1
|
Suhag S, Hooda V. Epoxy-Affixed ZIF-8/CS/Cellulase: a Sustainable Approach for Hydrolysis of Agricultural Waste to Reducing Sugars. Appl Biochem Biotechnol 2025; 197:2681-2712. [PMID: 39792338 DOI: 10.1007/s12010-024-05144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.01 ± 0.01% of its specific activity. The bare and cellulase-bound supports was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and energy-dispersive X-ray spectroscopy. The immobilized enzyme exhibited optimal activity at pH 5.5 and a temperature of 70 ℃. The efficiency, stability and reactivity of the enzyme improved after immobilization, as evidenced by a decrease in activation energy, enthalpy and Gibbs free energy along with an increase in entropy change. The epoxy-affixed ZIF-8/CS/cellulase strip was successfully employed for rice husk hydrolysis achieving an impressive conversion efficiency of 95%. The method demonstrated a linear range from 0.1 to 0.9% (0.1 × 10-2 to 0.9 × 10-2 mg/ml) and exhibited a strong correlation (R2 = 0.998) with the widely adopted 3, 5-dinitrosalicylic acid method. The epoxy/ZIF-8/CS bound cellulase exhibited remarkable thermal stability, retaining 100% of its activity at 70 °C, in contrast to just 53% for the free enzyme and displayed a half-life of 21 days after storage at 4 °C compared to 9 days for the free enzyme. Furthermore, it retained over 95% activity after 12 h at pH levels of 4.5 and 5.5 and showcased excellent reusability, maintaining activity over 25 cycles. Overall, this method offers high conversion efficiency and selectivity under benign conditions, with no undesirable by-products, making it a cost-effective solution for the routine hydrolysis of lignocellulosic biomass feedstock.
Collapse
Affiliation(s)
- Shashi Suhag
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
2
|
Zhu X, Qiang Y, Wang X, Fan M, Lv Z, Zhou Y, He B. Reversible immobilization of cellulase on gelatin for efficient insoluble cellulose hydrolysis. Int J Biol Macromol 2024; 273:132928. [PMID: 38897510 DOI: 10.1016/j.ijbiomac.2024.132928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Immobilized enzymes are one of the most common tools used in enzyme engineering, as they can substantially reduce the cost of enzyme isolation and use. However, efficient catalysis of solid substrates using immobilized enzymes is challenging, hydrolysis of insoluble cellulose by immobilized cellulases is a typical example of this problem. In this study, inspired by bees and honeycombs, we prepared gelatin-modified cellulase (BEE) and gelatin hydrogels (HONEYCOMB) to achieve reversible recycling versus release of cellulase through temperature-responsive changes in the triple-stranded helix-like interactions between BEE and HONEYCOMB. At elevated temperatures, BEE was released from HONEYCOMB and participated in hydrolytic saccharification. After 24 h, the glucose yields of both the free enzyme and BEE reached the same level. When the temperature was decreased, BEE recombined with HONEYCOMB to facilitate the effective separation and recycling of BEE from the system. The enzymatic system retained >70 % activity after four reuse cycles. In addition, this system showed good biocompatibility and environmental safety. This method increases the mass transfer capacity and enables easy recovery of immobilized cellulase, thereby serving as a valuable strategy for the immobilization of other enzymes.
Collapse
Affiliation(s)
- Xing Zhu
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yuanyuan Qiang
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xuechuan Wang
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Mingliang Fan
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Zuoyuan Lv
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yi Zhou
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Bin He
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
3
|
Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr Polym 2023; 321:121319. [PMID: 37739542 DOI: 10.1016/j.carbpol.2023.121319] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Cellulase-mediated lignocellulosic biorefinery plays a crucial role in the production of high-value biofuels and chemicals, with enzymatic hydrolysis being an essential component. The advent of cellulase immobilization has revolutionized this process, significantly enhancing the efficiency, stability, and reusability of cellulase enzymes. This review offers a thorough analysis of the fundamental principles underlying immobilization, encompassing various immobilization approaches such as physical adsorption, covalent binding, entrapment, and cross-linking. Furthermore, it explores a diverse range of carrier materials, including inorganic, organic, and hybrid/composite materials. The review also focuses on emerging approaches like multi-enzyme co-immobilization, oriented immobilization, immobilized enzyme microreactors, and enzyme engineering for immobilization. Additionally, it delves into novel carrier technologies like 3D printing carriers, stimuli-responsive carriers, artificial cellulosomes, and biomimetic carriers. Moreover, the review addresses recent obstacles in cellulase immobilization, including molecular-level immobilization mechanism, diffusion limitations, loss of cellulase activity, cellulase leaching, and considerations of cost-effectiveness and scalability. The knowledge derived from this review is anticipated to catalyze the evolution of more efficient and sustainable biocatalytic systems for lignocellulosic biomass conversion, representing the current state-of-the-art in cellulase immobilization techniques.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
4
|
Yu S, Lu S, Xing J. The regulation of ethanol in reaction medium on the properties of nanogels prepared by photopolymerization at 532 nm. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Mahmoud GA, Ali HE, Radwan RR. Design of pH-responsive polymeric nanocarrier for targeted delivery of pyrogallol with enhanced antitumor potential in colon cancer. Arch Biochem Biophys 2022; 731:109431. [DOI: 10.1016/j.abb.2022.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022]
|
6
|
Sulman AM, Matveeva VG, Bronstein LM. Cellulase Immobilization on Nanostructured Supports for Biomass Waste Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3796. [PMID: 36364572 PMCID: PMC9656580 DOI: 10.3390/nano12213796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanobiocatalysts, i.e., enzymes immobilized on nanostructured supports, received considerable attention because they are potential remedies to overcome shortcomings of traditional biocatalysts, such as low efficiency of mass transfer, instability during catalytic reactions, and possible deactivation. In this short review, we will analyze major aspects of immobilization of cellulase-an enzyme for cellulosic biomass waste processing-on nanostructured supports. Such supports provide high surface areas, increased enzyme loading, and a beneficial environment to enhance cellulase performance and its stability, leading to nanobiocatalysts for obtaining biofuels and value-added chemicals. Here, we will discuss such nanostructured supports as carbon nanotubes, polymer nanoparticles (NPs), nanohydrogels, nanofibers, silica NPs, hierarchical porous materials, magnetic NPs and their nanohybrids, based on publications of the last five years. The use of magnetic NPs is especially favorable due to easy separation and the nanobiocatalyst recovery for a repeated use. This review will discuss methods for cellulase immobilization, morphology of nanostructured supports, multienzyme systems as well as factors influencing the enzyme activity to achieve the highest conversion of cellulosic biowaste into fermentable sugars. We believe this review will allow for an enhanced understanding of such nanobiocatalysts and processes, allowing for the best solutions to major problems of sustainable biorefinery.
Collapse
Affiliation(s)
- Aleksandrina M. Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia
| | - Valentina G. Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia
- Regional Technological Centre, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia
| | - Lyudmila M. Bronstein
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Abstract
The depletion of fossil fuel resources and the negative impact of their use on the climate have resulted in the need for alternative sources of clean, sustainable energy. One available alternative, bioethanol, is a potential substitute for, or additive to, petroleum-derived gasoline. In the lignocellulose-to-bioethanol process, the cellulose hydrolysis step represents a major hurdle that hinders commercialization. To achieve economical production of bioethanol from lignocellulosic materials, the rate and yield of the enzymatic hydrolysis of cellulose, which is preferred over other chemically catalyzed processes, must be enhanced. To achieve this, product inhibition and enzyme loss, which are two major challenges, must be overcome. The implementation of membranes, which can permeate molecules selectively based on their size, offers a solution to this problem. Membrane bioreactors (MBRs) can enhance enzymatic hydrolysis yields and lower costs by retaining enzymes for repeated usage while permeating the products. This paper presents a critical discussion of the use of MBRs as a promising approach to the enhanced enzymatic hydrolysis of cellulosic materials. Various MBR configurations and factors that affect their performance are presented.
Collapse
|
8
|
Luo H, Liu X, Yu D, Yuan J, Tan J, Li H. Research Progress on Lignocellulosic Biomass Degradation Catalyzed by Enzymatic Nanomaterials. Chem Asian J 2022; 17:e202200566. [PMID: 35862657 DOI: 10.1002/asia.202200566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Lignocellulose biomass (LCB) has extensive applications in many fields such as bioenergy, food, medicines, and raw materials for producing value-added products. One of the keys to efficient utilization of LCB is to obtain directly available oligo- and monomers (e.g., glucose). With the characteristics of easy recovery and separation, high efficiency, economy, and environmental protection, immobilized enzymes have been developed as heterogeneous catalysts to degrade LCB effectively. In this review, applications and mechanisms of LCB-degrading enzymes are discussed, and the nanomaterials and methods used to immobilize enzymes are also discussed. Finally, the research progress of lignocellulose biodegradation catalyzed by nano-enzymes was discussed.
Collapse
Affiliation(s)
- Hangyu Luo
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Xiaofang Liu
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Dayong Yu
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Junfa Yuan
- Guizhou University, Center for R&D of Fine Chemicals, CHINA
| | - Jinyu Tan
- Guizhou University, Center for R&D of Fine Chemicals, CHINA
| | - Hu Li
- Guizhou University, Center for R&D of Fine Chemicals, Huaxi Street, 550025, Guiyang, CHINA
| |
Collapse
|
9
|
da Silva Almeida LE, Fernandes P, de Assis SA. Immobilization of Fungal Cellulases Highlighting β-Glucosidase: Techniques, Supports, Chemical, and Physical Changes. Protein J 2022; 41:274-292. [PMID: 35438380 DOI: 10.1007/s10930-022-10048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
β-Glucosidase is widely used in several industrial segments, among which we can highlight the pharmaceutical industry, beverages, biofuels, animal feed production, and the textile industry. The great applicability of this enzyme, associated with the high cost of its production, justifies the need to find ways to make its use economically viable on an industrial scale. Through enzyme immobilization, the biocatalyst can be reused more than once, without great impact on its catalytic activity, and higher operational and storage stabilities can be achieved as compared to the free form. Accordingly, this review brings information about different techniques and supports that have been studied in the immobilization of cellulases with a focus on β-glucosidase, as well as the application of these immobilized systems to supplement commercial mixtures.
Collapse
Affiliation(s)
- Larissa Emanuelle da Silva Almeida
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Avenida Transnordestina s/n, Novo Horizonte, Feira de Santana, Bahia, 44036-900, Brazil
| | - Pedro Fernandes
- DREAMS and Faculty of Engineering, Lusófona University, Lisbon, Portugal.,iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Sandra Aparecida de Assis
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Avenida Transnordestina s/n, Novo Horizonte, Feira de Santana, Bahia, 44036-900, Brazil.
| |
Collapse
|
10
|
Redox-degradable microgel based on poly(acrylic acid) as drug-carrier with very high drug-loading capacity and decreased toxicity against healthy cells. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Bilal M, Qamar SA, Ashraf SS, Rodríguez-Couto S, Iqbal HMN. Robust nanocarriers to engineer nanobiocatalysts for bioprocessing applications. Adv Colloid Interface Sci 2021; 293:102438. [PMID: 34023567 DOI: 10.1016/j.cis.2021.102438] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
The synergistic integration of bio-catalysis engineering with nanostructured materials, as unique multifunctional carrier matrices, has emerged as a new interface of nanobiocatalysis (NBC). NBC is an emerging innovation that offers significant considerations to expand the designing and fabrication of robust catalysts at the nanoscale with improved catalytic characteristics for multipurpose bioprocessing applications. In addition, nanostructured materials with unique structural, physical, chemical, and functional entities have manifested significant contributions in mimicking the enzyme microenvironment. A fine-tuned enzyme microenvironment with an added-value of NBC offers chemo- regio- and stereo- selectivities and specificities. Furthermore, NBC is growing rapidly and will become a powerful norm in bio-catalysis with much controlled features, such as selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, improved mass transfer efficiency, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness. Considering the above critics and unique structural, physicochemical, and functional attributes, herein, we present and discuss advances in NBC and its bioprocessing applications in different fields. Briefly, this review is focused on four parts, i.e., (1) NBC as a drive towards applied nanobiocatalysts (as an introduction with opportunities), (2) promising nanocarriers to develop nanobiocatalysts, (3) applications in the fields of biotransformation, biofuel production, carbohydrate hydrolysis, bio-/nanosensing, detergent formulations, and extraction and purification of value-added compounds, and (4) current challenges, concluding remarks, and future trends.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
12
|
Liu T, Malkmes MJ, Zhu L, Huang H, Jiang L. Metal-organic frameworks coupling simultaneous saccharication and fermentation for enhanced butyric acid production from rice straw under visible light by Clostridium tyrobutyricum CtΔack::cat1. BIORESOURCE TECHNOLOGY 2021; 332:125117. [PMID: 33845315 DOI: 10.1016/j.biortech.2021.125117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Here, Metal-Organic Frameworks (MOFs) coupling simultaneous saccharification and fermentation for butyric acid production using rice straw was constructed. Clostridium tyrobutyricum Δack::cat1, with deleted ack gene and overexpressed cat1 gene, was used as the butyric-acid-fermentation strain. MOFs was employed as a photocatalyst to improve butyric acid production, as well as a cytoprotective exoskeleton with immobilized cellulase for the hydrolysis of rice straw. Thus, the survival of MOFs-coated strain, the thermostability and pH stability of cellulase both remarkably increased. As a result, 55% of rice straw was hydrolyzed in 24 h, and the final concentration of butyric acid in visible light was increased by 14.23% and 29.16% compared to uncoated and coated strain without visible light, respectively. Finally, 26.25 g/L of butyric acid with a productivity of 0.41 g/L·h in fed-batch fermentation was obtained. This novel process inspires green approach of abundant low-cost feedstocks utilization for chemical production.
Collapse
Affiliation(s)
- Tingting Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, People's Republic of China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | - Matthew Jay Malkmes
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | - He Huang
- College of Pharmaceutical Science, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
13
|
Pathayappurakkal Mohanan D, Pathayappurakkal Mohan N, Selvasudha N, Thekkilaveedu S, Kandasamy R. Facile fabrication and structural elucidation of lignin based macromolecular green composites for multifunctional applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.51280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Nandakumar Selvasudha
- School of Pharmacy Sri Balaji Vidyapeeth Deemed University Puducherry Tamil Nadu India
| | - Saranya Thekkilaveedu
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), University College of Engineering Anna University Tiruchirapalli Tamil Nadu India
| | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), University College of Engineering Anna University Tiruchirapalli Tamil Nadu India
| |
Collapse
|
14
|
Fluorescence-assisted real-time study of magnetically immobilized enzyme stability in a crossflow membrane bioreactor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Abstract
Compared to normal tissue, solid tumors exhibit a lower pH value. Such pH gradient can be used to design pH-sensitive nanogels for selective drug delivery. The acid-sensitive elements in the nanogel cause it to swell/degrade rapidly, followed by rapid drug release.
Collapse
Affiliation(s)
- Zhen Li
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR. China
| | - Jun Huang
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR. China
- The Seventh Affiliated Hospital of Sun Yat-Sen University
| | - Jun Wu
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR. China
| |
Collapse
|
16
|
Maria de Medeiros Dantas J, Sousa da Silva N, Eduardo de Araújo Padilha C, Kelly de Araújo N, Silvino dos Santos E. Enhancing chitosan hydrolysis aiming chitooligosaccharides production by using immobilized chitosanolytic enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Zou B, Yan Y, Xia J, Zhang L, Adesanya IO. Enhancing bio-catalytic activity and stability of lipase nanogel by functional ionic liquids modification. Colloids Surf B Biointerfaces 2020; 195:111275. [PMID: 32739774 DOI: 10.1016/j.colsurfb.2020.111275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/02/2023]
Abstract
A novel integrated lipase nanogel based on functional ionic liquid modification and polymerization immobilization with improved stability was designed. Characterization before and after modification and polymerization was conducted using infrared spectroscopy, Circular dichroism spectroscopy, fluorescence spectroscopy, and scanning electron microscopy. It was shown that the modification of the ionic liquid influenced the catalytic behavior of lipase significantly due to the changed structure and surface properties of lipase. The enzymatic properties, including acid-base stability, thermal stability, organic solvents stability, and storage stability of CRL nanogel, were investigated in the p-nitrophenyl palmitate hydrolysis reaction (CRL, Lipase from Candida Rugosa). The results indicated that CRL nanogel has a better pH, heat, and organic solvent tolerance after immobilization. After seven weeks of storage, the natural CRL gradually lost its enzymatic activity, and only 17.5±1.7 % of the catalytic activity remained, the residual activity of CRL nanogel was 97.3±1.8 %. It was indicated that the novel CRL nanogel was an excellent biocatalyst.
Collapse
Affiliation(s)
- Bin Zou
- School of Food and Biological Engineering, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yan Yan
- School of Food and Biological Engineering, China
| | - Jiaojiao Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Zhang
- School of Food and Biological Engineering, China
| | | |
Collapse
|
18
|
Karagoz P, Mandair R, Manayil JC, Lad J, Chong K, Kyriakou G, Lee AF, Wilson K, Bill RM. Purification and immobilization of engineered glucose dehydrogenase: a new approach to producing gluconic acid from breadwaste. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:100. [PMID: 32514312 PMCID: PMC7268246 DOI: 10.1186/s13068-020-01735-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Platform chemicals are essential to industrial processes. Used as starting materials for the manufacture of diverse products, their cheap availability and efficient sourcing are an industrial requirement. Increasing concerns about the depletion of natural resources and growing environmental consciousness have led to a focus on the economics and ecological viability of bio-based platform chemical production. Contemporary approaches include the use of immobilized enzymes that can be harnessed to produce high-value chemicals from waste. RESULTS In this study, an engineered glucose dehydrogenase (GDH) was optimized for gluconic acid (GA) production. Sulfolobus solfataricus GDH was expressed in Escherichia coli. The K m and V max values for recombinant GDH were calculated as 0.87 mM and 5.91 U/mg, respectively. Recombinant GDH was immobilized on a hierarchically porous silica support (MM-SBA-15) and its activity was compared with GDH immobilized on three commercially available supports. MM-SBA-15 showed significantly higher immobilization efficiency (> 98%) than the commercial supports. After 5 cycles, GDH activity was at least 14% greater than the remaining activity on commercial supports. Glucose in bread waste hydrolysate was converted to GA by free-state and immobilized GDH. After the 10th reuse cycle on MM-SBA-15, a 22% conversion yield was observed, generating 25 gGA/gGDH. The highest GA production efficiency was 47 gGA/gGDH using free-state GDH. CONCLUSIONS This study demonstrates the feasibility of enzymatically converting BWH to GA: immobilizing GDH on MM-SBA-15 renders the enzyme more stable and permits its multiple reuse.
Collapse
Affiliation(s)
- Pinar Karagoz
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | - Ravneet Mandair
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | | | - Jai Lad
- European Bioenergy Research Institute (EBRI), Aston University, Birmingham, B4 7ET UK
| | - Katie Chong
- European Bioenergy Research Institute (EBRI), Aston University, Birmingham, B4 7ET UK
| | - Georgios Kyriakou
- Department of Chemical Engineering, University of Patras, 265 04 Patras, Greece
| | - Adam F. Lee
- Applied Chemistry & Environmental Science, School of Science, RMIT University, Melbourne, VIC 3000 Australia
| | - Karen Wilson
- Applied Chemistry & Environmental Science, School of Science, RMIT University, Melbourne, VIC 3000 Australia
| | - Roslyn M. Bill
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| |
Collapse
|
19
|
Richa, Roy Choudhury A. Synthesis of a novel gellan-pullulan nanogel and its application in adsorption of cationic dye from aqueous medium. Carbohydr Polym 2020; 227:115291. [DOI: 10.1016/j.carbpol.2019.115291] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
|
20
|
Wang Y, Qi Y, Chen C, Zhao C, Ma Y, Yang W. Layered Co-Immobilization of β-Glucosidase and Cellulase on Polymer Film by Visible-Light-Induced Graft Polymerization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44913-44921. [PMID: 31670943 DOI: 10.1021/acsami.9b16274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Exploring a suitable immobilization strategy to improve catalytic efficiency and reusability of cellulase is of great importance to lowering the cost and promoting the industrialization of cellulose-derived bioethanol. In this work, a layered structure with a thin PEG hydrogel as the inner layer and sodium polyacrylate (PAANa) brush as the outer layer was fabricated on low density polyethylene (LDPE) film by visible-light-induced graft polymerization. Two enzymes, β-glucosidase (BG) and cellulase, were separately coimmobilized onto this hierarchical film. As supplementary to cellulase for improving catalytic efficiency, BG was in situ entrapped into the inner PEG hydrogel layer during the graft polymerization from the LDPE surface. After graft polymerization of sodium acrylate on the PEG hydrogel layer was reinitiated, cellulase was covalently attached on the outer PAANa brush layer. Owing to the mild reaction condition (visible-light irradiation and room temperature), the immobilized BG could retain a high activity after the graft polymerization. The immobilization did not alter the optimal pH and temperature of BG or the optimal temperature of cellulase. However, the optimal pH of cellulase shifts to 5.0 after immobilization. Compared with the original activity of single cellulase system and isolated BG/cellulase immobilization system, the dual-enzyme system exhibited 82% and 20% increase in catalytic activity, respectively. The dual-enzyme system could maintain 93% of carboxymethylcellulose sodium salt (CMC) activity after repeating 10 cycles of hydrolysis and 89% of filter paper activity after 6 cycles relative to original activity, exhibiting excellent reusability. This layer coimmobilization system of BG and cellulase on the polymer film displays tremendous potential for practical application in a biorefinery.
Collapse
|
21
|
Mackiewicz M, Stojek Z, Karbarz M. Synthesis of cross-linked poly(acrylic acid) nanogels in an aqueous environment using precipitation polymerization: unusually high volume change. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190981. [PMID: 31827839 PMCID: PMC6894567 DOI: 10.1098/rsos.190981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/04/2019] [Indexed: 05/30/2023]
Abstract
For the first time, by using precipitation polymerization in an aqueous solution, a cross-linked poly(acrylic acid)-(pAA) nanogel was synthesized. pAA was synthesized and cross-linked with N,N'-methylenebisacrylamide (BIS) at 70°C in an acidified environment (pH 2) and containing 0.7 M NaCl using potassium persulfate as the initiator. Ionized pAA was soluble in water. The use of sodium chloride at low pH caused a decrease in the solubility of pAA and led to its precipitation and formation of cross-linked pAA nanogel. By using electron microscopies and light scattering techniques, the morphology, pH sensitivity and zeta potential of the obtained p(AA-BIS) nanogel were evaluated. The polymerization in an aqueous environment resulted in a very big swelling/shrinking coefficient (of approx. 4000) in response to pH and exhibited an unusually high negative zeta potential (of approx. -130 mV). These properties make the nanogel a very interesting sorbent and a construction material.
Collapse
Affiliation(s)
| | | | - Marcin Karbarz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Avenue, 02-089 Warsaw, Poland
| |
Collapse
|
22
|
Duman YA, Tekin N. Kinetic and thermodynamic properties of purified alkaline protease from Bacillus pumilus Y7 and non-covalent immobilization to poly(vinylimidazole)/clay hydrogel. Eng Life Sci 2019; 20:36-49. [PMID: 32625045 PMCID: PMC6999066 DOI: 10.1002/elsc.201900119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 12/29/2022] Open
Abstract
The characterization of the hydrogel was performed using Fourier‐transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. Purified Bacillus pumilus Y7‐derived alkaline protease was immobilized in Poly (vinylimidazole)/clay (PVI/SEP) hydrogel with 95% yield of immobilization. Immobilization decreased the pH optimum from 9 to 6 for free and immobilized enzyme, respectively. Temperature optimum 3°C decreased for immobilized enzyme. The Km, Vm, and kcat of immobilized enzyme were 4.4, 1.7, and 7.5‐fold increased over its free counterpart. Immobilized protease retained about 65% residual activity for 16th reuse. The immobilized protease endured its 35% residual activity in the material after six cycle's batch applications. The results of thermodynamic analysis for casein hydrolysis showed that the ΔG≠ (activation free energy) and ΔG≠E‐T (activation free energy of transition state formation) obtained for the immobilized enzyme decreased in comparison to those obtained for the free enzyme. On the other hand, the value of ΔG≠ES (free energy of substrate binding) was observed to have increased. These results indicate an increase in the spontaneity of the biochemical reaction post immobilization. Enthalpy value of immobilized enzyme that was 2.2‐fold increased over the free enzyme indicated lower energy for the formation of the transition state, and increased ΔS≠ value implied that the immobilized form of the enzyme was more ordered than its free form.
Collapse
Affiliation(s)
- Yonca Avcı Duman
- Faculty of Arts and Sciences Department of Chemistry Kocaeli University İzmit-Kocaeli Turkey
| | - Nalan Tekin
- Faculty of Arts and Sciences Department of Chemistry Kocaeli University İzmit-Kocaeli Turkey
| |
Collapse
|
23
|
Effective and reusable T. reesei immobilized on SBA-15 for monomeric sugar production from cellulose hydrolysis. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Sharma RK, Kumar R, Singh AP. Metal ions and organic dyes sorption applications of cellulose grafted with binary vinyl monomers. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Qu H, Zhou Y, Ma Y, Zhao P, Gao B, Guo M, Feng C. A green catalyst for hydrolysis of cellulose: Amino acid protic ionic liquid. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Ahmed IN, Yang XL, Dubale AA, Li RF, Ma YM, Wang LM, Hou GH, Guan RF, Xie MH. Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. BIORESOURCE TECHNOLOGY 2018; 270:377-382. [PMID: 30243245 DOI: 10.1016/j.biortech.2018.09.077] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Developing a new cellulase-MOF composite system with enhanced stability and reusability for cellulose hydrolysis was aimed. Physical adsorption strategy was employed to fabricate two cellulase composites, and the activity of composite was characterized by hydrolysis of carboxymethyl cellulose. The NH2 functionalized UiO-66-NH2 MOF exhibited higher protein loading than the precursor UiO-66, due to the extra anchor sites of NH2 groups. The immobilized cellulase showed enhanced thermostability, pH tolerance and lifetime. The maximum activity attained at 55 °C could be kept 85% when used at 80 °C, and the residual activities were 72% after ten cycles and 65% after 30 days storage. The abundant NH2 and COOH groups of MOF adsorb cellulase and enhance its stability, and the resulted heterogeneity offered the opportunity of recovering composite via mild centrifuge. The findings suggest the promising future of developing cellulase-MOF composite with ultrahigh activities and stabilities for practical application.
Collapse
Affiliation(s)
- Ibrahim Nasser Ahmed
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China; Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Xiu-Li Yang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
| | - Amare Aregahegn Dubale
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China; Department of Chemistry, College of Natural and Computational Science, Energy and Environment Research Center, Dilla University, P.O. Box 419, Dilla, Ethiopia
| | - Ruo-Fei Li
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yi-Ming Ma
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
| | - Lu-Ming Wang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
| | - Gui-Hua Hou
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
| | - Rong-Feng Guan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ming-Hua Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
27
|
Chen Q, Liu D, Wu C, Yao K, Li Z, Shi N, Wen F, Gates ID. Co-immobilization of cellulase and lysozyme on amino-functionalized magnetic nanoparticles: An activity-tunable biocatalyst for extraction of lipids from microalgae. BIORESOURCE TECHNOLOGY 2018; 263:317-324. [PMID: 29753933 DOI: 10.1016/j.biortech.2018.04.071] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
An activity-tunable biocatalyst for Nannochloropsis sp. cell-walls degradation was prepared by co-immobilization of cellulase and lysozyme on the surface of amino-functionalized magnetic nanoparticles (MNPs) employing glutaraldehyde. The competition between cellulase and lysozyme during immobilization was caused by the limited active sites of the MNPs. The maximum recovery of activities (cellulase: 78.9% and lysozyme: 69.6%) were achieved due to synergistic effects during dual-enzyme co-immobilization. The thermal stability in terms of half-life of the co-immobilized enzymes was three times higher than that in free form and had higher catalytic efficiency for hydrolysis of cell walls. Moreover, the co-immobilized enzymes showed greater thermal stability and wider pH tolerance than free enzymes under harsh conditions. Furthermore, the co-immobilized enzymes retained up to 60% of the residual activity after being recycled 6 times. This study provides a feasible approach for the industrialization of enzyme during cell-walls disruption and lipids extraction from Nannochloropsis sp.
Collapse
Affiliation(s)
- Qingtai Chen
- State Key Laboratory of Heavy Oil Processing, and College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Dong Liu
- State Key Laboratory of Heavy Oil Processing, and College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China.
| | - Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta, Canada
| | - Kaisheng Yao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Zhiheng Li
- State Key Laboratory of Heavy Oil Processing, and College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Nan Shi
- State Key Laboratory of Heavy Oil Processing, and College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Fushan Wen
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Ian D Gates
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta, Canada
| |
Collapse
|
28
|
Preparation and characterization of Fe3O4-NH2@4-arm-PEG-NH2, a novel magnetic four-arm polymer-nanoparticle composite for cellulase immobilization. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Hosseini SH, Hosseini SA, Zohreh N, Yaghoubi M, Pourjavadi A. Covalent Immobilization of Cellulase Using Magnetic Poly(ionic liquid) Support: Improvement of the Enzyme Activity and Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:789-798. [PMID: 29323888 DOI: 10.1021/acs.jafc.7b03922] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A magnetic nanocomposite was prepared by entrapment of Fe3O4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The results showed that the ionic surface and covalent binding of enzyme onto the support improved the activity, thermal stability, and reusability of cellulase compared to free cellulase.
Collapse
Affiliation(s)
- Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran , Behshahr, Iran
| | - Seyedeh Ameneh Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran , Behshahr, Iran
| | - Nasrin Zohreh
- Department of Chemistry, Faculty of Science, University of Qom , Qom, Iran
| | - Mahshid Yaghoubi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology , Tehran, Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology , Tehran, Iran
| |
Collapse
|
30
|
Tan L, Tan Z, Feng H, Qiu J. Cellulose as a template to fabricate a cellulase-immobilized composite with high bioactivity and reusability. NEW J CHEM 2018. [DOI: 10.1039/c7nj03271d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a new strategy was developed to fabricate an oriented cellulase/chitosan/Fe3O4composite, which possesses extremely high activity, reusability, and stability.
Collapse
Affiliation(s)
- Lin Tan
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- College of Petrochemical Technology
| | - Zhaojun Tan
- College of Petrochemical Technology
- Lanzhou University of Technology
- Lanzhou
- P. R. China
| | - Huixia Feng
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- College of Petrochemical Technology
| | - Jianhui Qiu
- Department of Machine Intelligence and Systems Engineering
- Faculty of System Science and Technology
- Akita Prefectural University
- Yurihonjo
- Akita 015-0055
| |
Collapse
|
31
|
Modarresi-Saryazdi SM, Haddadi-Asl V, Salami-Kalajahi M. N,N'-methylenebis(acrylamide)-crosslinked poly(acrylic acid) particles as doxorubicin carriers: A comparison between release behavior of physically loaded drug and conjugated drug via acid-labile hydrazone linkage. J Biomed Mater Res A 2017; 106:342-348. [DOI: 10.1002/jbm.a.36240] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/03/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Affiliation(s)
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran P.O. Box 15875-4413 Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering; Sahand University of Technology; Tabriz P.O. Box 51335-1996 Iran
- Institute of Polymeric Materials; Sahand University of Technology; Tabriz P.O. Box 51335-1996 Iran
| |
Collapse
|