1
|
Trefond L, Lhote R, Mathian A, de Chambrun MP, Pha M, Hie M, Miyara M, Papo M, Moyon Q, Taieb D, Saade S, Salem TB, Haroche J, Chasset F, Aubart FC, Zahr N, Amoura Z. Identification of new risk factors for hydroxychloroquine and chloroquine retinopathy in systemic lupus erythematosus patients. Semin Arthritis Rheum 2024; 66:152417. [PMID: 38394986 DOI: 10.1016/j.semarthrit.2024.152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Long-term hydroxychloroquine (HCQ) or chloroquine (CQ) intake causes retinal toxicity in 0.3-8 % of patients with rheumatic diseases. Numerous risk factors have been described, eg, daily dose by weight, treatment duration, chronic kidney disease, concurrent tamoxifen therapy and pre-existing retinal or macular disease. However, those factors cannot explain the entire risk of developing antimalarial retinopathy. OBJECTIVE This study was undertaken to identify new risk factors associated with HCQ or CQ retinopathy (QRNP) in systemic lupus erythematosus (SLE) patients. METHODS This case-control (1:2) study compared SLE patients with QRNP (cases) to those without (controls). Controls were matched for sex and known QRNP risk factors: HCQ and/or CQ treatment duration (±1 year) and age (±5 year) at SLE diagnosis. RESULTS Forty-eight cases were compared to 96 SLE controls. Multivariable logistic-regression analysis retained the following as independent determinants significantly associated with QRNP: concomitant selective serotonin-reuptake inhibitor (SSRI) or serotonin- and norepinephrine-reuptake inhibitor (SNRI) intake (OR [95 % confidence interval] 6.6 [1.2 to 40.9]; p < 0.01); antiphospholipid syndrome (OR=8.9 [2.2 to 41.4] p < 0.01); blood hydroxychloroquine/desethylchloroquine concentration ([HCQ]/[DCQ]) ratio <7.2 (OR 8.4 [2.7 to 30.8]; p < 0.01) or skin phototype ≥4 (OR 5.5 [1.4 to 26.5]; p = 0.02), but not daily HCQ dose, blood [HCQ] or body mass index. CONCLUSION The results of this case-control study identified blood [HCQ]/[DCQ] ratio, concurrent SSRI/SNRI therapy, skin phototype ≥4 and antiphospholipid syndrome as new risk factors for QRNP.
Collapse
Affiliation(s)
- Ludovic Trefond
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France; Médecine Interne, Centre Hospitalier Universitaire Gabriel-Montpied, M2iSH, Inserm UMR, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Raphael Lhote
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Alexis Mathian
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Marc Pineton de Chambrun
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Micheline Pha
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Miguel Hie
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Makoto Miyara
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Matthias Papo
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Quentin Moyon
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Dov Taieb
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sonia Saade
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Thouraya Ben Salem
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julien Haroche
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - François Chasset
- Sorbonne Université, Faculté de Médecine, APHP, Service de Dermatologie et Allergologie, Hôpital Tenon, Paris, France
| | - Fleur Cohen Aubart
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Noël Zahr
- Service de Pharmacologie, APHP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Zahir Amoura
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.
| |
Collapse
|
2
|
Karkoszka M, Rok J, Wrześniok D. Melanin Biopolymers in Pharmacology and Medicine-Skin Pigmentation Disorders, Implications for Drug Action, Adverse Effects and Therapy. Pharmaceuticals (Basel) 2024; 17:521. [PMID: 38675481 PMCID: PMC11054731 DOI: 10.3390/ph17040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Melanins are biopolymeric pigments formed by a multi-step oxidation process of tyrosine in highly specialized cells called melanocytes. Melanin pigments are mainly found in the skin, iris, hair follicles, and inner ear. The photoprotective properties of melanin biopolymers have been linked to their perinuclear localization to protect DNA, but their ability to scavenge metal ions and antioxidant properties has also been noted. Interactions between drugs and melanins are of clinical relevance. The formation of drug-melanin complexes can affect both the efficacy of pharmacotherapy and the occurrence of adverse effects such as phototoxic reactions and discoloration. Because the amount and type of melanin synthesized in the body is subject to multifactorial regulation-determined by both internal factors such as genetic predisposition, inflammation, and hormonal balance and external factors such as contact with allergens or exposure to UV radiation-different effects on the melanogenesis process can be observed. These factors can directly influence skin pigmentation disorders, resulting in hypopigmentation or hyperpigmentation of a genetic or acquired nature. In this review, we will present information on melanocyte biology, melanogenesis, and the multifactorial influence of melanin on pharmacological parameters during pharmacotherapy. In addition, the types of skin color disorders, with special emphasis on the process of their development, symptoms, and methods of treatment, are presented in this article.
Collapse
Affiliation(s)
- Marta Karkoszka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | | |
Collapse
|
3
|
Ribeiro AC, Januário EFD, Vidovix TB, Vieira AMS, Duarte EDCNFDA, Bergamasco R. Synthesis of a novel functionalized biosorbent from mango stone and its application in the pharmaceutical's removal from water and a synthetic mixture. CHEMOSPHERE 2024; 346:140520. [PMID: 38303395 DOI: 10.1016/j.chemosphere.2023.140520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 02/03/2024]
Abstract
This paper explores the feasibility of functionalizing mango stones with iron oxide magnetic nanoparticles (MS-Fe3O4) by coprecipitation in batch adsorption processes. The synthesized material was characterized and applied in chloroquine (CQN) and sertraline hydrochloride (SER) removal from contaminated waters. The biosorbent was subjected to a regenerative study and treatment using a synthetic mixture of contaminants to evaluate its applicability in real effluents. The biosorbent was analyzed by transmission electron microscopy images, scanning electron microscopy, dispersive X-ray spectroscopy, Fourier transform infrared spectra, and zeta potential to characterize its chemical and morphology properties. The techniques applied showed the effectiveness of the proposed modification. In the adsorption experiments, the optimal adsorbent dosage was 0.01 g for both contaminants. The pH strongly influenced the adsorption of the drugs on MS-Fe3O4, and the best results were obtained in the pH range of 5-6. Kinetic data showed a better fit to the pseudo-second-order model, and the equilibrium time was achieved in 16 h for CQN and 4 h for SER. Isotherm studies revealed maximum adsorptive capacities of 49.42 and 64.79 mg g-1, respectively, for CQN and SER, at 318 K, demonstrating that the increase in temperature is a favorable factor, and the Sips model better describes the process. The thermodynamic parameters indicate an endothermic (ΔH° >0), spontaneous (ΔG° <0), and reversible (ΔS° >0) nature of the adsorption. This process is essentially governed by physical forces, such as hydrogen and π-π bonds. However, it is also valid to consider the presence of electrostatic forces due to the ionizing nature of CQN and SER. The MS-Fe3O4 biosorbent showed good performance when evaluated in a synthetic mixture of four contaminants, with an overall removal efficiency of approximately 86% and the regenerative capacity of three reusing cycles.
Collapse
Affiliation(s)
- Anna Carla Ribeiro
- State University of Maringá, Department of Biotechnology, Genetics and Cell Biology, Maringá, Paraná, Brazil; Linking Landscape, Environment, Agriculture and Food, School of Agriculture - University of Lisbon, Lisbon, Portugal.
| | | | - Taynara Basso Vidovix
- State University of Maringá, Department of Chemical Engineering, Maringá, 87020-900, Paraná, Brazil
| | | | | | - Rosângela Bergamasco
- State University of Maringá, Department of Chemical Engineering, Maringá, 87020-900, Paraná, Brazil
| |
Collapse
|
4
|
Structural Investigation of DHICA Eumelanin Using Density Functional Theory and Classical Molecular Dynamics Simulations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238417. [PMID: 36500509 PMCID: PMC9738096 DOI: 10.3390/molecules27238417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Eumelanin is an important pigment, for example, in skin, hair, eyes, and the inner ear. It is a highly heterogeneous polymer with 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI) building blocks, of which DHICA is reported as the more abundant in natural eumelanin. The DHICA-eumelanin protomolecule consists of three building blocks, indole-2-carboxylic acid-5,6-quinone (ICAQ), DHICA and pyrrole-2,3,5-tricarboxylic acid (PTCA). Here, we focus on the self-assembly of DHICA-eumelanin using multi-microsecond molecular dynamics (MD) simulations at various concentrations in aqueous solutions. The molecule was first parameterized using density functional theory (DFT) calculations. Three types of systems were studied: (1) uncharged DHICA-eumelanin, (2) charged DHICA-eumelanin corresponding to physiological pH, and (3) a binary mixture of both of the above protomolecules. In the case of uncharged DHICA-eumelanin, spontaneous aggregation occurred and water molecules were present inside the aggregates. In the systems corresponding to physiological pH, all the carboxyl groups are negatively charged and the DHICA-eumelanin model has a net charge of -4. The effect of K+ ions as counterions was investigated. The results show high probability of binding to the deprotonated oxygens of the carboxylate anions in the PTCA moiety. Furthermore, the K+ counterions increased the solubility of DHICA-eumelanin in its charged form. A possible explanation is that the charged protomolecules favor binding to the K+ ions rather than aggregating and binding to other protomolecules. The binary mixtures show aggregation of uncharged DHICA-eumelanins; unlike the charged systems with no aggregation, a few charged DHICA-eumelanins are present on the surface of the uncharged aggregation, binding to the K+ ions.
Collapse
|
5
|
Bankole DT, Oluyori AP, Inyinbor AA. Acid-activated Hibiscus sabdariffa seed pods biochar for the adsorption of Chloroquine phosphate: Prediction of adsorption efficiency via machine learning approach. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
6
|
Applications of Natural and Synthetic Melanins as Biosorbents and Adhesive Coatings. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0077-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Jakubiak P, Cantrill C, Urtti A, Alvarez-Sánchez R. Establishment of an In Vitro-In Vivo Correlation for Melanin Binding and the Extension of the Ocular Half-Life of Small-Molecule Drugs. Mol Pharm 2019; 16:4890-4901. [PMID: 31670965 DOI: 10.1021/acs.molpharmaceut.9b00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A large variety of drugs bind effectively to melanin, and this binding influences their ocular pharmacokinetic and distribution profiles. We aimed to establish a correlation between in vitro melanin binding and in vivo ocular pharmacokinetics (PK). The extent of melanin binding in vitro was determined for a set of model drugs; binding kinetics and binding isotherms were generated and fitted to a mechanistic model to derive the drug-melanin binding parameters (Bmax, KD, kon, and koff). In addition, in vitro ADME properties such as cellular permeability, P-glycoprotein-mediated efflux, plasma protein binding, and octanol partition coefficients were determined. Moreover, cellular uptake was measured in the nonpigmented ARPE-19 cells and in lightly pigmented human epidermal melanocytes. Finally, in vivo ocular PK studies were performed in albino and pigmented rats using intravenous injections. Substantial drug enrichment accompanied by a very long residence time was observed in pigmented ocular tissues, which could be linked to the melanin binding determined in vitro and to the intracellular drug uptake into the pigmented cells. The resulting ocular PK profile is shown to be a consequence of the interplay of melanin binding with concurrent processes such as systemic clearance, plasma protein binding, cellular permeation, P-glycoprotein efflux, pH partitioning, and tissue binding. Understanding this interplay at a mechanistic level could help in the rational design and development of new small-molecule drug candidates with the desired PK/pharmacodynamic profile to target the back of the eye.
Collapse
Affiliation(s)
- Paulina Jakubiak
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland.,School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Carina Cantrill
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland.,Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Rubén Alvarez-Sánchez
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| |
Collapse
|
8
|
Jakubiak P, Lack F, Thun J, Urtti A, Alvarez-Sánchez R. Influence of Melanin Characteristics on Drug Binding Properties. Mol Pharm 2019; 16:2549-2556. [PMID: 30998378 DOI: 10.1021/acs.molpharmaceut.9b00157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melanins are biopolymers encompassing a high degree of chemical heterogeneity. Binding of small-molecule drugs to ocular melanin significantly affects the ocular pharmacokinetics, and could serve as a strategy for prolonged drug retention in the eye. The influence of the structural and physical characteristics of melanins originating from different sources on their drug binding properties has not yet been methodically investigated. We performed physical characterization of Sepia officinalis, synthetic and porcine melanin. The particle size distribution was analyzed by laser diffractometry. A dynamic vapor sorption method, requiring small amounts of the material, was developed to analyze the differences in the specific surface area of the melanins. The extent of melanin binding at equilibrium was determined for a set of 34 small-molecule drugs and compared across different melanin types. Despite systematic shifts in the extent of binding within a twofold range, binding data were highly correlated across the melanins. These moderate differences in binding could not be directly explained by the substantial differences in particle size and were more in line with the relatively similar specific surface area of these different melanin materials. Overall, these results suggest that the specific surface area reflects the actual accessibility of a small molecule in the melanin structure and could serve as a surrogate to explain the binding differences observed for the respective melanin materials.
Collapse
Affiliation(s)
- Paulina Jakubiak
- Roche Pharmaceutical Research and Early Development , Roche Innovation Center Basel , 4070 Basel , Switzerland.,School of Pharmacy , University of Eastern Finland , 70211 Kuopio , Finland
| | - Flavio Lack
- Roche Technical Development Small Molecules , Solid State Sciences Department , 4070 Basel , Switzerland
| | - Jürgen Thun
- Roche Technical Development Small Molecules , Solid State Sciences Department , 4070 Basel , Switzerland
| | - Arto Urtti
- School of Pharmacy , University of Eastern Finland , 70211 Kuopio , Finland.,Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
| | - Rubén Alvarez-Sánchez
- Roche Pharmaceutical Research and Early Development , Roche Innovation Center Basel , 4070 Basel , Switzerland
| |
Collapse
|
9
|
Rok J, Rzepka Z, Respondek M, Beberok A, Wrześniok D. Chlortetracycline and melanin biopolymer - The risk of accumulation and implications for phototoxicity: An in vitro study on normal human melanocytes. Chem Biol Interact 2019; 303:27-34. [PMID: 30768968 DOI: 10.1016/j.cbi.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Tetracyclines belong to antimicrobial classes with the highest consumption in veterinary medicine and agriculture, which leads to the contamination of the environment and food products, as well as to antibiotic resistance and adverse drug reactions. Chloro-derivatives of tetracyclines are thought to be relatively more phototoxic than others and belong to the most frequently cited drugs as photosensitizers. Melanins are heterogenous biopolymers determining skin, hair and eye colour. They are biosynthesized in a multistep process in melanocytes. Melanins, besides photoprotective and antioxidant properties, may also contribute to adverse skin drug reactions, which involve e.g. hyperpigmentation disorders and phototoxic reactions. Furthermore, they have the ability to form a drug-melanin complex, which leads to deposition of the drug or its metabolites in pigmented tissues. The aim of the study was to examine the ability of chlortetracycline to form a complex with melanin, as well as the effect of the drug on viability, antioxidant defence system and melanogenesis in normal human epidermal melanocytes exposed to the UVA radiation. The obtained results show for the first time that chlortetracycline forms a complex with melanin polymers, which creates a possibility of the drug accumulation in pigmented tissues. A simultaneous exposition of normal melanocytes to chlortetracycline and to the UVA radiation decreases cell viability, proportionally to the drug concentration and the irradiation time. The phototoxic effect appears to be related to the induction of oxidative stress in melanocytes, mainly through an increase of SOD and a decrease of the CAT activity. Chlortetracycline itself does not influence the melanin content or the activity of tyrosinase. The UVA radiation appeared to be a conditioning factor stimulating melanogenesis, whereas the presence of the drug augmented this effect.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland.
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| | - Michalina Respondek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| |
Collapse
|
10
|
Santer V, Chen Y, Kalia YN. Controlled non-invasive iontophoretic delivery of triamcinolone acetonide amino acid ester prodrugs into the posterior segment of the eye. Eur J Pharm Biopharm 2018; 132:157-167. [PMID: 30266666 DOI: 10.1016/j.ejpb.2018.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
This study investigated short duration transscleral iontophoretic delivery of four triamcinolone acetonide (TA) amino acid ester prodrugs (TA-AA) (alanine, Ala; arginine, Arg; isoleucine, Ile and lysine, Lys) using whole porcine eyes globes in vitro. Post-iontophoretic biodistribution of TA was quantified by UHPLC-MS/MS in the different ocular compartments (cornea, aqueous humor, sclera, ciliary body, choroid and retinal pigmented epithelium (RPE), neural retina and vitreous humor). Transscleral iontophoresis (3 mA/cm2 for 10 min) increased total drug delivery of the TA-AA prodrugs by 14-30-fold as compared to passive diffusion. The TA-AA prodrugs had distinct biodistribution profiles - the penetration depth achieved was dependent on their physicochemical properties (e.g. lipophilicity for TA-Ile) and susceptibility to hydrolysis (e.g. TA-Arg). Intraocular drug distribution was also influenced by prodrug binding to melanin (TA-Lys). Interestingly, under conditions of equivalent charge (6 mA/cm2 for 5 min vs. 1.5 mA/cm2 for 20 min, i.e. 1.44 C respectively) the longer duration (20 min) at lower current density resulted in ∼6 times more TA delivery into the vitreous humor. Overall, the study provided further evidence of the potential of transscleral iontophoresis for the non-invasive treatment of posterior segment inflammatory diseases.
Collapse
Affiliation(s)
- Verena Santer
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU-1, rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Yong Chen
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU-1, rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU-1, rue Michel Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
11
|
Pérez-Arnaiz C, Leal J, Busto N, Carrión MC, Rubio AR, Ortiz I, Barone G, Díaz de Greñu B, Santolaya J, Leal JM, Vaquero M, Jalón FA, Manzano BR, García B. Role of Seroalbumin in the Cytotoxicity of cis-Dichloro Pt(II) Complexes with (N^N)-Donor Ligands Bearing Functionalized Tails. Inorg Chem 2018; 57:6124-6134. [PMID: 29722534 DOI: 10.1021/acs.inorgchem.8b00713] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Given the potent anticancer properties of cis-diamminedichloroplatinum(II) and knowing its mode of action, we synthesized four new cis-[PtCl2(N^N)] organoplatinum complexes, two with N-substituted pbi ligands (pbiR = 1-R-2-(2-pyridyl)benzimidazole) (namely, 1 and 2) and two more with 4,4'-disubstituted bpy ligands (bpy = 2,2'-bipyridine) (namely, 3 and 4). We explored their cytotoxicity and ability to bind to deoxyguanosine monophosphate (dGMP), DNA, and albumin models. By 1H NMR and UV-vis spectroscopies, circular dichroism, agarose gel electrophoresis, differential scanning calorimetry measurements, and density functional theory calculations, we verified that only 3 can form aquacomplex species after dimethyl sulfoxide solvation; surprisingly, 1, 2, and 3 can bind covalently to DNA, whereas 4 can form a noncovalent complex. Interestingly, only complexes 1 and 4 exhibit good cytotoxicity against human ovarian carcinoma (HeLa) cell line, whereas 2 and 3 are inactive. Although lung carcinoma (A549) cells are more resistant to the four platinum complexes than HeLa cells, when the protein concentration in the extracellular media is lower, the cytotoxicity becomes substantially enhanced. By native electrophoresis of bovine seroalbumin (BSA) and inductively coupled plasma mass spectrometry uptake studies we bear out, on one hand, that 2 and 3 can interact strongly with BSA and its cellular uptake is negligible and, on the other hand, that 1 and 4 can interact with BSA only weakly, its cellular uptake being higher by several orders. These results point up the important role of the protein binding features on their biological activity and cellular uptake of cis-"PtCl2" derivatives. Our results are valuable in the future rational design of new platinum complexes with improved biological properties, as they expose the importance not only of their DNA binding abilities but also of additional factors such as protein binding.
Collapse
Affiliation(s)
- Cristina Pérez-Arnaiz
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Jorge Leal
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Natalia Busto
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - María C Carrión
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Ana R Rubio
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Imanol Ortiz
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche , Università degli Studi di Palermo , Viale delle Scienze Ed. 17 , 90128 Palermo , Italy
| | - Borja Díaz de Greñu
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Javier Santolaya
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - José M Leal
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Mónica Vaquero
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Félix A Jalón
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Blanca R Manzano
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Begoña García
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| |
Collapse
|
12
|
Rimpelä AK, Reinisalo M, Hellinen L, Grazhdankin E, Kidron H, Urtti A, del Amo EM. Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev 2018; 126:23-43. [PMID: 29247767 DOI: 10.1016/j.addr.2017.12.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/04/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Pigmented ocular tissues contain melanin within the intracellular melanosomes. Drugs bind to melanin at varying extent that ranges from no binding to extensive binding. Binding may lead to drug accumulation to the pigmented tissues and prolonged drug retention in the melanin containing cells. Therefore, melanin binding is an important feature that affects ocular drug delivery and biodistribution, but this topic has not been reviewed since 1998. In this review, we present current knowledge on ocular melanin, melanosomes and binding of drugs to pigmented cells and tissues. In vitro, in vivo and in silico methods in the field were critically evaluated, because the literature in this field can be confusing if the reader does not properly understand the methodological aspects. Literature analysis includes a comprehensive table of literature data on melanin binding of drugs. Furthermore, we aimed to give some insights beyond the current literature by making a chemical structure based classification model for melanin binding of drugs and kinetic simulations that revealed significant interplay between melanin binding and drug permeability across the melanosomal and plasma membranes. Overall, more mechanistic and systematic research is needed before the impact of melanin binding on ocular drug delivery can be properly understood and predicted.
Collapse
|
13
|
Gao M, Xu Y, Qiu L. Sensitization of multidrug-resistant malignant cells by liposomes co-encapsulating doxorubicin and chloroquine through autophagic inhibition. J Liposome Res 2016; 27:151-160. [PMID: 27250110 DOI: 10.1080/08982104.2016.1185731] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters play a key role in the development of multidrug resistance (MDR) in cancer cells. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) are important proteins in this superfamily which are widely expressed on the membranes of multidrug resistance (MDR) cancer cells. Besides, upregulation of cellular autophagic responses is considered a contributing factor for MDR in cancer cells. We designed a liposome system co-encapsulating a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and a typical autophagy inhibitior (chloroquine phosphate, CQ) at a weight ratio of 1:2 and investigated its drug resistance reversal mechanism. MTT assay showed that the IC50 of DOX/CQ co-encapsulated liposome in DOX-resistant human breast cancer cells (MCF7/ADR) was 4.7 ± 0.2 μM, 5.7-fold less than that of free DOX (26.9 ± 1.9 μM), whereas it was 19.5-fold in doxorubicin-resistant human acute myelocytic leukemia cancer cells (HL60/ADR) (DOX/CQ co-encapsulated liposome 1.2 ± 0.1 μM, free DOX 23.4 ± 2.8 μM). The cellular uptake of DOX increased upon addition of free CQ, indicating that CQ may interact with P-gp and MRP1; however, the expressions of P-gp and MRP1 remained unchanged. In contrast, the expression of the autophagy-related protein LC3-II increased remarkably. Therefore, the mechanism of MDR reversal may be closely related to autophagic inhibition. Evaluation of anti-tumor activity was achieved in an MCF-7/ADR multicellular tumor spheroid model and transgenic zebrafish model. DOX/CQ co-encapsulated liposome exerted a better anti-tumor effect in both models than that of liposomal DOX or DOX alone. These findings suggest that encapsulating CQ with DOX in liposomes significantly improves the sensitivity of DOX in DOX-resistant cancer cells.
Collapse
Affiliation(s)
- Menghua Gao
- b College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , China
| | - Yuzhen Xu
- b College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , China
| | - Liyan Qiu
- a Ministry of Education (MOE) Key Laboratory of Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou , China and
| |
Collapse
|
14
|
Manzanares JA, Rimpelä AK, Urtti A. Interpretation of Ocular Melanin Drug Binding Assays. Alternatives to the Model of Multiple Classes of Independent Sites. Mol Pharm 2016; 13:1251-7. [DOI: 10.1021/acs.molpharmaceut.5b00783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- José A. Manzanares
- Department
of Thermodynamics, Faculty of Physics, University of Valencia, E-46100 Burjassot, Spain
| | - Anna-Kaisa Rimpelä
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Arto Urtti
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
15
|
Rimpelä AK, Schmitt M, Latonen S, Hagström M, Antopolsky M, Manzanares JA, Kidron H, Urtti A. Drug Distribution to Retinal Pigment Epithelium: Studies on Melanin Binding, Cellular Kinetics, and Single Photon Emission Computed Tomography/Computed Tomography Imaging. Mol Pharm 2016; 13:2977-86. [DOI: 10.1021/acs.molpharmaceut.5b00787] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Anna-Kaisa Rimpelä
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Mechthild Schmitt
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Satu Latonen
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Marja Hagström
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Maxim Antopolsky
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - José A. Manzanares
- Department
of Thermodynamics, Faculty of Physics, University of Valencia, E-46100 Burjassot, Spain
| | - Heidi Kidron
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Arto Urtti
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|