1
|
Cheng Y, Ma S, Dong J, Zhang W, Ma Y, Zhang A, Peng H, Han F, Kong W. Inhibitory activity and mechanisms of chitosan against Fusarium avenaceum, a pathogen causing Angelica root rot disease. Int J Biol Macromol 2025; 300:140249. [PMID: 39864686 DOI: 10.1016/j.ijbiomac.2025.140249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/25/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
The polysaccharide chitosan possesses broad-spectrum antimicrobial properties and has proven effective in controlling various postharvest diseases in fruits. Nevertheless, the fundamental mechanisms underlying its action remain unclear. In this study, the antifungal effects of chitosan with different molecular weights against Fusarium avenaceum, a pathogen causing root rot in Angelica sinensis, were evaluated. Additionally, the potential mechanisms of these effects were explored at the microstructural and transcriptomic levels. Notably, low-molecular-weight chitosan (20 kDa) exhibited superior antifungal activity when compared to high-molecular-weight chitosan (500 kDa and 1000 kDa). The half-maximal inhibitory concentration (IC50) of 20, 500, and 1000 kDa chitosan were 0.2103, 0.2183, and 0.2707 g/L, respectively. Morphological and physiological experiments demonstrated that chitosan can inhibit the growth of F. avenaceum by decreasing spore germination, destroying mycelial morphology and microstructure, and promoting the release of intracellular electrolytes. RNA sequencing revealed considerable changes in the transcriptomic profile of F. avenaceum after chitosan treatment, with 2030 genes being differentially expressed. Subsequent KEGG pathway analysis demonstrated that genes associated with translation, human diseases, and transcription were upregulated in F. avenaceum after chitosan treatment. In contrast, genes associated with carbohydrate and amino acid metabolism, cellular processes, exogenous substance degradation and metabolism, and the metabolism of cofactors and vitamins were downregulated. Collectively, these results indicated that chitosan may influence the growth of F. avenaceum by disrupting protein biosynthesis and key metabolic pathways. These findings highlight the substantial potential of chitosan as an alternative agent for the management of fungal diseases in plants used in Chinese herbal medicine.
Collapse
Affiliation(s)
- Yaya Cheng
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Saimai Ma
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Jianmei Dong
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Wenwen Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Yanjun Ma
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Aimei Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Hai Peng
- Institute of Forestry, Fruit and Flower, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
| | - Fujun Han
- Institute of Forestry, Fruit and Flower, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Weibao Kong
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; Gansu Engineering Research Center of High Value-added Utilization of Distinctive Agricultural Products, Lanzhou 730070, China.
| |
Collapse
|
2
|
Jurak M, Pastuszak K, Wiącek AE. Langmuir Monolayer Studies of Phosphatidylcholine Membranes with Naproxen on the Polysaccharide Subphase. Molecules 2025; 30:1509. [PMID: 40286111 PMCID: PMC11990449 DOI: 10.3390/molecules30071509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Natural polysaccharides are biocompatible and biodegradable; therefore, they can be widely used in drug delivery, tissue engineering and wound healing. In this context, the interactions between polysaccharides, drugs and biological membranes are of great interest. In this paper, a 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) monolayer was used as a model membrane to study the interactions with polysaccharides: chitosan (Ch) and/or hyaluronic acid (HA) and a nonsteroidal anti-inflammatory drug (NSAID) naproxen (NAP). The changes in the physicochemical properties of the model membrane were characterized by means of the Langmuir monolayer technique combined with Brewster angle microscopy (BAM). Compression/adsorption isotherms and morphology images were obtained at 20 °C. They allowed us to determine the effect of the subphase type (Ch, HA, Ch-HA) on the behavior of DPPC monolayers in the absence and presence of NAP, their elasticity, morphology and stability as a function of time. A potential mode of interactions between the phospholipid, polysaccharides and drug responsible for the change in membrane properties was proposed. These interactions regulate the efficiency of drug delivery systems, being of importance for living organisms in pain relief and wound healing.
Collapse
Affiliation(s)
- Małgorzata Jurak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| | | | | |
Collapse
|
3
|
Michna A, Lupa D, Płaziński W, Batys P, Adamczyk Z. Physicochemical characteristics of chitosan molecules: Modeling and experiments. Adv Colloid Interface Sci 2025; 337:103383. [PMID: 39733532 DOI: 10.1016/j.cis.2024.103383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/31/2024]
Abstract
Chitosan, a biocompatible polysaccharide, finds a wide range of applications, inter alia as an antimicrobial agent, stabilizer of food products, cosmetics, and in the targeted delivery of drugs and stem cells. This work represents a comprehensive review of the properties of chitosan molecule and its aqueous solutions uniquely combining theoretical modeling and experimental results. The emphasis is on physicochemical aspects which were sparsely considered in previous reviews. Accordingly, in the first part, the explicit solvent molecular dynamics (MD) modeling results characterizing the conformations of chitosan molecule, the contour length, the chain diameter and the density are discussed. These MD data are used to calculate several parameters for larger chitosan molecules using a hybrid approach based on continuous hydrodynamics. The dependencies of hydrodynamic diameter, frictional ratio, radius of gyration, and intrinsic viscosity on the molar mass of molecules are presented and discussed. These theoretical predictions, comprising useful analytical solutions, are used to interpret and rationalize the extensive experimental data acquired by advanced experimental techniques. In the final part, the molecule charge, acid-base, and electrokinetic properties, comprising the electrophoretic mobility and the zeta potential, are reviewed. Future research directions are defined and discussed.
Collapse
Affiliation(s)
- Aneta Michna
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Dawid Lupa
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland.
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| |
Collapse
|
4
|
Argenziano M, Spagnolo R, Cavalli R. What are the future applications of chitosan nanobubbles in drug delivery? Expert Opin Drug Deliv 2025:1-3. [PMID: 39903218 DOI: 10.1080/17425247.2025.2462761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Rita Spagnolo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Ouyang C, Deng M, Tan X, Liu Z, Huang T, Yu S, Ge Z, Zhang Y, Ding Y, Chen H, Chu H, Chen J. Tailored design of NHS-SS-NHS cross-linked chitosan nano-hydrogels for enhanced anti-tumor efficacy by GSH-responsive drug release. Biomed Mater 2024; 19:045015. [PMID: 38772383 DOI: 10.1088/1748-605x/ad4e86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
The traditional chemotherapeutic agents' disadvantages such as high toxicity, untargeting and poor water solubility lead to disappointing chemotherapy effects, which restricts its clinical application. In this work, novel size-appropriate and glutathione (GSH)-responsive nano-hydrogels were successfully prepared via the active ester method between chitosan (containing -NH2) and cross-linker (containing NHS). Especially, the cross-linker was elaborately designed to possess a disulfide linkage (SS) as well as two terminal NHS groups, namely NHS-SS-NHS. These functionalities endowed chitosan-based cross-linked scaffolds with capabilities for drug loading and delivery, as well as a GSH-responsive mechanism for drug release. The prepared nano-hydrogels demonstrated excellent performance applicable morphology, excellent drug loading efficiency (∼22.5%), suitable size (∼100 nm) and long-term stability. The prepared nano-hydrogels released over 80% doxorubicin (DOX) after incubation in 10 mM GSH while a minimal DOX release less than 25% was tested in normal physiological buffer (pH = 7.4). The unloaded nano-hydrogels did not show any apparent cytotoxicity to A 549 cells. In contrast, DOX-loaded nano-hydrogels exhibited marked anti-tumor activity against A 549 cells, especially in high GSH environment. Finally, through fluorescent imaging and flow cytometry analysis, fluorescein isothiocyanate-labeled nano-hydrogels show obvious specific binding to the GSH high-expressing A549 cells and nonspecific binding to the GSH low-expressing A549 cells. Therefore, with this cross-linking approach, our present finding suggests that cross-linked chitosan nano-hydrogel drug carrier improves the anti-tumor effect of the A 549 cells and may serve as a potential injectable delivery carrier.
Collapse
Affiliation(s)
- Cuiling Ouyang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Minxin Deng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Xiaowei Tan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Ziyi Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Tuo Huang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Siyu Yu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Zan Ge
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Yafang Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Yujun Ding
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Hezhang Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Hui Chu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| |
Collapse
|
6
|
Chachaj-Brekiesz A, Kobierski J, Wnętrzak A, Dynarowicz-Latka P, Pietruszewska P. Insight into the Molecular Mechanism of Surface Interactions of Phosphatidylcholines─Langmuir Monolayer Study Complemented with Molecular Dynamics Simulations. J Phys Chem B 2024; 128:1473-1482. [PMID: 38320120 PMCID: PMC10875670 DOI: 10.1021/acs.jpcb.3c06810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Mutual interactions between components of biological membranes are pivotal for maintaining their proper biophysical properties, such as stability, fluidity, or permeability. The main building blocks of biomembranes are lipids, among which the most important are phospholipids (mainly phosphatidylcholines (PCs)) and sterols (mainly cholesterol). Although there is a plethora of reports on interactions between PCs, as well as between PCs and cholesterol, their molecular mechanism has not yet been fully explained. Therefore, to resolve this issue, we carried out systematic investigations based on the classical Langmuir monolayer technique complemented with molecular dynamics simulations. The studies involved systems containing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) analogues possessing in the structure one or two polar functional groups similar to those of DPPC. The interactions and rheological properties of binary mixtures of DPPC analogues with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol were compared with reference systems (DPPC/POPC and DPPC/cholesterol). This pointed to the importance of the ternary amine group in PC/cholesterol interactions, while in PC mixtures, the phosphate group played a key role. In both cases, the esterified glycerol group had an effect on the magnitude of interactions. The obtained results are crucial for establishing structure-property relationships as well as for designing substitutes for natural lipids.
Collapse
Affiliation(s)
- Anna Chachaj-Brekiesz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30–387 Kraków, Poland
| | - Jan Kobierski
- Department
of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30–688 Kraków, Poland
| | - Anita Wnętrzak
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30–387 Kraków, Poland
| | | | | |
Collapse
|
7
|
Ceballos JA, Jaramillo-Isaza S, Calderón JC, Miranda PB, Giraldo MA. Doxorubicin Interaction with Lipid Monolayers Leads to Decreased Membrane Stiffness when Experiencing Compression-Expansion Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37320858 DOI: 10.1021/acs.langmuir.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Physical membrane models permit to study and quantify the interactions of many external molecules with monitored and simplified systems. In this work, we have constructed artificial Langmuir single-lipid monolayers with dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylserine (DPPS), or sphingomyelin to resemble the main lipid components of the mammalian cell membranes. We determined the collapse pressure, minimum area per molecule, and maximum compression modulus (Cs-1) from surface pressure measurements in a Langmuir trough. Also, from compression/expansion isotherms, we estimated the viscoelastic properties of the monolayers. With this model, we explored the membrane molecular mechanism of toxicity of the well-known anticancer drug doxorubicin, with particular emphasis in cardiotoxicity. The results showed that doxorubicin intercalates mainly between DPPS and sphingomyelin, and less between DPPE, inducing a change in the Cs-1 of up to 34% for DPPS. The isotherm experiments suggested that doxorubicin had little effect on DPPC, partially solubilized DPPS lipids toward the bulk of the subphase, and caused a slight or large expansion in the DPPE and sphingomyelin monolayers, respectively. Furthermore, the dynamic viscoelasticity of the DPPE and DPPS membranes was greatly reduced (by 43 and 23%, respectively), while the reduction amounted only to 12% for sphingomyelin and DPPC models. In conclusion, doxorubicin intercalates into the DPPS, DPPE, and sphingomyelin, but not into the DPPC, membrane lipids, inducing a structural distortion that leads to decreased membrane stiffness and reduced compressibility modulus. These alterations may constitute a novel, early step in explaining the doxorubicin mechanism of action in mammalian cancer cells or its toxicity in non-cancer cells, with relevance to explain its cardiotoxicity.
Collapse
Affiliation(s)
- Jorge A Ceballos
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin 050010, Colombia
- School of Health Sciences, Pontifical Bolivarian University, Medellin 050031, Colombia
- Sao Carlos Physics Institute, University of Sao Paulo, P.O. Box 369, Sao Carlos, SP 13560-970, Brazil
| | | | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia
| | - Paulo B Miranda
- Sao Carlos Physics Institute, University of Sao Paulo, P.O. Box 369, Sao Carlos, SP 13560-970, Brazil
| | - Marco A Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
8
|
Rimoli CV, de Oliveira Pedro R, Miranda PB. Interaction mechanism of chitosan oligomers in pure water with cell membrane models studied by SFG vibrational spectroscopy. Colloids Surf B Biointerfaces 2022; 219:112782. [PMID: 36063719 DOI: 10.1016/j.colsurfb.2022.112782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022]
Abstract
Chitosan is a versatile and biocompatible cationic antimicrobial polymer obtained from sustainable sources that is effective against a wide range of microorganisms. Although it is soluble only at low pH, chitosan oligomers (ChitO) are soluble in pure water and thus more appropriate for antibacterial applications. Although there is a vast literature on chitosan's antimicrobial activity, the molecular details of its interaction with biomembranes remain unclear. Here we investigate these molecular interactions by resorting to phospholipid Langmuir films (zwitterionic DPPC and anionic DPPG) as simplified membrane models (for mammalian and bacterial membranes, respectively), and using SFG vibrational spectroscopy to probe lipid tail conformation, headgroup dynamics and interfacial water orientation. For comparison, we also investigate the interactions of another simple cationic antimicrobial polyelectrolyte, poly(allylamine) hydrochloride - PAH. By forming the lipid films over the polyelectrolyte solutions, we found that both have only a very small interaction with DPPC, but PAH adsorption is able to invert the interfacial water orientation (membrane potential). This might explain why ChitO is compatible with mammalian cells, while PAH is toxic. In contrast, their interaction with DPPG films is much stronger, even more so for ChitO, with both insertion within the lipid film and interaction with the oppositely charged headgroups. Again, PAH adsorption inverts the membrane potential, while ChitO does not. Finally, ChitO interaction with DPPG is weaker if the antimicrobial is injected underneath a pre-assembled Langmuir film, and its interaction mode depends on the time interval between end of film compression and ChitO injection. These differences between ChitO and PAH effects on the model membranes highlight the importance of molecular structure and intermolecular interactions for their bioactivity, and therefore this study may provide insights for the rational design of more effective antimicrobial molecules.
Collapse
Affiliation(s)
- Caio Vaz Rimoli
- Sao Carlos Physics Institute, University of Sao Paulo, CP 369, Sao Carlos CEP 13560-970, SP, Brazil; Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005 Paris, France
| | - Rafael de Oliveira Pedro
- Sao Carlos Physics Institute, University of Sao Paulo, CP 369, Sao Carlos CEP 13560-970, SP, Brazil; Department of exact and earth sciences, Minas Gerais State University (UEMG), Ituiutaba CEP 38302-192, MG, Brazil
| | - Paulo B Miranda
- Sao Carlos Physics Institute, University of Sao Paulo, CP 369, Sao Carlos CEP 13560-970, SP, Brazil.
| |
Collapse
|
9
|
Katata VM, Maximino MD, Silva CY, Alessio P. The Role of Cholesterol in the Interaction of the Lipid Monolayer with the Endocrine Disruptor Bisphenol-A. MEMBRANES 2022; 12:membranes12080729. [PMID: 35893447 PMCID: PMC9332047 DOI: 10.3390/membranes12080729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Among pollutants of emerging concern, endocrine disruptors (ED) have been shown to cause side effects in humans and animals. Bisphenol-A (BPA) is an ED by-product of the plastic industry and one of the chemicals with the highest volume produced yearly. Here, we studied the role of cholesterol in the BPA exposure effects over membrane models. We used Langmuir films of both neat lipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and cholesterol (Chol) and a binary mixture containing DPPC/Chol, exposing it to BPA. We evaluate changes in the π-A isotherms and the PM–IRRAS (polarization modulation–infrared reflection adsorption spectroscopy) spectra. BPA exposure induced changes in the DPPC and Chol neat monolayers, causing mean molecular area expansion and altering profiles. However, at high surface pressure, the BPA was expelled from the air–water interface. For the DPPC/Chol mixture, BPA caused expansion throughout the whole compression, indicating that BPA is present at the monolayer interface. The PM–IRRAS analysis showed that BPA interacted with the phosphate group of DPPC through hydrogen bonding, which caused the area’s expansion. Such evidence might be biologically relevant to better understand the mechanism of action of BPA in cell membranes once phosphatidylcholines and Chol are found in mammalian membranes.
Collapse
|
10
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
11
|
Jochelavicius K, Pereira AR, Fiamingo A, Nobre TM, Campana-Filho SP, Oliveira ON. Chitosan effects on monolayers of zwitterionic, anionic and a natural lipid extract from E. coli at physiological pH. Colloids Surf B Biointerfaces 2021; 209:112146. [PMID: 34634541 DOI: 10.1016/j.colsurfb.2021.112146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Langmuir monolayers are used to simulate the biological membrane environment, acting as a mimetic system of the outer or the inner membrane leaflet. Herein, we analyze the interaction of membrane models with a partially N-acetylated chitosan (Ch35%) possessing a quasi-ideal random pattern of acetylation, full water solubility up to pH ≈ 8.5 and unusually high weight average molecular weight. Lipid monolayers containing dipalmitoyl phosphatidyl choline (DPPC), dipalmitoyl phosphatidyl ethalonamine (DPPE), dipalmitoyl phosphatidyl glycerol (DPPG) or E. coli total lipid extract were spread onto subphases buffered at pH 4.5 or 7.4. The incorporation of Ch35% chitosan caused monolayer expansion and a general trend of decreasing monolayer rigidity with Ch35% concentration. Due to its relatively high content of N-acetylglucosamine (GlcNAc) units, Ch35% interactions with negatively charged monolayers and with E. coli extract were weaker than those involving zwitterionic monolayers or lipid rafts. While the smaller interaction with negatively charged lipids was unexpected, this finding can be attributed to the degree of acetylation (35%) which imparts a small number of charged groups for Ch35% to interact. Chitosan properties are therefore determinant for interactions with model cell membranes, which explains the variability in chitosan bactericide activity in the literature. This is the first study on the effects from chitosans on realistic models of bacterial membranes under physiological pH.
Collapse
Affiliation(s)
- Karen Jochelavicius
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Andressa R Pereira
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Anderson Fiamingo
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Thatyane M Nobre
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Brazil
| | | | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Brazil.
| |
Collapse
|
12
|
Carter-Fenk KA, Dommer AC, Fiamingo ME, Kim J, Amaro RE, Allen HC. Calcium bridging drives polysaccharide co-adsorption to a proxy sea surface microlayer. Phys Chem Chem Phys 2021; 23:16401-16416. [PMID: 34318808 DOI: 10.1039/d1cp01407b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Saccharides comprise a significant mass fraction of organic carbon in sea spray aerosol (SSA), but the mechanisms through which saccharides are transferred from seawater to the ocean surface and eventually into SSA are unclear. It is hypothesized that saccharides cooperatively adsorb to other insoluble organic matter at the air/sea interface, known as the sea surface microlayer (SSML). Using a combination of surface-sensitive infrared reflection-absorption spectroscopy and all-atom molecular dynamics simulations, we demonstrate that the marine-relevant, anionic polysaccharide alginate co-adsorbs to an insoluble palmitic acid monolayer via divalent cationic bridging interactions. Ca2+ induces the greatest extent of alginate co-adsorption to the monolayer, evidenced by the ∼30% increase in surface coverage, whereas Mg2+ only facilitates one-third the extent of co-adsorption at seawater-relevant cation concentrations due to its strong hydration propensity. Na+ cations alone do not facilitate alginate co-adsorption, and palmitic acid protonation hinders the formation of divalent cationic bridges between the palmitate and alginate carboxylate moieties. Alginate co-adsorption is largely confined to the interfacial region beneath the monolayer headgroups, so surface pressure, and thus monolayer surface coverage, only changes the amount of alginate co-adsorption by less than 5%. Our results provide physical and molecular characterization of a potentially significant polysaccharide enrichment mechanism within the SSML.
Collapse
Affiliation(s)
- Kimberly A Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Maximino MD, Silva CY, Cavalcante DGSM, Martin CS, Job AE, Oliveira ON, Aléssio P. Consequences of the exposure to bisphenol A in cell membrane models at the molecular level and hamster ovary cells viability. Colloids Surf B Biointerfaces 2021; 203:111762. [PMID: 33887667 DOI: 10.1016/j.colsurfb.2021.111762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022]
Abstract
The inadequate disposal and the difficulty in its removal from water treatment systems have made the endocrine disruptor bisphenol A (BPA) a significant hazard for humans and animals. The molecular-level mechanisms of BPA action are not known in detail, which calls for systematic investigations using cell membrane models. This paper shows that BPA affects Langmuir monolayers and giant unilamellar vesicles (GUVs) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) used as membrane models, in a concentration-dependent manner and with effects that depend on BPA aggregation. BPA increases DPPC monolayer fluidity in surface pressure isotherms upon interacting with the headgroups through hydrogen bonding, according to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). In DPPC GUVs, BPA induced wrinkling and distortion in the spherical shape of the vesicles, but this was only observed for fresh solutions where it is not aggregated. BPA also decreased the viability of hamster ovary cells (CHO) in in vitro experiments. In contrast, aged, aggregated BPA solutions did not affect the GUVs and even increased CHO viability. These results may be rationalized in terms of size-dependent effects of BPA, which may be relevant for its endocrine-disrupting effects.
Collapse
Affiliation(s)
- Mateus D Maximino
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil.
| | - Carla Y Silva
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Dalita G S M Cavalcante
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Cibely S Martin
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Aldo E Job
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Priscila Aléssio
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| |
Collapse
|
14
|
Pereira MS, Maximino MD, Martin CS, Aoki PHB, Oliveira ON, Alessio P. Lipid-matrix effects on tyrosinase immobilization in Langmuir and Langmuir-Blodgett films. AN ACAD BRAS CIENC 2021; 93:e20200019. [PMID: 33787687 DOI: 10.1590/0001-3765202120200019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022] Open
Abstract
The immobilization of the enzyme tyrosinase (Tyr) in lipid matrices can be explored to produce biosensors for detecting polyphenols, which is relevant for the food industry. Herein, we shall demonstrate the importance of the lipid composition to immobilize the enzyme tyrosinase in Langmuir-Blodgett (LB) films. Tyr could be incorporated into Langmuir monolayers of arachidic acid (AA), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), having as the main effect an expansion in the monolayers. Results from polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) pointed to electrostatic interactions between the charged residues of Try and the lipid headgroups, in addition to changes in the order of lipid chains. The interaction between Tyr and DPPC in Langmuir monolayers can be correlated with the superior performance of DPPC/Tyr LB films used as biosensors to detect catechol by cyclic voltammetry. The molecular-level interactions assessed via PM-IRRAS are therefore believed to drive an immobilization process for Tyr in the lipid LB matrix and may serve as a general criterion to identify matrices that preserve enzyme activity.
Collapse
Affiliation(s)
- Matheus S Pereira
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Mateus D Maximino
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Cibely S Martin
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Pedro H B Aoki
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Letras, Departamento de Biotecnologia, Av. Dom Antônio, 2100, Parque Universitário, Caixa Postal 65, 19806-900 Assis, SP, Brazil
| | - Osvaldo N Oliveira
- Universidade de São Paulo/USP, Instituto de Física de São Carlos, Av. Trabalhador São Carlense, 400, Parque Arnold Schimidt, Caixa Postal 369, 13566-590 São Carlos, SP, Brazil
| | - Priscila Alessio
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| |
Collapse
|
15
|
Comparative Evaluation of Different Chitosan Species and Derivatives as Candidate Biomaterials for Oxygen-Loaded Nanodroplet Formulations to Treat Chronic Wounds. Mar Drugs 2021; 19:md19020112. [PMID: 33672056 PMCID: PMC7919482 DOI: 10.3390/md19020112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Persistent hypoxia is a main clinical feature of chronic wounds. Intriguingly, oxygen-loaded nanodroplets (OLNDs), filled with oxygen-solving 2H,3H-decafluoropentane and shelled with polysaccharides, have been proposed as a promising tool to counteract hypoxia by releasing a clinically relevant oxygen amount in a time-sustained manner. Here, four different types of chitosan (low or medium weight (LW or MW), glycol-(G-), and methylglycol-(MG-) chitosan) were compared as candidate biopolymers for shell manufacturing. The aim of the work was to design OLND formulations with optimized physico-chemical characteristics, efficacy in oxygen release, and biocompatibility. All OLND formulations displayed spherical morphology, cationic surfaces, ≤500 nm diameters (with LW chitosan-shelled OLNDs being the smallest), high stability, good oxygen encapsulation efficiency, and prolonged oxygen release kinetics. Upon cellular internalization, LW, MW, and G-chitosan-shelled nanodroplets did not significantly affect the viability, health, or metabolic activity of human keratinocytes (HaCaT cell line). On the contrary, MG-chitosan-shelled nanodroplets showed very poor biocompatibility. Combining the physico-chemical and the biological results obtained, LW chitosan emerges as the best candidate biopolymer for future OLND application as a skin device to treat chronic wounds.
Collapse
|
16
|
da Silva NS, Araújo NK, Daniele-Silva A, Oliveira JWDF, de Medeiros JM, Araújo RM, Ferreira LDS, Rocha HAO, Silva-Junior AA, Silva MS, Fernandes-Pedrosa MDF. Antimicrobial Activity of Chitosan Oligosaccharides with Special Attention to Antiparasitic Potential. Mar Drugs 2021; 19:md19020110. [PMID: 33673266 PMCID: PMC7917997 DOI: 10.3390/md19020110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The global rise of infectious disease outbreaks and the progression of microbial resistance reinforce the importance of researching new biomolecules. Obtained from the hydrolysis of chitosan, chitooligosaccharides (COSs) have demonstrated several biological properties, including antimicrobial, and greater advantage over chitosan due to their higher solubility and lower viscosity. Despite the evidence of the biotechnological potential of COSs, their effects on trypanosomatids are still scarce. The objectives of this study were the enzymatic production, characterization, and in vitro evaluation of the cytotoxic, antibacterial, antifungal, and antiparasitic effects of COSs. NMR and mass spectrometry analyses indicated the presence of a mixture with 81% deacetylated COS and acetylated hexamers. COSs demonstrated no evidence of cytotoxicity upon 2 mg/mL. In addition, COSs showed interesting activity against bacteria and yeasts and a time-dependent parasitic inhibition. Scanning electron microscopy images indicated a parasite aggregation ability of COSs. Thus, the broad biological effect of COSs makes them a promising molecule for the biomedical industry.
Collapse
Affiliation(s)
- Nayara Sousa da Silva
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Nathália Kelly Araújo
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | - Alessandra Daniele-Silva
- Postgraduate Program in Development and Technological Innovation in Medicines, Bioscience Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | | | - Júlia Maria de Medeiros
- Postgraduate Program in Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Renata Mendonça Araújo
- Chemistry Institute, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Leandro De Santis Ferreira
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | | | - Arnóbio Antônio Silva-Junior
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | - Marcelo Sousa Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, University of Nova Lisboa, 1099-085 Lisbon, Portugal
| | - Matheus de Freitas Fernandes-Pedrosa
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
- Correspondence: ; Tel.: +55-84-3342-9820
| |
Collapse
|
17
|
Pereira AR, Fiamingo A, de O. Pedro R, Campana-Filho SP, Miranda PB, Oliveira ON. Enhanced chitosan effects on cell membrane models made with lipid raft monolayers. Colloids Surf B Biointerfaces 2020; 193:111017. [DOI: 10.1016/j.colsurfb.2020.111017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
|
18
|
Hoyo J, Ivanova K, Torrent-Burgues J, Tzanov T. Interaction of Silver-Lignin Nanoparticles With Mammalian Mimetic Membranes. Front Bioeng Biotechnol 2020; 8:439. [PMID: 32457895 PMCID: PMC7225684 DOI: 10.3389/fbioe.2020.00439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) have broad spectrum antibacterial activity, but their toxicity to human cells has raised concerns related to their use as disinfectants or coatings of medically relevant surfaces. To address this issue, NPs comprising intrinsically bactericidal and biocompatible biopolymer and Ag with high antibacterial efficacy against common pathogens and compatibility to human cells have been engineered. However, the reason for their lower toxicity compared to AgNPs has not yet been elucidated. This work studies the in vitro interaction of AgLNPs with model mammalian membranes through two approaches: (i) Langmuir films and (ii) supported planar bilayers studied by quartz crystal microbalance and atomic force spectroscopy. These approaches elucidate the interactions of AgLNPs with the model membranes indicating a prominent effect of the bioresourced lignin to facilitate the binding of AgLNPs to the mammalian membrane, without penetrating through it. This study opens a new avenue for engineering of hybrid antimicrobial biopolymer – Ag or other metal NPs with improved bactericidal effect whereas maintaining good biocompatibility.
Collapse
Affiliation(s)
- Javier Hoyo
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrasa, Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrasa, Spain
| | - Juan Torrent-Burgues
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrasa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrasa, Spain
| |
Collapse
|
19
|
de Oliveira Pedro R, Ribeiro Pereira A, Oliveira ON, Barbeitas Miranda P. Interaction of chitosan derivatives with cell membrane models in a biologically relevant medium. Colloids Surf B Biointerfaces 2020; 192:111048. [PMID: 32361502 DOI: 10.1016/j.colsurfb.2020.111048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 01/15/2023]
Abstract
HYPOTHESIS The interaction of chitosan, a natural biopolymer with various biomedical applications, with lipid Langmuir films has been widely investigated as a simple model for cell membranes. However, to ensure polymer solubility, up to now only acidic subphases with pH significantly below biological fluids have been used. To increase the biological significance of these investigations, here we evaluated the effects of two chitosan derivatives (low molecular weight - CH, and positively charged - CH-P40) on phospholipid films (either zwitterionic DPPC or anionic DPPG) using phosphate buffered saline solutions (PBS) as a subphase. EXPERIMENTS Surface pressure - area (π-A) isotherms were used to evaluate the expansion and changes in film elasticity, while Sum-Frequency Generation (SFG) vibrational spectroscopy provided information about the chain conformation of lipids. FINDINGS It was found that chitosans caused a small expansion of the DPPC film by its insertion within the monolayer. In contrast, they distinctly expanded DPPG monolayers by both chitosan insertion within the lipid monolayer and by interacting with the anionic head group. Therefore, PBS buffer can be used as a subphase for more biologically relevant studies of chitosan interactions with Langmuir films, shedding light on why chitosan is antibacterial but not toxic to mammals, as the interaction mechanism depends on lipid headgroup charge.
Collapse
Affiliation(s)
- Rafael de Oliveira Pedro
- São Carlos Institute of Physics, University of São Paulo, P.O. Box 369, 13560-970, São Carlos, SP, Brazil
| | - Andressa Ribeiro Pereira
- São Carlos Institute of Physics, University of São Paulo, P.O. Box 369, 13560-970, São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, P.O. Box 369, 13560-970, São Carlos, SP, Brazil
| | - Paulo Barbeitas Miranda
- São Carlos Institute of Physics, University of São Paulo, P.O. Box 369, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
20
|
Derradi R, Bolean M, Simão A, Caseli L, Millán J, Bottini M, Ciancaglini P, Ramos A. Cholesterol Regulates the Incorporation and Catalytic Activity of Tissue-Nonspecific Alkaline Phosphatase in DPPC Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15232-15241. [PMID: 31702926 PMCID: PMC7105399 DOI: 10.1021/acs.langmuir.9b02590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Matrix vesicles (MVs) are a special class of extracellular vesicles that drive bone and dentin mineralization by providing the essential enzymes and ions for the nucleation and propagation of mineral crystals. Tissue-nonspecific alkaline phosphatase (TNAP) is an integral protein of MV membrane and participates in biomineralization by hydrolyzing extracellular pyrophosphate (PPi), a strong mineralization inhibitor, and forming inorganic phosphate (Pi), necessary for the growth of mineral crystals inside MVs and their propagation once released in the extracellular matrix. MV membrane is enriched in cholesterol (CHOL), which influences the incorporation and activity of integral proteins in biologic membranes; however, how CHOL controls the incorporation and activity of TNAP in MV membrane has not yet been elucidated. In the present study, Langmuir monolayers were used as a MV membrane biomimetic model to assess how CHOL affects TNAP incorporation and activity. Surface pressure-area (π-A) isotherms of binary dipalmitoilphosphatidylcholine (DPPC)/CHOL monolayers showed that TNAP incorporation increases with CHOL concentration. Infrared spectroscopy showed that CHOL influences the conformation and orientation of the enzyme. Optical-fluorescence micrographs of the monolayers revealed the tendency of TNAP to incorporate into CHOL-rich microdomains. These data suggest that TNAP penetrates more efficiently and occupies a higher surface area into monolayers with a lower CHOL concentration due to the higher membrane fluidity. However, the quantity of enzyme transferred to solid supports as well as the enzymatic activity were higher using monolayers with a higher CHOL concentration due to increased rigidity that changes the enzyme orientation at the air-solid interface. These data provide new insights regarding the interfacial behavior of TNAP and CHOL in MVs and shed light on the biochemical and biophysical processes occurring in the MV membrane during biomineralization at the molecular level.
Collapse
Affiliation(s)
- R. Derradi
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - M. Bolean
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - A.M.S. Simão
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - L. Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of Sao Paulo, Rua Sao Nicolau, 210, Centro, Diadema, SP, Brazil, 09913-030
| | - J.L. Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - M. Bottini
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - P. Ciancaglini
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| | - A.P. Ramos
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Department of Chemistry, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, SP, Brazil, 14040-901
| |
Collapse
|
21
|
Wettability of DPPC Monolayers Deposited from the Titanium Dioxide–Chitosan–Hyaluronic Acid Subphases on Glass. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The investigations were carried out to determine wettability of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers transferred from the liquid subphases containing chitosan (Ch), hyaluronic acid (HA), and/or titanium dioxide (TiO2) to a glass support by means of the Langmuir–Blodgett (LB) technique. For comparative purposes, the analysis of the plates surfaces emerged from the analogous subphases without the phospholipid film was also made. Characterization of the DPPC monolayers was based on the contact angle measurements using three test liquids (water, formamide, diiodomethane) and a simulated body fluid (SBF) solution in which the concentration of ions was close to that of human plasma. After deposition of the DPPC monolayers on the glass plates, a significant increase in the contact angles of all the probe liquids was observed compared to the plates pulled out from the given subphase without floating DPPC. The presence of phospholipid monolayer increased the hydrophobic character of the surface due to orientation of its molecules with hydrocarbon chains towards the air. In addition, the components of the subphase attached along with DPPC to the glass support modify the surface polarity. The largest changes were observed in the presence of TiO2.
Collapse
|
22
|
Tsai LC, Tsai ML, Lu KY, Mi FL. Synthesis and evaluation of antibacterial and anti-oxidant activity of small molecular chitosan–fucoidan conjugate nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3341-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Yang J, Hao C, Sun R. Effect of Laminaria japonica polysaccharides on lipids monolayers at the air-water surface. Colloids Surf B Biointerfaces 2018; 161:614-619. [PMID: 29156338 DOI: 10.1016/j.colsurfb.2017.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/20/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
In this paper, we examined the effect of Laminaria japonica polysaccharides (LJP) on cationic 1,2-Dioleoyl-3-Trimethylammonium-Propane (DOTAP) and anionic 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-1-glycerol] (DPPG) monolayers at the air-water interface by the pressure-area isotherms (π-A), adsorption curves (π-t) and morphology measurements with atomic force microscopy (AFM) technique. The π-A curves revealed that the isotherms shifted to larger mean molecular area with progressive addition of LJP into subphase for both DOTAP and DPPG monolayers. And the compression modulus Cs-1 obtained from π-A curves showed that the elasticity of the films decreased with the addition of LJP. Adsorption curves were measured at the surface pressure of 10 and 20mN/m, which were fitted by the adsorption kinetics equation. It revealed that DOTAP monolayer changed into a mixed film with the insertion of polysaccharides molecules. However, there was no significant effect on the surface pressure for DPPG monolayer. Besides, surface morphology was observed by AFM, which was consistent with the results of fitted adsorption curves.
Collapse
Affiliation(s)
- Juanjuan Yang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
24
|
Xu GQ, Hao CC, Zhang L, Chen S, Sun RG. Dynamic Behaviors and Morphology Change of Anionic Phospholipid DPPG Monolayer Caused by Bovine Serum Albumin at Air-Water Interface. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1703029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Guo-qing Xu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Chang-chun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Lei Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Shi Chen
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Run-guang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
25
|
Geraldo VP, Ziglio AC, Gonçalves D, Oliveira ON. Interaction of capsaicinoids with cell membrane models does not correlate with pungency of peppers. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Delezuk JAM, Ramírez-Herrera DE, Esteban-Fernández de Ávila B, Wang J. Chitosan-based water-propelled micromotors with strong antibacterial activity. NANOSCALE 2017; 9:2195-2200. [PMID: 28134392 DOI: 10.1039/c6nr09799e] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.
Collapse
Affiliation(s)
- Jorge A M Delezuk
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA.
| | - Doris E Ramírez-Herrera
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA.
| | | | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
27
|
Lis D, Cecchet F. Unique Vibrational Features as a Direct Probe of Specific Antigen-Antibody Recognition at the Surface of a Solid-Supported Hybrid Lipid Bilayer. Chemphyschem 2016; 17:2645-9. [PMID: 27324112 DOI: 10.1002/cphc.201600419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/09/2022]
Abstract
Here, we demonstrate how sum frequency generation (SFG), a vibrational spectroscopy based on a nonlinear three-photon mixing process, may provide a direct and unique fingerprint of bio-recognition; This latter can be detected with an intrinsically discriminating unspecific adsorption, thanks to the high sensitivity of the second-order nonlinear optical (NLO) response to preferential molecular orientation and symmetry properties. As a proof of concept, we have detected the biological event at the solid/liquid interface of a model bio-active antigen platform, based on a solid-supported hybrid lipid bilayer (ss-HLB) of a 2,4-dinitrophenyl (DNP) lipid, towards a monoclonal mouse anti-DNP complementary antibody.
Collapse
Affiliation(s)
- Dan Lis
- Research Centre in Physics of Matter and Radiation (PMR), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Francesca Cecchet
- Research Centre in Physics of Matter and Radiation (PMR), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|