1
|
Manoharan
Nair Sudha Kumari S, Thankappan Suryabai X. Sensing the Future-Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances. ACS OMEGA 2024; 9:48918-48987. [PMID: 39713646 PMCID: PMC11656264 DOI: 10.1021/acsomega.4c07991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Biosensors are transforming healthcare by delivering swift, precise, and economical diagnostic solutions. These analytical instruments combine biological indicators with physical transducers to identify and quantify biomarkers, thereby improving illness detection, management, and patient surveillance. Biosensors are widely utilized in healthcare for the diagnosis of chronic and infectious diseases, tailored treatment, and real-time health monitoring. This thorough overview examines several categories of biosensors and their uses in the detection of numerous biomarkers, including glucose, proteins, nucleic acids, and infections. Biosensors are commonly classified based on the type of transducer employed or the specific biorecognition element utilized. This review introduces a novel classification based on substrate morphology, offering a comprehensive perspective on biosensor categorization. Considerable emphasis is placed on the advancement of point-of-care biosensors, facilitating decentralized diagnostics and alleviating the strain on centralized healthcare systems. Recent advancements in nanotechnology have significantly improved the sensitivity, selectivity, and downsizing of biosensors, rendering them more efficient and accessible. The study examines problems such as stability, reproducibility, and regulatory approval that must be addressed to enable the widespread implementation of biosensors in clinical environments. The study examines the amalgamation of biosensors with wearable devices and smartphones, emphasizing the prospects for ongoing health surveillance and individualized medical care. This viewpoint clarifies the distinct types of biosensors and their particular roles, together with recent developments in the "smart biosensor" sector, facilitated by artificial intelligence and the Internet of Medical Things (IoMT). This novel approach seeks to deliver a comprehensive evaluation of the present condition of biosensor technology in healthcare, recent developments, and prospective paths, emphasizing their significance in influencing the future of medical diagnostics and patient care.
Collapse
Affiliation(s)
- Sumitha Manoharan
Nair Sudha Kumari
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| | - Xavier Thankappan Suryabai
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| |
Collapse
|
2
|
Zhao J, Ding J, Luan F, Qin W. Chronopotentiometric sensors for antimicrobial peptide-based biosensing of Staphylococcus aureus. Mikrochim Acta 2024; 191:356. [PMID: 38811412 DOI: 10.1007/s00604-024-06410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
Charged antimicrobial peptides can be used for direct potentiometric biosensing, but have never been explored. We report here a galvanostatically-controlled potentiometric sensor for antimicrobial peptide-based biosensing. Solid-state pulsed galvanostatic sensors that showed excellent stability under continuous galvanostatic polarization were prepared by utilizing reduced graphene oxide/poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) (rGO/PEDOT: PSS) as a solid contact. More importantly, the chronopotentiometric sensor can be made sensitive to antimicrobial peptides with intrinsic charge on demand via a current pulse. In this study, a positively charged antimicrobial peptide that can bind to Staphylococcus aureus with high affinity and good selectivity was designed as a model. Two arginine residues with positive charges were linked to the C-terminal of the peptide sequence to increase its potentiometric responses on the electrode. The bacteria binding-induced charge or charge density change of the antimicrobial peptide enables the direct chronopotentiometric detection of the target. Under the optimized conditions, the concentration of Staphylococcus aureus can be determined in the linear range 10-1.0 × 105 CFU mL-1 with a detection limit of 10 CFU mL-1. It is anticipated that such a chronopotentiometric sensing platform is readily adaptable to detect other bacteria by choosing the peptides.
Collapse
Affiliation(s)
- Jiarong Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264003, People's Republic of China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai, 264003, Shandong, People's Republic of China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai, 264003, Shandong, People's Republic of China.
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264003, People's Republic of China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai, 264003, Shandong, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, Shandong, People's Republic of China
| |
Collapse
|
3
|
Messina GML, Campione P, Marletta G. Building Surfaces with Controlled Site-Density of Anchored Human Serum Albumin. ACS APPLIED BIO MATERIALS 2023; 6:4952-4960. [PMID: 37902234 DOI: 10.1021/acsabm.3c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Stable and uniform layers of protein molecules at the surface are important to build passive devices as well as active constructs for smart biointerfaces for a large number of biomedical applications. In this context, a strategy to build-up surfaces able to anchor protein molecules on specific and controlled surface sites has been developed. Human serum albumin (HSA) has been chosen as a model protein due to its important antithrombogenic properties and its features in cell response highly valuable for in vivo devices. Uniform self-assembled monolayers of 2,2':6'2″-terpyridines (SAM), whose sites were further employed to chelate copper and iron ions, forming SAM-Cu(II) and SAM-Fe(II) complexes, have been developed. The effect of two metal cations on the physicochemical features of SAM, including thickness, Young's modulus, and tip-monolayer adhesion factors, has been investigated. Protein adsorption at different concentrations showed that the copper ion-templated surfaces exhibit highly specific mass uptake, kinetic behavior, and recognition and anchoring of HSA molecules owing to the coordination sphere of the different cations. The results pave the way to the development of a more general strategy to obtain ordered and density-tuned arrays of specific metal cations, which in turn would drive the anchoring of precise proteins for different biological functions.
Collapse
Affiliation(s)
- Grazia M L Messina
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Paola Campione
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Marletta
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
4
|
Lee J, Nguyen NT, Tran LM, Kim YH, Min J. Targeted Killing of Staphylococcus aureus Using Specific Peptides Displayed on Yeast Vacuoles. Microbiol Spectr 2023; 11:e0092023. [PMID: 37098917 PMCID: PMC10269669 DOI: 10.1128/spectrum.00920-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
Staphylococcus aureus is a common pathogen that causes health care-related and community-associated infections. In this study, we provide a novel system that can recognize and kill S. aureus bacteria. The system is specifically based on a combination of the phage display library technique and yeast vacuoles. A phage clone displaying a peptide capable of specific binding to a whole S. aureus cell was selected from a 12-mer phage peptide library. The peptide sequence was SVPLNSWSIFPR. The selected phage's ability to bind specifically with S. aureus was confirmed using an enzyme-linked immunosorbent assay, and the chosen peptide was then synthesized. The results showed that the synthesized peptides displayed high affinity with S. aureus but low binding ability with other strains, including Gram-negative and Gram-positive bacteria such as Salmonella sp., Shigella spp., Escherichia coli, and Corynebacterium glutamicum. In addition, yeast vacuoles were used as a drug carrier by encapsulating daptomycin, a lipopeptide antibiotic used to treat Gram-positive bacterial infections. The expression of specific peptides at the encapsulated vacuole membrane created an efficient system that can specifically recognize and kill S. aureus bacteria. IMPORTANCE The phage display method was used to select peptides with high affinity and specificity for S. aureus, and these peptides were then induced to be expressed on the surface of yeast vacuoles. These surface-modified vacuoles can act as drug carriers, with drugs such as the lipopeptide antibiotic daptomycin loaded inside. An advantage of using yeast vacuoles as a drug carrier is that they can be easily produced through yeast culture, making the approach cost-effective and suitable for large-scale production and potential implementation in clinical settings. This novel approach offers a promising way to specifically target and eliminate S. aureus that could ultimately lead to improved treatment of bacterial infections and reduced risk of antibiotic resistance.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
- Center for Ecology and Environmental Toxicology (CEET), Chungbuk National University, Seowon-Gu, Cheongju, South Korea
| | - Ngoc-Tu Nguyen
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
- Center for Ecology and Environmental Toxicology (CEET), Chungbuk National University, Seowon-Gu, Cheongju, South Korea
| | - Le-Minh Tran
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
| | - Yang-Hoon Kim
- Center for Ecology and Environmental Toxicology (CEET), Chungbuk National University, Seowon-Gu, Cheongju, South Korea
- School of Biological Sciences, Chungbuk National University, Seowon-Gu, Cheongju, South Korea
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
| |
Collapse
|
5
|
Escobar V, Scaramozzino N, Vidic J, Buhot A, Mathey R, Chaix C, Hou Y. Recent Advances on Peptide-Based Biosensors and Electronic Noses for Foodborne Pathogen Detection. BIOSENSORS 2023; 13:bios13020258. [PMID: 36832024 PMCID: PMC9954637 DOI: 10.3390/bios13020258] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 05/26/2023]
Abstract
Foodborne pathogens present a serious issue around the world due to the remarkably high number of illnesses they cause every year. In an effort to narrow the gap between monitoring needs and currently implemented classical detection methodologies, the last decades have seen an increased development of highly accurate and reliable biosensors. Peptides as recognition biomolecules have been explored to develop biosensors that combine simple sample preparation and enhanced detection of bacterial pathogens in food. This review first focuses on the selection strategies for the design and screening of sensitive peptide bioreceptors, such as the isolation of natural antimicrobial peptides (AMPs) from living organisms, the screening of peptides by phage display and the use of in silico tools. Subsequently, an overview on the state-of-the-art techniques in the development of peptide-based biosensors for foodborne pathogen detection based on various transduction systems was given. Additionally, limitations in classical detection strategies have led to the development of innovative approaches for food monitoring, such as electronic noses, as promising alternatives. The use of peptide receptors in electronic noses is a growing field and the recent advances of such systems for foodborne pathogen detection are presented. All these biosensors and electronic noses are promising alternatives for the pathogen detection with high sensitivity, low cost and rapid response, and some of them are potential portable devices for on-site analyses.
Collapse
Affiliation(s)
- Vanessa Escobar
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
- Grenoble Alpes University, CNRS, LIPhy, 38000 Grenoble, France
| | | | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Arnaud Buhot
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
| | - Raphaël Mathey
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
| | - Carole Chaix
- Institute of Analytical Sciences, University of Lyon, CNRS, Claude Bernard Lyon 1 University, UMR 5280, 69100 Villeurbanne, France
| | - Yanxia Hou
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
6
|
Tian L, Jackson K, Chan M, Saif A, He L, Didar TF, Hosseinidoust Z. Phage display for the detection, analysis, disinfection, and prevention of Staphylococcus aureus. SMART MEDICINE 2022; 1:e20220015. [PMID: 39188734 PMCID: PMC11235639 DOI: 10.1002/smmd.20220015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 08/28/2024]
Abstract
The World Health Organization has designated Staphylococcus aureus as a global health concern. This designation stems from the emergence of multiple drug-resistant strains that already account for hundreds of thousands of deaths globally. The development of novel treatment strategies to eradicate S. aureus or mitigate its pathogenic potential is desperately needed. In the effort to develop emerging strategies to combat S. aureus, phage display is uniquely positioned to assist in this endeavor. Leveraging bacteriophages, phage display enables researchers to better understand interactions between proteins and their antagonists. In doing so, researchers have the capacity to design novel inhibitors, biosensors, disinfectants, and immune modulators that can target specific S. aureus strains. In this review, we highlight how phage display can be leveraged to design novel solutions to combat S. aureus. We further discuss existing uses of phage display as a detection, intervention, and prevention platform against S. aureus and provide outlooks on how this technology can be optimized for future applications.
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Kyle Jackson
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Michael Chan
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Ahmed Saif
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Leon He
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Tohid F. Didar
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
- Department of Mechanical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Zeinab Hosseinidoust
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
7
|
Kim H, Jang JH, Jung IY, Cho JH. A Novel Peptide as a Specific and Selective Probe for Klebsiella pneumoniae Detection. BIOSENSORS 2022; 12:bios12030153. [PMID: 35323423 PMCID: PMC8946155 DOI: 10.3390/bios12030153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Klebsiella pneumoniae is infamous for generating hospital-acquired infections, many of which are difficult to treat due to the bacterium’s multidrug resistance. A sensitive and robust detection method of K. pneumoniae can help prevent a disease outbreak. Herein, we used K. pneumoniae cells as bait to screen a commercially available phage-displayed random peptide library for peptides that could be used to detect K. pneumoniae. The biopanning-derived peptide TSATKFMMNLSP, named KP peptide, displayed a high selectivity for the K. pneumoniae with low cross-reactivity to related Gram-negative bacteria. The specific interaction between KP peptide and K. pneumoniae lipopolysaccharide resulted in the peptide’s selectivity against K. pneumoniae. Quantitative analysis of this interaction by enzyme-linked immunosorbent assay revealed that the KP peptide possessed higher specificity and sensitivity toward K. pneumoniae than commercially available anti-Klebsiella spp. antibodies and could detect K. pneumoniae at a detection limit of 104 CFU/mL. These results suggest that KP peptide can be a promising alternative to antibodies in developing a biosensor system for K. pneumoniae detection.
Collapse
Affiliation(s)
- Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.J.)
| | - Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.J.)
| | - In Young Jung
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Korea;
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.J.)
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Korea;
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1347; Fax: +82-55-772-1349
| |
Collapse
|
8
|
Kotsiri Z, Vidic J, Vantarakis A. Applications of biosensors for bacteria and virus detection in food and water-A systematic review. J Environ Sci (China) 2022; 111:367-379. [PMID: 34949365 DOI: 10.1016/j.jes.2021.04.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 05/09/2023]
Abstract
Biosensors for sensitive and specific detection of foodborne and waterborne pathogens are particularly valued for their portability, usability, relatively low cost, and real-time or near real-time response. Their application is widespread in several domains, including environmental monitoring. The main limitation of currently developed biosensors is a lack of sensitivity and specificity in complex matrices. Due to increased interest in biosensor development, we conducted a systematic review, complying with the PRISMA guidelines, covering the period from January 2010 to December 2019. The review is focused on biosensor applications in the identification of foodborne and waterborne microorganisms based on research articles identified in the Pubmed, ScienceDirect, and Scopus search engines. Efforts are still in progress to overcome detection limitations and to provide a rapid detection system which will safeguard water and food quality. The use of biosensors is an essential tool with applicability in the evaluation and monitoring of the environment and food, with great impact in public health.
Collapse
Affiliation(s)
- Zoi Kotsiri
- Environmental and Microbiology Unit, Department of Public Health, Medical School, University of Patras 26504, Greece
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, University of Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Apostolos Vantarakis
- Environmental and Microbiology Unit, Department of Public Health, Medical School, University of Patras 26504, Greece.
| |
Collapse
|
9
|
Lv E, Li Y, Ding J, Qin W. Magnetic‐Field‐Driven Extraction of Bioreceptors into Polymeric Membranes for Label‐Free Potentiometric Biosensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Enguang Lv
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation Yantai Institute of Coastal Zone Research (YIC) Chinese Academy of Sciences (CAS) Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS Yantai Shandong 264003 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanhong Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation Yantai Institute of Coastal Zone Research (YIC) Chinese Academy of Sciences (CAS) Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS Yantai Shandong 264003 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation Yantai Institute of Coastal Zone Research (YIC) Chinese Academy of Sciences (CAS) Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS Yantai Shandong 264003 P. R. China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao Shandong 266237 P. R. China
- Center for Ocean Mega-Science Chinese Academy of Sciences Qingdao Shandong 266071 P. R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation Yantai Institute of Coastal Zone Research (YIC) Chinese Academy of Sciences (CAS) Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS Yantai Shandong 264003 P. R. China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao Shandong 266237 P. R. China
- Center for Ocean Mega-Science Chinese Academy of Sciences Qingdao Shandong 266071 P. R. China
| |
Collapse
|
10
|
Lv E, Li Y, Ding J, Qin W. Magnetic-Field-Driven Extraction of Bioreceptors into Polymeric Membranes for Label-Free Potentiometric Biosensing. Angew Chem Int Ed Engl 2021; 60:2609-2613. [PMID: 33021005 DOI: 10.1002/anie.202011331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/30/2020] [Indexed: 01/25/2023]
Abstract
We report here the concept of a magnetically controlled extraction of hydrophilic bioreceptors into polymeric membranes for bioassays. The potentiometric assay relies on the intrinsic charges of an antimicrobial peptide and its unique recognition abilities, which can eliminate the probe labeling and indicator addition. The target binding event could effectively prevent the extraction of the peptide into the polymeric membrane doped with an ion exchanger, thus resulting in a potential change. The potentiometric response properties of the peptide assembled on magnetic beads can be dynamically controlled and modulated by applying a magnetic field. Staphylococcus aureus, as a model of food-borne pathogens, was measured at levels down to 10 CFU mL-1 . Based on this sensing strategy, a potentiometric array was developed for the pattern recognition of bacteria. The proposed general platform can be used for potentiometric biosensing using other hydrophilic bioreceptors.
Collapse
Affiliation(s)
- Enguang Lv
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanhong Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, P. R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, P. R. China
| |
Collapse
|
11
|
Lu S, Guo X, Zou M, Zheng Z, Li Y, Li X, Li L, Wang H. Bacteria-Instructed In Situ Aggregation of AuNPs with Enhanced Photoacoustic Signal for Bacterial Infection Bioimaging. Adv Healthc Mater 2020; 9:e1901229. [PMID: 31750997 DOI: 10.1002/adhm.201901229] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/25/2019] [Indexed: 12/19/2022]
Abstract
The emergence of drug-resistant bacteria is becoming the focus of global public health. Early-stage pathogen bioimaging will offer a unique perspective to obtain infection information in patients. A photoacoustic (PA) contrast agent based on functional peptide modified gold nanoparticles (AuNPs@P1) is developed. These nanoparticles can be specifically tailored surface peptides by bacterial overexpressed enzyme inducing in situ aggregation of the gold nanoparticles. In the meantime, the close aggregation based on the hydrogen bonding, π-π stacking, and hydrophobic interaction of the peptide residues on the surface of gold nanoparticles exhibits a typical redshifted and broadened plasmon band. In addition, this active targeting and following in situ stimuli-induced aggregation contribute to increased nanoparticle accumulation in the infected site. Finally, the dynamic aggregation of AuNPs@P1 results in dramatically enhanced photoacoustic signals for bioimaging bacterial infection in vivo with high sensitivity and specificity. It is envisioned that this PA contrast agent may provide a new approach for early detection of bacterial infection in vivo.
Collapse
Affiliation(s)
- Shi‐Zhao Lu
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)University of Chinese Academy of Sciences No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Xiao‐Yan Guo
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Mei‐Shuai Zou
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Zi‐Qin Zheng
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)University of Chinese Academy of Sciences No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Yu‐Chuan Li
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Xiao‐Dong Li
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Li‐Li Li
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)University of Chinese Academy of Sciences No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Hao Wang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)University of Chinese Academy of Sciences No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| |
Collapse
|
12
|
|
13
|
M13 Bacteriophages as Bioreceptors in Biosensor Device. LECTURE NOTES IN ELECTRICAL ENGINEERING 2019. [DOI: 10.1007/978-3-030-04324-7_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
De Plano LM, Fazio E, Rizzo MG, Franco D, Carnazza S, Trusso S, Neri F, Guglielmino SPP. Phage-based assay for rapid detection of bacterial pathogens in blood by Raman spectroscopy. J Immunol Methods 2018; 465:45-52. [PMID: 30552870 DOI: 10.1016/j.jim.2018.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023]
Abstract
Sepsis is a systemic inflammatory response ensuing from presence and persistence of microorganisms in the bloodstream. The possibility to identify them at low concentrations may improve the problem of human health and therapeutic outcomes. So, sensitive and rapid diagnostic systems are essential to evaluate bacterial infections during the time, also reducing the cost. In this study, from random M13 phage display libraries, we selected phage clones that specifically bind surface of Staphyloccocus aureus, Pseudomonas aeruginosa and Escherichia coli. Then, commercial magnetic beads were functionalized with phage clones through covalent bond and used as capture and concentrating of pathogens from blood. We found that phage-magnetic beads complex represents a network which enables a cheap, high sensitive and specific detection of the bacteria involved in sepsis by micro-Raman spectroscopy. The enter process required 6 h and has the limit of detection of 10 Colony Forming Units on 7 ml of blood (CFU/7 ml).
Collapse
Affiliation(s)
- Laura M De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Domenico Franco
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Santina Carnazza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sebastiano Trusso
- IPCF-CNR Institute for Chemical-Physical Processes, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Fortunato Neri
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore P P Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
15
|
Farooq U, Yang Q, Ullah MW, Wang S. Bacterial biosensing: Recent advances in phage-based bioassays and biosensors. Biosens Bioelectron 2018; 118:204-216. [PMID: 30081260 DOI: 10.1016/j.bios.2018.07.058] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
In nature, different types of bacteria including pathogenic and beneficial ones exist in different habitats including environment, plants, animals, and humans. Among these, the pathogenic bacteria should be detected at earlier stages of infection; however, the conventional bacterial detection procedures are complex and time-consuming. In contrast, the advanced molecular approaches such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) have significantly reduced the detection time; nevertheless, such approaches are not acceptable to a large extent and are mostly laborious and expensive. Therefore, the development of fast, inexpensive, sensitive, and specific approaches for pathogen detection is essential for different applications in food industry, clinical diagnosis, biological defense and counter-terrorism. To this end, the novel sensing approaches involving bacteriophages as recognition elements are receiving immense consideration owing to their high degree of specificity, accuracy, and reduced assay times. Besides, the phages are easily produced and are tolerant to extreme pH, temperature, and organic solvents as compared to antibodies. To date, several phage-based assays and sensors have been developed involving different systems such as quartz crystal microbalance, magnetoelastic platform, surface plasmon resonance, and electrochemical methods. This review highlights different taxonomic species and genera of phages infecting eight common disease-causing bacterial genera. It further overviews the most recent advancements in phage-based sensing assays and sensors. Likewise, it elaborates various whole-phage and phage components-based assays. Overall, this review emphasizes the importance of electrochemical biosensors as simple, reliable, cost-effective, and accurate tools for bacterial detection.
Collapse
Affiliation(s)
- Umer Farooq
- Advanced Biomaterials & Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiaoli Yang
- Advanced Biomaterials & Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shenqi Wang
- Advanced Biomaterials & Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
16
|
Lopes RS, Queiroz MAF, Gomes STM, Vallinoto ACR, Goulart LR, Ishak R. Phage display: an important tool in the discovery of peptides with anti-HIV activity. Biotechnol Adv 2018; 36:1847-1854. [PMID: 30012540 DOI: 10.1016/j.biotechadv.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/14/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus (HIV) remains a worldwide health problem despite huge investments and research breakthroughs, and no single drug is effective in killing the virus yet. Among new strategies to control HIV infection, the phage display (PD) technology has become a promising tool in the discovery of peptides that can be used as new drugs, or also as possible vaccine candidates. This review discusses basic aspects of PD and its use to advance two main objectives related to combating HIV-1 infection: the identification of peptides that inhibit virus replication and the identification of peptides that induce the production of neutralizing antibodies. We will cover the different approaches used for mapping and selection of mimotopes, and discuss the promising results of these biologicals as antiviral agents.
Collapse
Affiliation(s)
- Ronaldo Souza Lopes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Maria Alice Freitas Queiroz
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Samara Tatielle Monteiro Gomes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia (Universidade Federal de Uberlândia - UFU), Laboratory of Nanobiotechnology, Av. Amazonas s/n, Bloco 2E, Sala 248 - Campus Umuarama, Uberlândia, MG, CEP 38400-902, Brazil.
| | - Ricardo Ishak
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| |
Collapse
|
17
|
Li X, Li H, Hu Q, Lin J, Zhang Q, Li Y, Li J, Chen T, Zhang Q, Qiu Y. Detection of epitopes in systemic lupus erythematosus using peptide microarray. Mol Med Rep 2018. [PMID: 29532871 PMCID: PMC5928640 DOI: 10.3892/mmr.2018.8710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease, which features the secretion of antibodies directed against autoantigens in vivo. In the present study, a peptide microarray was developed to detect the epitopes recognized by autoantibodies in patients with SLE for an effective method of diagnosis. SLE-associated epitopes in 14 autoantigens were predicted using the antigenic epitope prediction software DNA star. Peptides were synthesized based on the predicted antigenic epitopes and immobilized on a slide surface and developed into a peptide microarray. Using this peptide microarray the autoantibodies in 120 patients with SLE and 110 healthy subjects were detected. A total of 73 potential antigenic epitopes in 14 autoantigens were predicted and screened. The peptide microarray based on the 73 epitopes was used to detect the autoantibodies in patients with SLE. A total of 14 epitopes with potential diagnostic values were screened out. The sensitivity and specificity of the 14 epitopes for the diagnosis of SLE were 71.6 and 85.8%, respectively. An optimal set of epitopes for SLE diagnosis was obtained. As individual patients had a specific autoantibody spectrum it was possible to detect autoantibodies in SLE and perform the diagnosis of SLE using the peptide microarray.
Collapse
Affiliation(s)
- Xin Li
- Clinical Laboratory of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Li
- Clinical Laboratory of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiongdan Hu
- Department of Nephrology, The Traditional Chinese Medicine Hospital, Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jinfei Lin
- South China Institute of Microbial Ecology and Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiong Zhang
- Clinical Laboratory of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yao Li
- Clinical Laboratory of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Juan Li
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Tao Chen
- South China Institute of Microbial Ecology and Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiong Zhang
- Department of Nephrology, The Traditional Chinese Medicine Hospital, Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yurong Qiu
- Clinical Laboratory of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|