1
|
Shaikh S, Gupta S, Mishra A, Sheikh PA, Singh P, Kumar A. Laser-assisted synthesis of nano-hydroxyapatite and functionalization with bone active molecules for bone regeneration. Colloids Surf B Biointerfaces 2024; 237:113859. [PMID: 38547794 DOI: 10.1016/j.colsurfb.2024.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
The main goal of bone tissue engineering research is to replace the allogenic and autologous bone graft substitutes that can promote bone repair. Owing to excellent biocompatibility and osteoconductivity, hydroxyapatite is in extensive research and high demand for both medical and non-medical applications. Although various methods have been developed for the synthesis of hydroxyapatite, in the present study we have shown the use of nanosecond laser energy in the wet precipitation method of nano-hydroxyapatite (nHAP) synthesis without using ammonium solution or any other chemicals for pH maintenance. Here, the present study aimed to fabricate the nanohydroxyapatite using a nanosecond laser. The X-ray diffraction and Fourier transform infrared spectroscopy have confirmed the hydroxyapatite formation under laser irradiation in less time without aging. A transmission electron microscopy confirmed the nano size of synthesized nHAP, which is comparable to conventional nHAP. The length and width of the laser-assisted nHAP were found to be in the range of 50-200 nm and 15-20 nm, respectively, at various laser parameters. The crystallite size obtained by Debye Scherrer formulae was found to be in the range of ∼ 16-36 nm. In addition, laser-assisted nHAP based composite cryogel (nanohydroxyapatite/gelatin/collagen I) was synthesized and impregnated with bioactive molecules (bone morphogenic protein and zoledronic acid) that demonstrated significant osteogenic potential both in vitro in cell experiment and in vivo rat muscle pouch model (abdomen and tibia muscles). Dual-energy X-ray analysis, micro-CT, and histological analysis confirmed ectopic bone regeneration. Micro-CT based histomorphometry showed a higher amount (more than 10-fold) of mineralization for animal groups implanted with composite cryogels loaded with bioactive molecules compared to only composite cryogels groups. Our findings thus demonstrate a controlled and rapid synthetic method for the synthesis of nHAP with various physical, chemical, and biological properties exhibited as comparable to conventionally synthesized nHAP.
Collapse
Affiliation(s)
- Shazia Shaikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ankita Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Parvaiz A Sheikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India.
| |
Collapse
|
2
|
Xie J, Kim HM, Kamada K, Oh JM. Blood Compatibility of Drug-Inorganic Hybrid in Human Blood: Red Blood Cell Hitchhiking and Soft Protein Corona. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6523. [PMID: 37834660 PMCID: PMC10573551 DOI: 10.3390/ma16196523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
A drug-delivery system consisting of an inorganic host-layered double hydroxide (LDH)-and an anticancer drug-methotrexate (MTX)-was prepared via the intercalation route (MTX-LDH), and its hematocompatibility was investigated. Hemolysis, a red blood cell counting assay, and optical microscopy revealed that the MTX-LDH had no harmful toxic effect on blood cells. Both scanning electron microscopy and atomic force microscopy exhibited that the MTX-LDH particles softly landed on the concave part inred blood cells without serious morphological changes of the cells. The time-dependent change in the surface charge and hydrodynamic radius of MTX-LDH in the plasma condition demonstrated that the proteins can be gently adsorbed on the MTX-LDH particles, possibly through protein corona, giving rise to good colloidal stability. The fluorescence quenching assay was carried out to monitor the interaction between MTX-LDH and plasma protein, and the result showed that the MTX-LDH had less dynamic interaction with protein compared with MTX alone, due to the capsule moiety of the LDH host. It was verified by a quartz crystal microbalance assay that the surface interaction between MTX-LDH and protein was reversible and reproducible, and the type of protein corona was a soft one, having flexibility toward the biological environment.
Collapse
Affiliation(s)
- Jing Xie
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Hyoung-Mi Kim
- Biomedical Manufacturing Technology Center, Daegyeong Division, Korea Institute of Industrial Technology (KITECH), Yeongcheon-si 38822, Republic of Korea;
| | - Kai Kamada
- Department of Materials Science and Engineering, Faculty of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| |
Collapse
|
3
|
Yang Z, Li H, Zhang W, Zhang M, He J, Yu Z, Sun X, Ni P. CD163 Monoclonal Antibody Modified Polymer Prodrug Nanoparticles for Targeting Tumor-Associated Macrophages (TAMs) to Enhance Anti-Tumor Effects. Pharmaceutics 2023; 15:pharmaceutics15041241. [PMID: 37111726 PMCID: PMC10144748 DOI: 10.3390/pharmaceutics15041241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Tumor-associated macrophages (TAMs)-based immunotherapy is a promising strategy. Since TAMs are mainly composed of M2-type macrophages, they have a promoting effect on tumor growth, invasion, and metastasis. M2-type macrophages contain a specific receptor CD163 on their surface, providing a prerequisite for active targeting to TAMs. In this study, we prepared CD163 monoclonal antibody modified doxorubicin-polymer prodrug nanoparticles (abbreviated as mAb-CD163-PDNPs) with pH responsiveness and targeted delivery. First, DOX was bonded with the aldehyde group of a copolymer by Schiff base reaction to form an amphiphilic polymer prodrug, which could self-assemble into nanoparticles in the aqueous solution. Then, mAb-CD163-PDNPs were generated through a "Click" reaction between the azide group on the surface of the prodrug nanoparticles and dibenzocyclocytyl-coupled CD163 monoclonal antibody (mAb-CD163-DBCO). The structure and assembly morphology of the prodrug and nanoparticles were characterized by 1H NMR, MALDI-TOF MS, FT-IR UV-vis spectroscopy, and dynamic light scattering (DLS). In vitro drug release behavior, cytotoxicity, and cell uptake were also investigated. The results show that the prodrug nanoparticles have regular morphology and stable structure, especially mAb-CD163-PDNPs, which can actively target TAMs at tumor sites, respond to the acidic environment in tumor cells, and release drugs. While depleting TAMs, mAb-CD163-PDNPs can actively enrich drugs at the tumor site and have a strong inhibitory effect on TAMs and tumor cells. The result of the in vivo test also shows a good therapeutic effect, with a tumor inhibition rate of 81%. This strategy of delivering anticancer drugs in TAMs provides a new way to develop targeted drugs for immunotherapy of malignant tumors.
Collapse
Affiliation(s)
- Zun Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Haijiao Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wenrui Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Mingzu Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jinlin He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zepeng Yu
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Xingwei Sun
- Intervention Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Peihong Ni
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Hu Y, Liu X, Liu F, Xie J, Zhu Q, Tan S. Trehalose in Biomedical Cryopreservation-Properties, Mechanisms, Delivery Methods, Applications, Benefits, and Problems. ACS Biomater Sci Eng 2023; 9:1190-1204. [PMID: 36779397 DOI: 10.1021/acsbiomaterials.2c01225] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cells and tissues are the foundation of translational medicine. At present, one of the main technological obstacles is their preservation for long-term usage while maintaining adequate viability and function. Optimized storage techniques must be developed to make them safer to use in the clinic. Cryopreservation is the most common long-term preservation method to maintain the vitality and function of cells and tissues. But, the formation of ice crystals in cells and tissues is considered to be the main mechanism that could harm cells and tissues during freezing and thawing. To reduce the formation of ice crystals, cryoprotective agents (CPAs) must be added to the cells and tissues to achieve the cryoprotective effect. However, conventional cryopreservation of cells and tissues often needs to use toxic organic solvents as CPAs. As a result, cryopreserved cells and tissues may need to go through a time-consuming washing process to remove CPAs for further applications in translational medicine, and multiple valuable cells are potentially lost or killed. Currently, trehalose has been researched as a nontoxic CPA due to its cryoprotective ability and stability during cryopreservation. Nevertheless, trehalose is a nonpermeable CPA, and the lack of an effective intracellular trehalose delivery method has become the main obstacle to its use in cryopreservation. This article illustrated the properties, mechanisms, delivery methods, and applications of trehalose, summarized the benefits and limits of trehalose, and summed up the findings and research direction of trehalose in biomedical cryopreservation.
Collapse
Affiliation(s)
- Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Fenglin Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jingxian Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
5
|
Zhou R, Zhang M, He J, Liu J, Sun X, Ni P. Functional cRGD-Conjugated Polymer Prodrug for Targeted Drug Delivery to Liver Cancer Cells. ACS OMEGA 2022; 7:21325-21336. [PMID: 35755339 PMCID: PMC9219052 DOI: 10.1021/acsomega.2c02683] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 05/07/2023]
Abstract
To overcome the limitation of conventional nanodrugs in tumor targeting efficiency, coupling targeting ligands to polymeric nanoparticles can enhance the specific binding of nanodrugs to tumors. Cyclo(Arg-Gly-Asp-d-Phe-Lys) (abbreviated as c(RGDfK)) peptide has been widely adopted due to its high affinity to the tumor marker αvβ3 integrin receptor. In this study, we develop a cRGD peptide-conjugated camptothecin (CPT) prodrug, which enables self-assembly of nanoparticles for precise targeting and enrichment in tumor tissue. We first synthesized a camptothecin derivative (CPT-ss-N3) with a reduction-sensitive bond and simultaneously modified PEG to obtain cRGD-PEG-N3. After ring-opening polymerization of the 2-(but-3-yn-1-yolxy)-2-oxo-1,3,2-dioxaphospholane (BYP), an amphiphilic polymeric prodrug, referred to as cRGD-PEG-g-(PBYP-ss-CPT), was obtained via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The self-assembly in buffer solution of the cRGD-functional prodrug was studied through DLS and TEM. The in vitro drug release behavior of cRGD-PEG-g-(PBYP-ss-CPT) nanoparticles was investigated. The results show that the nanoparticles are reduction-responsive and the bonded CPT can be released. Endocytosis and MTT assays demonstrate that the cRGD-conjugated prodrug has better affinity for tumor cells, accumulates more intracellularly, and is therefore, more effective. The in vivo drug metabolism studies show that nanoparticles greatly prolong the retention time in circulation. By monitoring drug distribution in tumor and in various tissues, we find that free CPT can be rapidly metabolized, resulting in low accumulation in all tissues. However, cRGD-PEG-g-(PBYP-ss-CPT) nanoparticles accumulate in tumor tissues in higher amounts than PEG-g-(PBYP-ss-CPT) nanoparticles, except for the inevitable capture by the liver. This indicates that the nanomedicine with cRGD has a certain targeting property, which can improve drug delivery efficiency.
Collapse
Affiliation(s)
- Ru Zhou
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jinlin He
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jian Liu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Xingwei Sun
- Intervention
Department, The Second Affiliated Hospital
of Soochow University, Suzhou 215004, P. R. China
| | - Peihong Ni
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
- . Tel: +86
512 65882047
| |
Collapse
|
6
|
El-Sayed A, Kamel M. Bovine mastitis prevention and control in the post-antibiotic era. Trop Anim Health Prod 2021; 53:236. [PMID: 33788033 DOI: 10.1007/s11250-021-02680-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/22/2021] [Indexed: 01/17/2023]
Abstract
Mastitis is the most important disease in the dairy industry. Antibiotics are considered to be the first choice in the treatment of the disease. However, the problem of antibiotic residue and antimicrobial resistance, in addition to the impact of antibiotic abuse on public health, leads to many restrictions on uncontrolled antibiotic therapy in the dairy sector worldwide. Researchers have investigated novel therapeutic approaches to replace the use of antibiotics in mastitis control. These efforts, supported by the revolutionary development of nanotechnology, stem cell assays, molecular biological tools, and genomics, enabled the development of new approaches for mastitis-treatment and control. The present review discusses recent concepts to control mastitis such as breeding of mastitis-resistant dairy cows, the development of novel diagnostic and therapeutic tools, the application of communication technology as an educational and epidemiological tool, application of modern mastitis vaccines, cow drying protocols, teat disinfection, housing, and nutrition. These include the application of nanotechnology, stem cell technology, photodynamic and laser therapy or the use of traditional herbal medical plants, nutraceuticals, antibacterial peptides, bacteriocins, antibodies therapy, bacteriophages, phage lysins, and probiotics as alternatives to antibiotics.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
7
|
Choimet M, Tourrette A, Marsan O, Rassu G, Drouet C. Bio-inspired apatite particles limit skin penetration of drugs for dermatology applications. Acta Biomater 2020; 111:418-428. [PMID: 32439611 DOI: 10.1016/j.actbio.2020.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 05/08/2020] [Indexed: 12/25/2022]
Abstract
Most treatments of skin pathologies involve local administration of active agents. One issue can however be the partial transcutaneous diffusion of the drug to blood circulation, leading to undesirable effects. In this work, the original use of submicron mineral particles based on bio-inspired calcium phosphate apatite was explored for the first time as drug carriers for favoring topical delivery. The permeation of a model drug across synthetic and biological membranes was investigated in both static and dynamic conditions. Our data show that adsorption of the drug on the apatite particles surface drastically limits its permeation, with lower effective diffusion coefficients (Peff) and smaller total released amounts. The retention of the apatite colloidal particles on porcine ear skin explants surface was demonstrated by combining histological observations and Raman confocal microscopy. All results converge to show that association of the drug to apatite particles favors skin surface effects. These findings point to the relevance of mineral-based particles as drug carriers for local delivery to the skin, and open the way to novel applications of bio-inspired apatites in dermatology. STATEMENT OF SIGNIFICANCE: Calcium phosphates (CaP) are major biomaterials in orthopedics and dentistry. Their resemblance to bone mineral allows new applications beyond bone repair, e.g. in nanomedicine. In 2018, a 14-page detailed review (M. Epple, Acta Biomaterialia 77 (2018) 1-14) provided clear facts in favor of the non-toxicity of nanosized CaP as an answer to discussions from EU and US study groups, thus clarifying the path to novel applications of nano CaP. In the present paper, bio-inspired apatite nanoparticles are used for the first time as drug carriers for dermatology for drastically limiting drug transcutaneous permeation and retaining a topical effect. We demonstrate this proof of concept via permeation cell tests, histology, Raman microscopy and photoluminescence after application on porcine ear skin.
Collapse
|
8
|
Mutalik SP, Pandey A, Mutalik S. Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. Int J Biol Macromol 2020; 151:136-158. [DOI: 10.1016/j.ijbiomac.2020.02.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
|
9
|
Hadilou N, Khoshgenab AN, Amoli-Diva M, Sadighi-Bonabi R. Remote Trice Light, Temperature, and pH-actuation of Switchable Magneto-Plasmonic Nanocarriers for Combinational Photothermal and Controlled/Targeted Chemotherapies. J Pharm Sci 2018; 107:3123-3133. [PMID: 30194958 DOI: 10.1016/j.xphs.2018.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022]
Abstract
Three magneto-plasmonic nanohybrids were synthesized using Au- and Ag-coated Fe3O4 nanoparticles (NPs)-modified dual pH- and temperature-responsive triblock copolymer of poly (butyl methacrylate-co-acrylamide-co-methacrylic acid) to serve as drug carriers with potential of using in both photothermal and controlled/targeted chemotherapies. The internal superparamagnetic core gives the carriers targeted-delivery characteristics, and surface plasmon resonance-based noble metallic Au/Ag shells give them on-demand photothermal and photo-triggering release properties. To investigate the effect of coating method on the targeting property of synthesized carriers, Au NPs were attached to the magnetic core by 2 different direct/indirect procedures and the properties of the synthesized carriers including swelling ratio and thermal and optical sensitivity and switching were comprehensively investigated in 2 different buffer solutions with pH 5.5 and 7.4 at 37°C. Letrozole was used as a model anticancer drug and its loading and release properties were evaluated for the four nanocarriers. The cytotoxicity of drug-free and letrozole-loaded nanocarriers on normal L929 fibroblast and MDAMB 231 breast cancer cell lines was evaluated in absence/presence of laser radiation. The results revealed that the carriers have the potential of serving as switchable trimodal light/temperature/pH-triggered and targeted/controlled drug delivery platforms for chemophotothermal therapy.
Collapse
Affiliation(s)
- Naby Hadilou
- Department of Laser and Optical Engineering, University of Bonab, Bonab, Iran; Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran
| | | | - Mitra Amoli-Diva
- Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran
| | - Rasoul Sadighi-Bonabi
- Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran.
| |
Collapse
|
10
|
Raju A, Nair SV, Lakshmanan V. Biophytum sensitivum
nanomedicine reduces cell viability and nitrite production in prostate cancer cells. IET Nanobiotechnol 2017. [DOI: 10.1049/iet-nbt.2016.0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Arathy Raju
- Amrita Centre for Nanosciences and Molecular MedicineAmrita Institute of Medical Sciences and Research CentreAmrita Vishwa Vidyapeetham UniversityKochi Campus 682041KeralaIndia
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular MedicineAmrita Institute of Medical Sciences and Research CentreAmrita Vishwa Vidyapeetham UniversityKochi Campus 682041KeralaIndia
| | - Vinoth‐Kumar Lakshmanan
- Amrita Centre for Nanosciences and Molecular MedicineAmrita Institute of Medical Sciences and Research CentreAmrita Vishwa Vidyapeetham UniversityKochi Campus 682041KeralaIndia
- Department of Biomedical SciencesChonnam National University Medical School160 Baeksuh‐Roh, Dong‐GuGwangju 61469Korea (ROK)
| |
Collapse
|
11
|
Stefanic M, Ward K, Tawfik H, Seemann R, Baulin V, Guo Y, Fleury JB, Drouet C. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials 2017. [DOI: 10.1016/j.biomaterials.2017.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Lee JA, Kim MK, Song JH, Jo MR, Yu J, Kim KM, Kim YR, Oh JM, Choi SJ. Biokinetics of food additive silica nanoparticles and their interactions with food components. Colloids Surf B Biointerfaces 2016; 150:384-392. [PMID: 27842933 DOI: 10.1016/j.colsurfb.2016.11.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Nanomaterials have been widely utilized in the food industry in production, packaging, sensors, nutrient delivery systems, and food additives. However, research on the interactions between food-grade nanoparticles and biomolecules as well as their potential toxicity is limited. In the present study, the in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of one of the most extensively used food additives, silica (SiO2) were evaluated with respect to particle size (nano vs bulk) following single-dose oral administration to rats. Intestinal transport mechanism was investigated using a 3D culture system, in vitro model of human intestinal follicle-associated epithelium (FAE). The effect of the presence of food components, such as sugar and protein, on the oral absorption of nanoparticles was also evaluated with focus on their interactions. The results obtained demonstrated that the oral absorption of nanoparticles (3.94±0.38%) was greater than that of bulk materials (2.95±0.37%), possibly due to intestinal transport by microfold (M) cells. On the other hand, particle size was found to have no significant effect on in vivo dissolution property, biodistribution, or excretion kinetics. Oral absorption profile of silica nanoparticles was highly dependent on the presence of sugar or protein, showing rapid absorption rate in glucose, presumably due to their surface interaction on nanoparticles. These findings will be useful for predicting the potential toxicity of food-grade nanoparticles and for understanding biological interactions.
Collapse
Affiliation(s)
- Jeong-A Lee
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Mi-Kyung Kim
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Jae Ho Song
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Mi-Rae Jo
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Jin Yu
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Kyoung-Min Kim
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Young-Rok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Jae-Min Oh
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea.
| | - Soo-Jin Choi
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea.
| |
Collapse
|