is important in the fields of regenerative medicine and tissue engineering, in particular to allow the long term expansion of stem cells and the engineering of scaffolds for tissue regeneration. Cell adhesion to biomaterials often plays a central role in regulating cell phenotype. It is emerging that physical properties of biomaterials, and more generally the microenvironment, regulate such behaviour. In particular, cells respond to nanoscale physical properties of their matrix. Understanding how such nanoscale physical properties control cell adhesion is therefore essential for biomaterials design. To this aim, a deeper understanding of molecular processes controlling cell adhesion, but also a greater control of matrix engineering is required. Such multidisciplinary approaches shed light on some of the fundamental mechanisms via which cell adhesions sense their nanoscale physical environment.
Collapse
|