1
|
Lai WF. Design and Applications of Polymersomes for Oral Drug Administration. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40370090 DOI: 10.1021/acsami.5c04658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Polymersomes are nanostructures consisting of a hollow aqueous compartment enclosed by a coating of amphiphilic block copolymers. Owing to the entangled nature of their membrane, polymersomes exhibit higher mechanical stability than some other extensively studied nanostructures such as liposomes. This also enables the properties of the polymersome membrane to be more easily tuned to meet practical needs, making polymersomes promising carriers for drug delivery. Since the turn of the last century, the use of polymersomes has been exploited in diverse areas, ranging from protein therapy to medical imaging. Yet, discussions exploring the opportunities and challenges of the development of polymersomes for oral drug administration have been scant. This review addresses this gap by offering a snapshot of the current advances in the design, fabrication, and use of polymersomes as oral drug carriers. It is hoped that this review will not only highlight the practical potential of polymersomes for oral drug administration but will also shed light on the challenges determining the wider clinical potential of polymersomes in the forthcoming decades.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Baghbanbashi M, Kakkar A. Polymersomes: Soft Nanoparticles from Miktoarm Stars for Applications in Drug Delivery. Mol Pharm 2022; 19:1687-1703. [PMID: 35157463 DOI: 10.1021/acs.molpharmaceut.1c00928] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Self-assembly of amphiphilic macromolecules has provided an advantageous platform to address significant issues in a variety of areas, including biology. Such soft nanoparticles with a hydrophobic core and hydrophilic corona, referred to as micelles, have been extensively investigated for delivering lipophilic therapeutics by physical encapsulation. Polymeric vesicles or polymersomes with similarities in morphology to liposomes continue to play an essential role in understanding the behavior of cell membranes and, in addition, have offered opportunities in designing smart nanoformulations. With the evolution in synthetic methodologies to macromolecular precursors, the construction of such assemblies can now be modulated to tailor their properties to match desired needs. This review brings into focus the current state-of-the-art in the design of polymersomes using amphiphilic miktoarm star polymers through a detailed analysis of the synthesis of miktoarm star polymers with tuned lengths of varied polymeric arms, their self-assembly, and applications in drug delivery.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.,Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
3
|
Datta B, Paul D, Pal U, Rakshit T. Intriguing Biomedical Applications of Synthetic and Natural Cell-Derived Vesicles: A Comparative Overview. ACS APPLIED BIO MATERIALS 2021; 4:2863-2885. [PMID: 35014382 DOI: 10.1021/acsabm.0c01480] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The significant role of a vesicle is well recognized; however, only lately has the advancement in biomedical applications started to uncover their usefulness. Although the concept of vesicles originates from cell biology, it later transferred to chemistry and material science to develop nanoscale artificial vesicles for biomedical applications. Herein, we examine different synthetic and biological vesicles and their applications in the biomedical field in general. As our understanding of biological vesicles increases, more suitable biomimicking synthetic vesicles will be developed. The comparative discussion between synthetic and natural vesicles for biomedical applications is a relevant topic, and we envision this could enable the development of a proper approach to realize the next-generation treatment goals.
Collapse
Affiliation(s)
- Brateen Datta
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Debashish Paul
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Tatini Rakshit
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
4
|
Mertz M, Golombek F, Boye S, Moreno S, Castiglione K. Fast and effective chromatographic separation of polymersomes from proteins by multimodal chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1162:122459. [DOI: 10.1016/j.jchromb.2020.122459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
|
5
|
Oz UC, Bolat ZB, Poma A, Guan L, Telci D, Sahin F, Battaglia G, Bozkır A. Prostate cancer cell-specific BikDDA delivery by targeted polymersomes. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01287-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Liu TI, Lu TY, Chang SH, Shen MY, Chiu HC. Dual stimuli-guided lipid-based delivery system of cancer combination therapy. J Control Release 2020; 318:16-24. [DOI: 10.1016/j.jconrel.2019.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/25/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
|
7
|
Dynamics of dual-fluorescent polymersomes with durable integrity in living cancer cells and zebrafish embryos. Biomaterials 2018; 168:54-63. [DOI: 10.1016/j.biomaterials.2018.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/16/2022]
|
8
|
Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, Serpooshan V, Jacob KI, Moshaverinia A, Mahmoudi M. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release 2017; 253:46-63. [DOI: 10.1016/j.jconrel.2017.02.021] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/23/2017] [Accepted: 02/19/2017] [Indexed: 12/17/2022]
|
9
|
Huang WC, Lu IL, Chiang WH, Lin YW, Tsai YC, Chen HH, Chang CW, Chiang CS, Chiu HC. Tumortropic adipose-derived stem cells carrying smart nanotherapeutics for targeted delivery and dual-modality therapy of orthotopic glioblastoma. J Control Release 2017; 254:119-130. [DOI: 10.1016/j.jconrel.2017.03.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/30/2016] [Accepted: 03/19/2017] [Indexed: 01/07/2023]
|
10
|
Mohammadi M, Ramezani M, Abnous K, Alibolandi M. Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine. Int J Pharm 2017; 519:287-303. [DOI: 10.1016/j.ijpharm.2017.01.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/20/2023]
|
11
|
Palivan CG, Goers R, Najer A, Zhang X, Car A, Meier W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem Soc Rev 2016; 45:377-411. [DOI: 10.1039/c5cs00569h] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological membranes play an essential role in living organisms by providing stable and functional compartments, supporting signalling and selective transport. Combining synthetic polymer membranes with biological molecules promises to be an effective strategy to mimic the functions of cell membranes and apply them in artificial systems.
Collapse
Affiliation(s)
| | - Roland Goers
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
- Department of Biosystems Science and Engineering
| | - Adrian Najer
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Xiaoyan Zhang
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Anja Car
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Wolfgang Meier
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| |
Collapse
|
12
|
Huang WC, Shen MY, Chen HH, Lin SC, Chiang WH, Wu PH, Chang CW, Chiang CS, Chiu HC. Monocytic delivery of therapeutic oxygen bubbles for dual-modality treatment of tumor hypoxia. J Control Release 2015; 220:738-50. [DOI: 10.1016/j.jconrel.2015.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/31/2015] [Accepted: 09/09/2015] [Indexed: 01/24/2023]
|
13
|
Huang WC, Chiang WH, Cheng YH, Lin WC, Yu CF, Yen CY, Yeh CK, Chern CS, Chiang CS, Chiu HC. Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia. Biomaterials 2015; 71:71-83. [DOI: 10.1016/j.biomaterials.2015.08.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022]
|
14
|
Moretton MA, Cagel M, Bernabeu E, Gonzalez L, Chiappetta DA. Nanopolymersomes as potential carriers for rifampicin pulmonary delivery. Colloids Surf B Biointerfaces 2015; 136:1017-25. [PMID: 26590894 DOI: 10.1016/j.colsurfb.2015.10.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 01/03/2023]
Abstract
Tuberculosis (TB) has been stated as "the greatest killer worldwide due to a single infectious agent" behind the human immunodeficiency virus. Standard short-term treatment includes the oral administration of a combination of "first-line" drugs. However, poor-patient compliance and adherence to the long-term treatments represent one of the mayor drawbacks of the TB therapy. An alternative to the oral route is the pulmonary delivery of anti-TB drugs for local or systemic administration. Nanotechnology offers an attractive platform to develop novel inhalable/respirable nanocarriers. The present investigation was focused on the encapsulation of rifampicin (RIF) (a "first-line" anti-TB drug) within nanopolymersomes (nanoPS) employing di- and tri-block poly(ethylene glycol) (PEG)-poly(ɛ-caprolactone) (PCL) based copolymers as biomaterials. The derivatives presented a number-average molecular weight between 12.2 KDa and 30.1 KDa and a hydrophobic/hydrophilic balance between 0.56 and 0.99. The nanoPS were able to enhance the apparent RIF aqueous solubility (up to 4.62 mg/mL) where the hydrodynamic diameters of the drug-loaded systems (1% w/v) were ranged between 65.8 nm and 94 nm at day 0 as determined by dynamic light scattering (DLS). Then, RIF-loaded systems demonstrated as excellent colloidal stability in aqueous media over 14 days with a spherical morphology as determined by transmission electron microscopy (TEM). Furthermore, RIF-loaded nano-sized PS promoted drug accumulation in macrophages (RAW 264.7) versus a drug solution representing promising results for a potential TB inhaled therapy.
Collapse
Affiliation(s)
- Marcela A Moretton
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; Science Research Council (CONICET), Buenos Aires, Argentina.
| | - Maximiliano Cagel
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; Science Research Council (CONICET), Buenos Aires, Argentina
| | - Ezequiel Bernabeu
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; Science Research Council (CONICET), Buenos Aires, Argentina
| | - Lorena Gonzalez
- Department of Biological Chemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; Science Research Council (CONICET), Buenos Aires, Argentina
| | - Diego A Chiappetta
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; Science Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|