1
|
Puertas-Segura A, Ivanova K, Ivanova A, Ivanov I, Todorova K, Dimitrov P, Ciardelli G, Tzanov T. Mussel-Inspired Sonochemical Nanocomposite Coating on Catheters for Prevention of Urinary Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34656-34668. [PMID: 38916599 PMCID: PMC11247429 DOI: 10.1021/acsami.4c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Catheter-associated urinary tract infections are the most common hospital-acquired infections and cause patient discomfort, increased morbidity, and prolonged stays, altogether posing a huge burden on healthcare services. Colonization occurs upon insertion, or later by ascending microbes from the rich periurethral flora, and is therefore virtually unavoidable by medical procedures. Importantly, the dwell time is a significant risk factor for bacteriuria because it gives biofilms time to develop and mature. This is why we engineer antibacterial and antibiofilm coating through ultrasound- and nanoparticle-assisted self-assembly on silicone surfaces and validate it thoroughly in vitro and in vivo. To this end, we combine bimetallic silver/gold nanoparticles, which exercise both biocidal and structural roles, with dopamine-modified gelatin in a facile and substrate-independent sonochemical coating process. The latter mussel-inspired bioadhesive potentiates the activity and durability of the coating while attenuating the intrinsic toxicity of silver. As a result, our approach effectively reduces biofilm formation in a hydrodynamic model of the human bladder and prevents bacteriuria in catheterized rabbits during a week of placement, outperforming conventional silicone catheters. These results substantiate the practical use of nanoparticle-biopolymer composites in combination with ultrasound for the antimicrobial functionalization of indwelling medical devices.
Collapse
Affiliation(s)
- Antonio Puertas-Segura
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Aleksandra Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Ivan Ivanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Katerina Todorova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Geo Milev, Sofia 1113, Bulgaria
| | - Petar Dimitrov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Geo Milev, Sofia 1113, Bulgaria
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| |
Collapse
|
2
|
Gomez-Cerezo MN, Perevoshchikova N, Ruan R, Moerman KM, Bindra R, Lloyd DG, Zheng MH, Saxby DJ, Vaquette C. Additively manufactured polyethylene terephthalate scaffolds for scapholunate interosseous ligament reconstruction. BIOMATERIALS ADVANCES 2023; 149:213397. [PMID: 37023566 DOI: 10.1016/j.bioadv.2023.213397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The regeneration of the ruptured scapholunate interosseous ligament (SLIL) represents a clinical challenge. Here, we propose the use of a Bone-Ligament-Bone (BLB) 3D-printed polyethylene terephthalate (PET) scaffold for achieving mechanical stabilisation of the scaphoid and lunate following SLIL rupture. The BLB scaffold featured two bone compartments bridged by aligned fibres (ligament compartment) mimicking the architecture of the native tissue. The scaffold presented tensile stiffness in the range of 260 ± 38 N/mm and ultimate load of 113 ± 13 N, which would support physiological loading. A finite element analysis (FEA), using inverse finite element analysis (iFEA) for material property identification, showed an adequate fit between simulation and experimental data. The scaffold was then biofunctionalized using two different methods: injected with a Gelatin Methacryloyl solution containing human mesenchymal stem cell spheroids (hMSC) or seeded with tendon-derived stem cells (TDSC) and placed in a bioreactor to undergo cyclic deformation. The first approach demonstrated high cell viability, as cells migrated out of the spheroid and colonised the interstitial space of the scaffold. These cells adopted an elongated morphology suggesting the internal architecture of the scaffold exerted topographical guidance. The second method demonstrated the high resilience of the scaffold to cyclic deformation and the secretion of a fibroblastic related protein was enhanced by the mechanical stimulation. This process promoted the expression of relevant proteins, such as Tenomodulin (TNMD), indicating mechanical stimulation may enhance cell differentiation and be useful prior to surgical implantation. In conclusion, the PET scaffold presented several promising characteristics for the immediate mechanical stabilisation of disassociated scaphoid and lunate and, in the longer-term, the regeneration of the ruptured SLIL.
Collapse
|
3
|
Harati J, Tao X, Shahsavarani H, Du P, Galluzzi M, Liu K, Zhang Z, Shaw P, Shokrgozar MA, Pan H, Wang PY. Polydopamine-Mediated Protein Adsorption Alters the Epigenetic Status and Differentiation of Primary Human Adipose-Derived Stem Cells (hASCs). Front Bioeng Biotechnol 2022; 10:934179. [PMID: 36032703 PMCID: PMC9399727 DOI: 10.3389/fbioe.2022.934179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Polydopamine (PDA) is a biocompatible cell-adhesive polymer with versatile applications in biomedical devices. Previous studies have shown that PDA coating could improve cell adhesion and differentiation of human mesenchymal stem cells (hMSCs). However, there is still a knowledge gap in the effect of PDA-mediated protein adsorption on the epigenetic status of MSCs. This work used gelatin-coated cell culture surfaces with and without PDA underlayer (Gel and PDA-Gel) to culture and differentiate primary human adipose-derived stem cells (hASCs). The properties of these two substrates were significantly different, which, in combination with a variation in extracellular matrix (ECM) protein bioactivity, regulated cell adhesion and migration. hASCs reduced focal adhesions by downregulating the expression of integrins such as αV, α1, α2, and β1 on the PDA-Gel compared to the Gel substrate. Interestingly, the ratio of H3K27me3 to H3K27me3+H3K4me3 was decreased, but this only occurred for upregulation of AGG and BMP4 genes during chondrogenic differentiation. This result implies that the PDA-Gel surface positively affects the chondrogenic, but not adipogenic and osteogenic, differentiation. In conclusion, for the first time, this study demonstrates the sequential effects of PDA coating on the biophysical property of adsorbed protein and then focal adhesions and differentiation of hMSCs through epigenetic regulation. This study sheds light on PDA-mediated mechanotransduction.
Collapse
Affiliation(s)
- Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Mohammad Ali Shokrgozar
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Haobo Pan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Peng-Yuan Wang, ; Haobo Pan,
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Peng-Yuan Wang, ; Haobo Pan,
| |
Collapse
|
4
|
Van de Voorde B, Benmeridja L, Giol ED, Van der Meeren L, Van Damme L, Liu Z, Toncheva A, Raquez JM, Van den Brande N, Skirtach A, Declercq H, Dubruel P, Van Vlierberghe S. Potential of poly(alkylene terephthalate)s to control endothelial cell adhesion and viability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112378. [PMID: 34579897 DOI: 10.1016/j.msec.2021.112378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Poly(ethylene terephthalate) (PET) is known for its various useful characteristics, including its applicability in cardiovascular applications, more precisely as synthetic bypass grafts for large diameter (≥ 6 mm) blood vessels. Although it is widely used, PET is not an optimal material as it is not interactive with endothelial cells, which is required for bypasses to form a complete endothelium. Therefore, in this study, poly(alkylene terephthalate)s (PATs) have been studied. They were synthesized via a single-step solution polycondensation reaction, which requires mild reaction conditions and avoids the use of a catalyst or additives like heat stabilizers. A homologous series was realized in which the alkyl chain length varied from 5 to 12 methylene groups (n = 5-12). Molar masses up to 28,000 g/mol were obtained, while various odd-even trends were observed with modulated differential scanning calorimetry (mDSC) and rapid heat-cool calorimetry (RHC) to access the thermal properties within the homologous series. The synthesized PATs have been subjected to in vitro cell viability assays using Human Umbilical Vein Endothelial Cells (HUVECs) and Human Dermal Microvascular Endothelial Cells (HDMECs). The results showed that HUVECs adhere and proliferate most pronounced onto PAT(n=9) surfaces, which could be attributed to the surface roughness and morphology as determined by atomic force microscopy (AFM) (i.e. Rq = 204.7 nm). HDMECs were investigated in the context of small diameter vessels and showed superior adhesion and proliferation after seeding onto PAT(n=6) substrates. These preliminary results already pave the way towards the use of PAT materials as substrates to support endothelial cell adhesion and growth. Indeed, as superior endothelial cell interactivity compared to PET was observed, time-consuming and costly surface modifications of PET grafts could be avoided by exploiting this novel material class.
Collapse
Affiliation(s)
- Babs Van de Voorde
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium; SIM vzw, Technologiepark 48, B-9052 Zwijnaarde, Belgium
| | - Lara Benmeridja
- Department of Basic Medical Sciences, Tissue Engineering and Biomaterials Group, Ghent University, De Pintelaan 185, B3, B-9000 Ghent, Belgium
| | - Elena Diana Giol
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| | - Louis Van der Meeren
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Lana Van Damme
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| | - Zhen Liu
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Antoniya Toncheva
- Laboratory of Polymeric and Composite Materials, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Niko Van den Brande
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - André Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Heidi Declercq
- Department of Basic Medical Sciences, Tissue Engineering and Biomaterials Group, Ghent University, De Pintelaan 185, B3, B-9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium.
| |
Collapse
|
5
|
Claaßen C, Dannecker M, Grübel J, Kotzampasi ME, Tovar GEM, Stanzel BV, Borchers K. The choice of biopolymer is crucial to trigger angiogenesis with vascular endothelial growth factor releasing coatings. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:93. [PMID: 33108503 PMCID: PMC7591429 DOI: 10.1007/s10856-020-06424-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/07/2020] [Indexed: 05/09/2023]
Abstract
Bio-based coatings and release systems for pro-angiogenic growth factors are of interest to overcome insufficient vascularization and bio-integration of implants. This study compares different biopolymer-based coatings on polyethylene terephthalate (PET) membranes in terms of coating homogeneity and stability, coating thickness in the swollen state, endothelial cell adhesion, vascular endothelial growth factor (VEGF) release and pro-angiogenic properties. Coatings consisted of carbodiimide cross-linked gelatin type A (GelA), type B (GelB) or albumin (Alb), and heparin (Hep), or they consisted of radically cross-linked gelatin methacryloyl-acetyl (GM5A5) and heparin methacrylate (HepM5). We prepared films with thicknesses of 8-10 µm and found that all coatings were homogeneous after washing. All gelatin-based coatings enhanced the adhesion of primary human endothelial cells compared to the uncoated membrane. The VEGF release was tunable with the loading concentration and dependent on the isoelectric points and hydrophilicities of the biopolymers used for coating: GelA-Hep showed the highest releases, while releases were indistinguishable for GelB-Hep and Alb-Hep, and lowest for GM5A5-HepM5. Interestingly, not only the amount of VEGF released from the coatings determined whether angiogenesis was induced, but a combination of VEGF release, metabolic activity and adhesion of endothelial cells. VEGF releasing GelA-Hep and GelB-Hep coatings induced angiogenesis in a chorioallantoic membrane assay, so that these coatings should be considered for further in vivo testing.
Collapse
Affiliation(s)
- Christiane Claaßen
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Miriam Dannecker
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Jana Grübel
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Maria-Elli Kotzampasi
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany.
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany.
| | - Boris V Stanzel
- Department of Ophthalmology, University of Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Germany
- Augenklinik Sulzbach, Knappschaftsklinikum Saar, An der Klinik 10, 66280, Sulzbach, Germany
- Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach/Saar, Germany
| | - Kirsten Borchers
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany
| |
Collapse
|
6
|
Pekkanen-Mattila M, Häkli M, Pölönen RP, Mansikkala T, Junnila A, Talvitie E, Koivisto JT, Kellomäki M, Aalto-Setälä K. Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1805. [PMID: 31163704 PMCID: PMC6600740 DOI: 10.3390/ma12111805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to serve as a model for human cardiomyocytes. However, hiPSC-CMs are still considered immature. CMs differentiated from hiPSCs more resemble fetal than adult cardiomyocytes. Putative factors enhancing maturation include in vitro culture duration, culture surface topography, and mechanical, chemical, and electrical stimulation. Stem cell-derived cardiomyocytes are traditionally cultured on glass surfaces coated with extracellular matrix derivatives such as gelatin. hiPSC-CMs are flat and round and their sarcomeres are randomly distributed and unorganized. Morphology can be enhanced by culturing cells on surfaces providing topographical cues to the cells. In this study, a textile based-culturing method used to enhance the maturation status of hiPSC-CMs is presented. Gelatin-coated polyethylene terephthalate (PET)-based textiles were used as the culturing surface for hiPSC-CMs and the effects of the textiles on the maturation status of the hiPSC-CMs were assessed. The hiPSC-CMs were characterized by analyzing their morphology, sarcomere organization, expression of cardiac specific genes, and calcium handling. We show that the topographical cues improve the structure of the hiPSC-CMs in vitro. Human iPSC-CMs grown on PET textiles demonstrated improved structural properties such as rod-shape structure and increased sarcomere orientation.
Collapse
Affiliation(s)
- Mari Pekkanen-Mattila
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Martta Häkli
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Risto-Pekka Pölönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Tuomas Mansikkala
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Anni Junnila
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Elina Talvitie
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Janne T Koivisto
- Microelectronics Research Unit, University of Oulu, FI-90014 Oulu, Finland.
| | - Minna Kellomäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | | |
Collapse
|
7
|
Giol ED, Van Vlierberghe S, Unger RE, Kersemans K, de Vos F, Kirkpatrick CJ, Dubruel P. Biomimetic strategy towards gelatin coatings on PET. Effect of protocol on coating stability and cell-interactive properties. J Mater Chem B 2019; 7:1258-1269. [PMID: 32255165 DOI: 10.1039/c8tb02676a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gelatin-modified poly(ethylene terephthalate) (PET) surfaces have been previously realized via an intermediate dopamine coating procedure that resulted in surfaces with superior haemocompatibility compared to unfunctionalized PET. The present study addresses the biocompatibility assessment of these coated PET surfaces. In this context, the stability of the gelatin coating upon exposure to physiological conditions and its cell-interactive properties were investigated. The proposed gelatin-dopamine-PET surfaces showed an increased protein coating stability up to 24 days and promoted the attachment and spreading of both endothelial cells (ECs) and smooth muscle cells (SMCs). In parallel, physisorbed gelatin coatings exhibited similar cell-interactive properties, albeit temporarily, as the coating delaminated within 1 week after cell seeding. Furthermore, no or only minimal immunogenic or inflammatory responses were observed during in vitro cytotoxicity and endotoxicity assessment for all gelatin-modified PET surfaces evaluated. Overall, the combined enhanced biocompatibility reported herein together with the previously proven haemocompatibility show the potential of the gelatin-dopamine-PET surfaces to function as vascular graft candidates.
Collapse
Affiliation(s)
- Elena Diana Giol
- Polymer Chemistry and Biomaterials Research (PBM) Group, Centre of Macromolecular Chemistry, Ghent University (UGent), Krijgslaan 281, S4-bis, B-9000, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
8
|
Giol ED, Van Vlierberghe S, Unger RE, Schaubroeck D, Ottevaere H, Thienpont H, Kirkpatrick CJ, Dubruel P. Endothelialization and Anticoagulation Potential of Surface-Modified PET Intended for Vascular Applications. Macromol Biosci 2018; 18:e1800125. [DOI: 10.1002/mabi.201800125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/07/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Elena Diana Giol
- Polymer Chemistry and Biomaterials Research (PBM) Group; Centre of Macromolecular Chemistry; Ghent University; Krijgslaan 281, S4-bis B-9000 Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Research (PBM) Group; Centre of Macromolecular Chemistry; Ghent University; Krijgslaan 281, S4-bis B-9000 Belgium
- Brussels Photonics (B-PHOT); Vrije Universiteit Brussel; Pleinlaan 2 B-1050 Belgium
| | - Ronald E. Unger
- REPAIR LAB; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraat 1 55131 Germany
| | - David Schaubroeck
- Centre of Microsystems Technology (CMST); imec and Ghent University; Technologiepark-Zwijnaarde15 B-9052 Belgium
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT); Vrije Universiteit Brussel; Pleinlaan 2 B-1050 Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT); Vrije Universiteit Brussel; Pleinlaan 2 B-1050 Belgium
| | - Charles James Kirkpatrick
- REPAIR LAB; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraat 1 55131 Germany
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Research (PBM) Group; Centre of Macromolecular Chemistry; Ghent University; Krijgslaan 281, S4-bis B-9000 Belgium
| |
Collapse
|
9
|
Abstract
Implanting a metal stent plays a key role in treating cardiovascular diseases. However, the high corrosion rate of metal-based devices severely limits their practical applications. Therefore, how to control the corrosion rate is vital to take full advantages of metal-based materials in the treatment of cardiovascular diseases. This review details various methods to design and construct polymer-coated stents. The techniques are described and discussed including plasma deposition, electrospinning, dip coating, layer-by-layer self-assembly, and direct-write inkjet. Key point is provided to highlight current methods and recent advances in hindering corrosion rate and improving biocompatibility of stents, which greatly drives the rising of some promising techniques involved in the ongoing challenges and potential new trends of polymer-coated stents.
Collapse
|
10
|
Devlaminck DJ, Rahman MM, Dash M, Samal SK, Watté J, Van Vlierberghe S, Dubruel P. Oil-in-water emulsion impregnated electrospun poly(ethylene terephthalate) fiber mat as a novel tool for optical fiber cleaning. J Colloid Interface Sci 2018. [DOI: 10.1016/j.jcis.2018.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Liu X, Chen J, Qu C, Bo G, Jiang L, Zhao H, Zhang J, Lin Y, Hua Y, Yang P, Huang N, Yang Z. A Mussel-Inspired Facile Method to Prepare Multilayer-AgNP-Loaded Contact Lens for Early Treatment of Bacterial and Fungal Keratitis. ACS Biomater Sci Eng 2018; 4:1568-1579. [PMID: 33445314 DOI: 10.1021/acsbiomaterials.7b00977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoqi Liu
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Jiang Chen
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Gong Bo
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Lang Jiang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Hui Zhao
- School of Medicine, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave West Hi-Tech Zone, Chengdu, CN 611731, China
| | - Jing Zhang
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Yin Lin
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Yu Hua
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Zhenglin Yang
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| |
Collapse
|
12
|
Batul R, Tamanna T, Khaliq A, Yu A. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci 2018; 5:1204-1229. [PMID: 28594019 DOI: 10.1039/c7bm00187h] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polydopamine is a dark brown-black insoluble biopolymer produced by autoxidation of dopamine. Although its structure and polymerization mechanism have not been fully understood, there has been a rapid growth in the synthesis and applications of polydopamine nanostructures in biomedical fields such as drug delivery, photothermal therapy, bone and tissue engineering, and cell adhesion and patterning, as well as antimicrobial applications. This article is dedicated to reviewing some of the recent polydopamine developments in these biomedical fields. Firstly, the polymerization mechanism is introduced with a discussion of the factors that influence the polymerization process. The discussion is followed by the introduction of various forms of polydopamine nanostructures and their recent applications in biomedical fields, especially in drug delivery. Finally, the review is summarized followed by brief comments on the future prospects of polydopamine.
Collapse
Affiliation(s)
- Rahila Batul
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | | | | | | |
Collapse
|
13
|
Shi Y, Xu D, Liu M, Fu L, Wan Q, Mao L, Dai Y, Wen Y, Zhang X, Wei Y. Facile preparation of water soluble and biocompatible fluorescent organic nanoparticles through the combination of RAFT polymerization and self-polymerization of dopamine. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
|
15
|
Zhang YG, Zhu YJ, Chen F, Lu BQ. Dopamine-modified highly porous hydroxyapatite microtube networks with efficient near-infrared photothermal effect, enhanced protein adsorption and mineralization performance. Colloids Surf B Biointerfaces 2017; 159:337-348. [DOI: 10.1016/j.colsurfb.2017.07.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/27/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022]
|
16
|
Van De Walle E, Van Nieuwenhove I, De Vos W, Declercq H, Dubruel P, Van Vlierberghe S. Cell response of flexible PMMA-derivatives: supremacy of surface chemistry over substrate stiffness. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:183. [PMID: 29027051 DOI: 10.1007/s10856-017-5994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
The present work reports on the development of a range of poly(methyl methacrylate)/poly(ethylene glycol) (PMMAPEG)-based materials, characterized by different elasticity moduli in order to study the influence of the substrate's mechanical properties on the response of human umbilical vein endothelial cells (HUVECs). To render the selected materials cell-interactive, a polydopamine (PDA)/gelatin type B (Gel B) coating was applied. Prior to the in vitro assay, the success of the PDA and Gel B immobilization onto the materials was confirmed using X-ray photoelectron spectroscopy (XPS) as reflected by the nitrogen percentages measured for the materials after PDA and Gel B deposition. Tensile tests showed that materials with E-moduli ranging from 37 to 1542 MPa could be obtained by varying the ratio between PMMA and PEG as well as the PEG molecular weight and its functionality (i.e. mono-methacrylate vs. di-methacrylate). The results after 1 day of cell contact suggested a preferred HUVECs cell growth onto more rigid materials. After 1 week, the material with the lowest E-modulus of 37 MPa showed lower cell densities compared to the other materials. No clear correlation could be observed between the number of focal adhesion points and the substrate stiffness. Although minor differences were found, these were not statistically significant. This last conclusion again highlights the universal character of the PDA/Gel B modification. The present work could thus be valuable for the development of a range of cell substrates requiring different mechanical properties in line with the envisaged application while the cell response should ideally remain unaffected.
Collapse
Affiliation(s)
- Elke Van De Walle
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium
| | - Ine Van Nieuwenhove
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium
| | - Winnok De Vos
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk-Antwerp, Belgium
- Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 6B3, Ghent, B-9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium.
| |
Collapse
|
17
|
Claaßen C, Sewald L, Tovar GEM, Borchers K. Controlled Release of Vascular Endothelial Growth Factor from Heparin-Functionalized Gelatin Type A and Albumin Hydrogels. Gels 2017; 3:E35. [PMID: 30920532 PMCID: PMC6318598 DOI: 10.3390/gels3040035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 01/12/2023] Open
Abstract
Bio-based release systems for pro-angiogenic growth factors are of interest, to overcome insufficient vascularization and bio-integration of implants. In this study, we investigated heparin-functionalized hydrogels based on gelatin type A or albumin as storage and release systems for vascular endothelial growth factor (VEGF). The hydrogels were crosslinked using carbodiimide chemistry in presence of heparin. Heparin-functionalization of the hydrogels was monitored by critical electrolyte concentration (CEC) staining. The hydrogels were characterized in terms of swelling in buffer solution and VEGF-containing solutions, and their loading with and release of VEGF was monitored. The equilibrium degree of swelling (EDS) was lower for albumin-based gels compared to gelatin-based gels. EDS was adjustable with the used carbodiimide concentration for both biopolymers. Furthermore, VEGF-loading and release were dependent on the carbodiimide concentration and loading conditions for both biopolymers. Loading of albumin-based gels was higher compared to gelatin-based gels, and its burst release was lower. Finally, elevated cumulative VEGF release after 21 days was determined for albumin-based hydrogels compared to gelatin A-based hydrogels. We consider the characteristic net charges of the proteins and degradation of albumin during release time as reasons for the observed effects. Both heparin-functionalized biomaterial systems, chemically crosslinked gelatin type A or albumin, had tunable physicochemical properties, and can be considered for controlled delivery of the pro-angiogenic growth factor VEGF.
Collapse
Affiliation(s)
- Christiane Claaßen
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Lisa Sewald
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Kirsten Borchers
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany.
| |
Collapse
|
18
|
Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. NANOSCALE 2016; 8:16819-16840. [PMID: 27704068 DOI: 10.1039/c5nr09078d] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
After more than four billion years of evolution, nature has created a large number of fascinating living organisms, which show numerous peculiar structures and wonderful properties. Nature can provide sources of plentiful inspiration for scientists to create various materials and devices with special functions and uses. Since Messersmith proposed the fabrication of multifunctional coatings through mussel-inspired chemistry, this field has attracted considerable attention for its promising and exiciting applications. Polydopamine (PDA), an emerging soft matter, has been demonstrated to be a crucial component in mussel-inspired chemistry. In this review, the recent developments of PDA for mussel-inspired surface modification are summarized and discussed. The biomedical applications of PDA-based materials are also highlighted. We believe that this review can provide important and timely information regarding mussel-inspired chemistry and will be of great interest for scientists in the chemistry, materials, biology, medicine and interdisciplinary fields.
Collapse
Affiliation(s)
- Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Guangjian Zeng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Ke Wang
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| | - Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Lei Tao
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
19
|
Van De Walle E, Van Nieuwenhove I, Vanderleyden E, Declercq H, Gellynck K, Schaubroeck D, Ottevaere H, Thienpont H, De Vos WH, Cornelissen M, Van Vlierberghe S, Dubruel P. Polydopamine-Gelatin as Universal Cell-Interactive Coating for Methacrylate-Based Medical Device Packaging Materials: When Surface Chemistry Overrules Substrate Bulk Properties. Biomacromolecules 2015; 17:56-68. [PMID: 26568299 DOI: 10.1021/acs.biomac.5b01094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite its widespread application in the fields of ophthalmology, orthopedics, and dentistry and the stringent need for polymer packagings that induce in vivo tissue integration, the full potential of poly(methyl methacrylate) (PMMA) and its derivatives as medical device packaging material has not been explored yet. We therefore elaborated on the development of a universal coating for methacrylate-based materials that ideally should reveal cell-interactivity irrespective of the polymer substrate bulk properties. Within this perspective, the present work reports on the UV-induced synthesis of PMMA and its more flexible poly(ethylene glycol) (PEG)-based derivative (PMMAPEG) and its subsequent surface decoration using polydopamine (PDA) as well as PDA combined with gelatin B (Gel B). Successful application of both layers was confirmed by multiple surface characterization techniques. The cell interactivity of the materials was studied by performing live-dead assays and immunostainings of the cytoskeletal components of fibroblasts. It can be concluded that only the combination of PDA and Gel B yields materials possessing similar cell interactivities, irrespective of the physicochemical properties of the underlying substrate. The proposed coating outperforms both the PDA functionalized and the pristine polymer surfaces. A universal cell-interactive coating for methacrylate-based medical device packaging materials has thus been realized.
Collapse
Affiliation(s)
- Elke Van De Walle
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4Bis, Ghent B-9000, Belgium
| | - Ine Van Nieuwenhove
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4Bis, Ghent B-9000, Belgium
| | - Els Vanderleyden
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4Bis, Ghent B-9000, Belgium
| | - Heidi Declercq
- Tissue Engineering Group, Department of Basic Medical Sciences, Ghent University , De Pintelaan 185 6B3, Ghent B-9000, Belgium
| | - Karolien Gellynck
- Tissue Engineering Group, Department of Basic Medical Sciences, Ghent University , De Pintelaan 185 6B3, Ghent B-9000, Belgium
| | - David Schaubroeck
- Center for Microsystems Technology (CMST), Imec and Ghent University , Technologiepark 914A, B-9052 Ghent, Belgium
| | - Heidi Ottevaere
- B-PHOT Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Hugo Thienpont
- B-PHOT Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Winnok H De Vos
- Department of Molecular Biotechnology, Ghent University , Coupure links 653, 9000 Ghent, Belgium.,Department of Veterinary Sciences, Antwerp University , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Maria Cornelissen
- Tissue Engineering Group, Department of Basic Medical Sciences, Ghent University , De Pintelaan 185 6B3, Ghent B-9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4Bis, Ghent B-9000, Belgium.,B-PHOT Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium.,Department of Chemistry, University of Antwerp , Universiteitsplein 1, BE-2610 Wilrijk-Antwerp, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4Bis, Ghent B-9000, Belgium
| |
Collapse
|