1
|
Koga K, Kajimoto S, Yoshizaki Y, Takahashi H, Kageyama L, Konno T, Nakabayashi T. Establishment of a Method for the Introduction of Poorly Water-Soluble Drugs in Cells and Evaluation of Intracellular Concentration Distribution Using Resonance Raman Imaging. J Phys Chem B 2024; 128:1350-1359. [PMID: 38295808 DOI: 10.1021/acs.jpcb.3c06601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Label-free measurement is essential to understand the metabolism of drug molecules introduced into cells. Raman imaging is a powerful method to investigate intracellular drug molecules because it provides in situ label-free observation of introduced molecules. In this study, we propose that Raman imaging can be used not only to observe the intracellular distribution of drug molecules but also to quantitatively visualize the concentration distribution reflecting each organelle in a single living cell using the Raman band of extracellular water as an intensity standard. We dissolved poorly water-soluble all-trans-retinoic acid (ATRA) in water using a cytocompatible amphiphilic phospholipid polymer, poly[2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate] (PMB) as a solubilizing reagent, introduced it into cells, and obtained the intracellular concentration distribution of ATRA. ATRA was concentrated in the cells and mainly localized to mitochondria and lipid droplets, interacting strongly with mitochondria and weakly with lipid droplets. Poorly water-soluble β-carotene was also introduced into cells using PMB but was not concentrated intracellularly, indicating that β-carotene does not interact specifically with intracellular molecules. We established a protocol for the solubilization and intracellular uptake of poorly water-soluble molecules using PMB and obtaining their concentration distribution using Raman microscopy.
Collapse
Affiliation(s)
- Keisuke Koga
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yuta Yoshizaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Takahashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Lisa Kageyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Yoshizaki Y, Konno T. Cellular Internalization and Exiting Behavior of Zwitterionic 4-Armed Star-Shaped Polymers. Molecules 2023; 28:molecules28114479. [PMID: 37298956 DOI: 10.3390/molecules28114479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The zwitterionic phospholipid polymer poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) is amphiphilic copolymer, and it has been reported to directly penetrate cell membranes and have good cytocompatibility. Conventional PMBs are linear-type random copolymers that are polymerized by a free radical polymerization technique. In contrast, star-shaped polymers, or simple branched-type polymers, have unique properties compared to the linear types, for example, a viscosity based on the effect of the excluded volume. In this study, a branched architecture was introduced into a PMB molecular structure, and a 4-armed star-shaped PMB (4armPMB) was synthesized by an atom transfer radical polymerization (ATRP) technique known as living radical polymerization. Linear-type PMB was also synthesized using ATRP. The effects of the polymer architecture on cytotoxicity and cellular uptake were investigated. Both 4armPMB and LinearPMB were successfully synthesized, and these polymers were verified to be water soluble. Pyrene fluorescence in the polymer solution indicated that the architecture had no effect on the behavior of the polymer aggregates. In addition, these polymers caused no cytotoxicity or cell membrane damage. The 4armPMB and LinearPMB penetrated into the cells after a short incubation period, with similar rates. In contrast, the 4armPMB showed a quicker back-diffusion from the cells than that of LinearPMB. The 4armPMB showed fast cellular internalization and exiting behaviors.
Collapse
Affiliation(s)
- Yuta Yoshizaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
3
|
Yoshie K, Ishihara K. [Solubilization of Poorly Water-soluble Drugs with Amphiphilic Phospholipid Polymers]. YAKUGAKU ZASSHI 2023; 143:745-756. [PMID: 37661440 DOI: 10.1248/yakushi.23-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Most drug candidates developed in recent years are poorly water-soluble, which is a key challenge in pharmaceutical science. Various solubilization methods have been investigated thus far, most of which require solubilizers that provide a local hydrophobic environment wherein a drug can dissolve or induce interactions with drug molecules. We have focused on amphiphilic 2-methacryloyloxyethyl phosphoryl choline (MPC) polymers. In addition to the ease of molecular design of amphiphilic MPC polymers owing to their chemical structures, they have been reported to possess high biocompatibility in various biomaterial applications. Additionally, amphiphilic MPC polymers have been applied in the pharmaceutical field, especially in solubilization. We have qualitatively and quantitatively evaluated the effects of the chemical structure and physical properties of the solubilizer on the MPC polymers. In particular, MPC polymers with different chemical structures were designed and synthesized. The inner polarity and molecular mobility in the polymer aggregates were evaluated, indicating that the intrinsic properties reflect the chemical structure of the polymer. Additionally, amphiphilic MPC polymers were used to improve the solubility of poorly water-soluble drugs and as solid dispersion carriers, and they exhibited superior solubilizing abilities compared to a commonly used polymer. Furthermore, the solubility of biopharmaceuticals, such as peptides, was improved. It is possible to design and synthesize optimal structures based on the polarity of the hydrophobic environment and the intermolecular interaction with a drug. This research provides a unified interpretation of drugs and efficiently summarizes knowledge about drug development, which will facilitate the efficient and rapid development of drug formulations.
Collapse
Affiliation(s)
- Kensuke Yoshie
- Formulation Technology Research Laboratories, Daiichi Sankyo., Ltd
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo
- Division of Materials and Manufacturing Science, School of Engineering, Osaka University
| |
Collapse
|
4
|
Improvement of Oral Absorption of Poorly Water-Soluble Drugs by Solid Dispersions with Amphiphilic Phospholipid Polymer. J Pharm Sci 2022; 111:3141-3148. [PMID: 36028136 DOI: 10.1016/j.xphs.2022.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 12/14/2022]
Abstract
Solid dispersions are one of methods for solubilizing water-insoluble drugs. To enhance the bioavailability, maintenance of the supersaturated state and absorption of the dissolved drug in the gastrointestinal tract are important. We designed and synthesized amphiphilic 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymers as carriers for solid dispersions and evaluated the dissolution behavior in test solutions with different pH and additives. Solid dispersion of troglitazone with amphiphilic MPC copolymers having both aromatic rings and urethane bonds in the side chains showed rapid dissolution and excellent supersaturation maintenance. It was indicated that the balance between the interactions with drug molecules and the water affinity of the polymer should be considered when carriers for solid dispersions are designed. In addition, cell membrane permeability of the solid dispersion with the amphiphilic MPC copolymer was evaluated by the Dissolution / Permeation system, which consists of two liquid chambers and a monolayer of epithelial cells that mimics the intestinal dissolution and permeation process. Further, blood concentration of the drug when solid dispersions were orally administered in mice was also evaluated. The cell membrane permeability and oral absorbability were significantly improved, compared to the solid dispersions with poly(N-vinylpyrrolidone) and suspension or solution of crystalline troglitazone.
Collapse
|
5
|
Fukazawa K, Mu M, Chen SH, Ishihara K. Photoinduced immobilization of 2-methacryloyloxyethyl phosphorylcholine polymers with different molecular architectures on a poly(ether ether ketone) surface. J Mater Chem B 2022; 10:2699-2707. [PMID: 35113114 DOI: 10.1039/d1tb02415a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ether ether ketone) (PEEK) has seen increasing use in biomedical fields as a replacement for metal implants. Accordingly, the surface functionalities of PEEK are important for the development of medical devices. We have focused on the application of photoinduced reactions in PEEK to immobilize a functional polymer via radical generation on the surface, which can react with hydrocarbon groups. In this study, we used zwitterionic copolymers comprising 2-methacryloyloxyethyl phosphorylcholine (MPC) units and n-butyl methacrylate (BMA) units with various molecular architectures for surface modification. A random copolymer (poly(MPC-co-BMA) (r-PMB)), an AB-type diblock copolymer (di-PMB), and an ABA-type triblock copolymer (tri-PMB) (A segment: poly(BMA); B segment: poly(MPC)) were synthesized with the same monomer compositions. All PMBs were successfully immobilized on the PEEK surface via UV irradiation after the dip-coating process, regardless of their molecular structure. In this reaction, the alkyl group of the BMA unit functioned as a photoreactive site on the PEEK surface. This indicates that the molecular structure differences affect the surface properties. For example, compared to r-PMB and tri-PMB, di-PMB-modified surfaces exhibited an extremely low water contact angle of approximately 10°. The findings of this study demonstrate that this surface functionalization method does not require a low-molecular-weight compound, such as an initiator, and can be applied to the surface of inert PEEK through a simple photoreaction under room temperature, atmospheric pressure, and dry state conditions.
Collapse
Affiliation(s)
- Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Mingwei Mu
- Department of Bioengineering, School of Food and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Sheng-Han Chen
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
6
|
Schardt L, Martínez Guajardo A, Koc J, Clarke JL, Finlay JA, Clare AS, Gardner H, Swain GW, Hunsucker K, Laschewsky A, Rosenhahn A. Low Fouling Polysulfobetaines with Variable Hydrophobic Content. Macromol Rapid Commun 2021; 43:e2100589. [PMID: 34734670 DOI: 10.1002/marc.202100589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/01/2021] [Indexed: 11/08/2022]
Abstract
Amphiphilic polymer coatings combining hydrophilic elements, in particular zwitterionic groups, and hydrophobic elements comprise a promising strategy to decrease biofouling. However, the influence of the content of the hydrophobic component in zwitterionic coatings on the interfacial molecular reorganization dynamics and the anti-fouling performance is not well understood. Therefore, coatings of amphiphilic copolymers of sulfobetaine methacrylate 3-[N-2'-(methacryloyloxy)ethyl-N,N-dimethyl]-ammonio propane-1-sulfonate (SPE) are prepared which contain increasing amounts of hydrophobic n-butyl methacrylate (BMA). Their fouling resistance is compared to that of their homopolymers PSPE and PBMA. The photo-crosslinked coatings form hydrogel films with a hydrophilic surface. Fouling by the proteins fibrinogen and lysozyme as well as by the diatom Navicula perminuta and the green algae Ulva linza is assessed in laboratory assays. While biofouling is strongly reduced by all zwitterionic coatings, the best fouling resistance is obtained for the amphiphilic copolymers. Also in preliminary field tests, the anti-fouling performance of the amphiphilic copolymer films is superior to that of both homopolymers. When the coatings are exposed to a marine environment, the reduced susceptibility to silt incorporation, in particular compared to the most hydrophilic polyzwitterion PSPE, likely contributes to the improved fouling resistance.
Collapse
Affiliation(s)
- Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801, Bochum, Germany
| | - Jessica L Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Harrison Gardner
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Geoffrey W Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Kelli Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - André Laschewsky
- Institute of Chemistry, University of Potsdam, 14476, Potsdam, Germany.,Fraunhofer Institute of Applied Polymer Research IAP, 14476, Potsdam, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
7
|
Solubilization of Paclitaxel by Self-Assembled Amphiphilic Phospholipid-Mimetic Polymers with Varied Hydrophobicity. Polymers (Basel) 2021; 13:polym13162805. [PMID: 34451342 PMCID: PMC8398084 DOI: 10.3390/polym13162805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
2-Methacryloyloxyethyl phosphorylcholine (MPC) polymers have been used as a coating agent on medical devices and as a carrier in drug delivery systems (DDSs). Paclitaxel (PTX) is a water-insoluble anticancer drug whose solubilizer is necessary for administration. Block and random copolymers composed of hydrophilic MPC and butyl methacrylate, named PMB, show different properties, depending on the polymer sequence and MPC content. In the present study, we used amphiphilic MPC polymers comprising hydrophobic dodecyl methacrylate (DMA). The self-assembling properties and PTX solubilization of random and block poly(MPC-co-DMA)s (rPMDs and bPMDs) with different compositions were examined and compared. rPMDs with high DMA content formed large and relatively loose self-assembled structures, which solubilized PTX. However, bPMDs formed small and compact self-assembled structures with poor PTX solubilization. PTX solubilized by PMB with small and loose self-assembled structures showed efficient drug action, similar to free PTX; however, rPMDs fell short of demonstrating PTX efficiency. Our results suggest that the self-assembling properties and the hydrophobicity of amphiphilic MPC polymers largely affect PTX solubilization as well as drug action, which is required to be controlled by the polymer sequence, as well as the structure and composition of the hydrophobic monomer for efficient DDS.
Collapse
|
8
|
Simões AM, Venâncio C, Alves L, Antunes FE, Lopes I. Hydrophobic modifications of hydroxyethyl cellulose polymers: Their influence on the acute toxicity to aquatic biota. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124966. [PMID: 33418294 DOI: 10.1016/j.jhazmat.2020.124966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The hydrophobic substitution (HS) of cationic cellulose derivatives may be tuned, promoting their efficiency. This work studied the influence of HS on the acute ecotoxicity of quaternized hydroxyethyl cellulose polymers (SL) to aquatic biota. The ecotoxicity of four SL with different HS (SL-5, SL-30, SL-60, SL-100) was assessed for seven species: Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris, Daphnia magna, Brachionus calyciflorus, Heterocypris incongruens, and Danio rerio. The computed median effective concentrations were used to derive hazard concentrations, by using species sensitive distribution curves. All SL suspensions were characterized for particle size, zeta potential and rheological properties. Results indicated instability of the SL in suspension due to their relatively low zeta potential. Raphidocelis subcapitata, C. vulgaris and B. calyciflorus were the most sensitive to the four SL, suggesting that exposure to these compounds may imbalance the lowest trophic levels. Also, HS influenced the toxicity of SL, with the lowest HS (SL-5) revealing lower ecotoxicity. The maximum acceptable concentrations were 14.0, 2.9, 3.9 and 1.4 mg L-1 for SL-5, SL-30, SL-60, and SL-100, respectively. Accordingly, SL-5 is suggested as the eco-friendliest and is recommended to be used in the production of care products, in detriment of the other three tested variants.
Collapse
Affiliation(s)
- Anabela M Simões
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - C Venâncio
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Luís Alves
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, PT, 3030-790 Coimbra, Portugal
| | - Filipe E Antunes
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Water-soluble polymer micelles formed from amphiphilic diblock copolymers bearing pendant phosphorylcholine and methoxyethyl groups. Polym J 2021. [DOI: 10.1038/s41428-021-00482-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Chemical Structural Effects of Amphipathic and Water-soluble Phospholipid Polymers on Formulation of Solid Dispersions. J Pharm Sci 2021; 110:2966-2973. [PMID: 33831441 DOI: 10.1016/j.xphs.2021.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022]
Abstract
For the polymeric carriers of solid dispersions, it is important that carriers themselves dissolve quickly and maintain the supersaturated state of amorphous drugs during their dissolution period to improve bioavailability. Amphipathic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers can be dissolved in water, owing to the extremely high hydrophilicity of the MPC units, and are used as an ideal feeder for drug molecules to form aggregates in aqueous conditions. We synthesized amphipathic MPC copolymers with different hydrophobic side chains and molar ratios of MPC units, and evaluated the effect of the polymers on dissolution rate and supersaturation maintenance of solid dispersions of indomethacin. In most of the water-soluble amphipathic MPC copolymers, "spring-parachute"-like dissolution behavior was observed, where the drug initially became supersaturated followed by slow precipitation. In particular, MPC copolymers with aromatic rings in their side chains or polymers with a high percentage of hydrophobic units remained in a supersaturated state for a longer period. In contrast, urethane groups, which form hydrogen bonds with drug molecules, could also interact with water and were not conducive to maintaining supersaturation. In addition, water solubility of the polymer is important for rapid dissolution.
Collapse
|
11
|
Yoshie K, Yada S, Ando S, Ishihara K. Effects of inner polarity and viscosity of amphiphilic phospholipid polymer aggregates on the solubility enhancement of poorly water-soluble drugs. Colloids Surf B Biointerfaces 2020; 195:111215. [DOI: 10.1016/j.colsurfb.2020.111215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/05/2023]
|
12
|
Gao X, Jasti BR, Huang M, Wang X, Mahalingam R, Li X. Design and preparation of nanostructures based on Krafft point of nonionic amphiphiles for delivery of poorly water-soluble compounds. Int J Pharm 2020; 588:119789. [PMID: 32822777 DOI: 10.1016/j.ijpharm.2020.119789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/25/2020] [Accepted: 08/16/2020] [Indexed: 11/25/2022]
Abstract
Micellar solubilization can effectively dissolve low water-soluble compounds in aqueous environment, however, the micellar systems are not able to withstand dilution and maintain solubilization of poorly water-soluble drugs below critical micelle concentration. To overcome the drawbacks of conventional micellar solubilization, nonionic polyoxyethylated surfactants with Krafft points at or higher than body temperature were chosen to create novel micelle-based nanostructures as a delivery vehicle for poorly water-soluble compounds. A technique "thermo-spray process" was developed for the preparation of the nanostructures-containing formulation, in which the drug-containing micelle solution was first prepared and maintained at the elevated temperature above the Krafft point of the surfactant, then spray dried to solidify the obtained micelle-like nanostructure at room temperature. Lactose was used as an excipient to embed the nanostructures in the thermo-spray products. Water insoluble spherical nanoparticles with size range from 80 to 250 nm were obtained after reconstitution of the product at the temperature lower than Krafft point. When paclitaxel was used as model drug, the micelle-like nanostructures exhibited similar drug entrapment efficiency, solubility enhancement and drug release facilitation as conventional micelles, but provided lower critical micellar concentration at body temperature, and good encapsulation stability upon storage and dilution. These findings indicated that the developed thermo-spray product can serve as a promising delivery platform for drugs with low aqueous solubility.
Collapse
Affiliation(s)
- Xiaoling Gao
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA; Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Meng Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaolin Wang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | | | - Xiaoling Li
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA.
| |
Collapse
|
13
|
Kojima C, Katayama R, Lien Nguyen T, Oki Y, Tsujimoto A, Yusa SI, Shiraishi K, Matsumoto A. Different antifouling effects of random and block copolymers comprising 2-methacryloyloxyethyl phosphorylcholine and dodecyl methacrylate. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Otaka A, Yamaguchi T, Saisho R, Hiraga T, Iwasaki Y. Bone-targeting phospholipid polymers to solubilize the lipophilic anticancer drug. J Biomed Mater Res A 2020; 108:2090-2099. [PMID: 32323471 DOI: 10.1002/jbm.a.36968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 12/31/2022]
Abstract
Current chemotherapy methods have limited effectiveness in eliminating bone metastasis, which leads to a poor prognosis associated with severe bone disorders. To provide regional chemotherapy for this metastatic tumor, a bone-targeting drug carrier was produced by introducing the osteotropic bisphosphonate alendronate (ALN) units into an amphiphilic phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate). The polymer can form nanoparticles with a diameter of less than 30 nm; ALN units were exposed to the outer layer of the particle. A simple mixing procedure was used to encapsulate a hydrophobic anticancer drug, known as docetaxel (DTX), in the polymer nanoparticle, providing a uniform solution of a polymer-DTX complex in the aqueous phase. The complex showed anticancer activities against several breast cancer cell lines, and the complex formation did not hamper the pharmacological effect of DTX. The fluorescence observations evaluated by an in vivo imaging system and fluorescence microscopy showed that the addition of ALN to the polymer-DTX complex enhanced bone accumulation. Bone-targeting phospholipid polymers are potential solubilizing excipients used to formulate DTX and deliver the hydrophobic drug to bone tissues by blood administration.
Collapse
Affiliation(s)
| | - Tomoki Yamaguchi
- Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Ryoya Saisho
- Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Nagano, Japan
| | - Yasuhiko Iwasaki
- ORDIST, Kansai University, Osaka, Japan.,Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| |
Collapse
|
15
|
Sato K, Konno T. Carbon Nanotube Immobilized Electrode Using Amphiphilic Phospholipid Polymer with Anti‐fouling and Dispersion Property for Electrochemical Analysis. ELECTROANAL 2020. [DOI: 10.1002/elan.201900549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katsuhiko Sato
- Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
16
|
Sabeela N, Almutairi TM, Al-Lohedan HA, Atta AM. Surface Activity of Smart Hybrid Polysiloxane- co- N-isopropylacrylamide Microgels. ACS OMEGA 2019; 4:21395-21409. [PMID: 31867534 PMCID: PMC6921624 DOI: 10.1021/acsomega.9b03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Amphiphilic smart gels of different sizes (macro, micro, and nano) are widely used in advanced medical, industrial, and environmental applications. They are sensitive, responsive to different environments, and possess a high surface activity to adsorb onto different interfaces. In this study, new amphiphilic alkoxysilane-containing microgels, hybrid polysiloxane microgel, and silica nanoparticles were prepared using a cross-linking surfactant-free cross-linking polymerization technique for N-isopropylacrylamide (NIPAm) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) monomers. Vinyltrimethoxysilane (VTS) was used as a silane precursor in the cross-linking polymerization to hydrolyze with tetraethoxysilane (TEOS) in ammonia using an emulsion technique, to create polysiloxane microgel and silica nanoparticles. The surface activity measurements confirmed that NIPAm/VTS had a higher surface activity than NIPAm/AMPS-VTS microgels and their hybrid polysiloxane microgel owing to the differences of the cross-linking of microgels from the center to the microgel periphery, which alter their morphologies.
Collapse
Affiliation(s)
- Nourah
I. Sabeela
- Surfactants
Research Chair, Chemistry Department, College of Science and Chemistry Department,
College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani M. Almutairi
- Surfactants
Research Chair, Chemistry Department, College of Science and Chemistry Department,
College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad A. Al-Lohedan
- Surfactants
Research Chair, Chemistry Department, College of Science and Chemistry Department,
College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman M. Atta
- Surfactants
Research Chair, Chemistry Department, College of Science and Chemistry Department,
College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Zhang S, Wan Q, Xu X, Xing Y, Ding J, Yang S, Sun W, Lu M, Pan B. A novel oil-based suspension of a micro-environmental, pH-modifying solid dispersion for parenteral delivery: Formulation and stability evaluation. Colloids Surf B Biointerfaces 2019; 179:382-392. [PMID: 30999117 DOI: 10.1016/j.colsurfb.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 01/23/2023]
Abstract
The objective of this study was to evaluate a novel oil-based suspension as a potential parenteral drug delivery system for drugs with poor water solubility. Most of the new active pharmaceutical ingredients are weak acid or basic drugs with pH-dependent solubility. To limit this dependence, use of micro-environmental pH-modifying solid dispersions (micro pHm SD) has been proved to increase the bioavailability of these drugs. Toltrazuril (TOL), a weakly acidic drug with poor aqueous and pH-dependent solubility, was studied as a model drug. Recently, studies on TOL with focus on the parenteral injection are rarely to find in the literature. A novel parenteral oil-based TOL suspension was prepared containing TOL micro pHm SD (TSD) powders suspended in oil-based vehicles and the optimal formulation was screened. The stability of this formulation was assessed considering particle size distribution, settling volume ratio, redispersibility, thermal stability, and drug content. The optimized white oil-based TOL pHm SD suspension (W-TSDS) showed significant improved stability and shear-thinning behavior. In particular, fumed silica as suspending agent positively influenced the physical stability of the formulation. Furthermore, W-TSDS showed good injectability using 21 G needles and more rapid and sustained drug release compared to TSD powders in vitro. In the in vivo safety evaluation, W-TSDS showed good histocompatibility in rabbits injected subcutaneously or intramuscularly. We believe these findings provide an alternative choice of dosage form for the delivery of new active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Shudong Zhang
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Qiang Wan
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Xiaolin Xu
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Yidan Xing
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Jiafeng Ding
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Shizhuang Yang
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Weiwei Sun
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Mengmeng Lu
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Baoliang Pan
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
18
|
Chatterjee S, Ooya T. Hydrophobic Nature of Methacrylate-POSS in Combination with 2-(Methacryloyloxy)ethyl Phosphorylcholine for Enhanced Solubility and Controlled Release of Paclitaxel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1404-1412. [PMID: 30424607 DOI: 10.1021/acs.langmuir.8b01588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amphiphilic copolymers consisting of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and hydrophobic monomers are known as biomaterials for the administration of poorly water-soluble drugs such as paclitaxel (PTX). However, the hydrophobic monomers to be copolymerized with MPC have not been optimized for PTX solubilization and its dosage forms. Here, we show the enhanced PTX solubility by only an MPC-based amphiphilic copolymer using a polyhedral oligomeric silsesquioxane (POSS) methacrylate (MA) bearing an ethyl (C2H5) group as a vertex group. MPC was copolymerized with POSS methacrylates bearing different vertex groups of ethyl (C2H5), hexyl (C6H13), and octyl (C8H17) via radical polymerization. We found that the strong interaction between C2H5-POSS and PTX contributed to the slow release of PTX without any burst release. The C2H5-POSS-MA MPC copolymer was internalized into the cultured HeLa cells, which was confirmed by using a fluorescein-4-isothiocyanate (FITC)-labeled PTX, and the PTX-dissolved copolymer induced cell death. We anticipate that the C2H5-POSS-MA MPC copolymer is a good solubilizer bearing a controlled release function for PTX.
Collapse
Affiliation(s)
- Suchismita Chatterjee
- Graduate School of Engineering, Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada-Ku, Kobe 657 8501 , Japan
| | - Tooru Ooya
- Graduate School of Engineering, Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada-Ku, Kobe 657 8501 , Japan
| |
Collapse
|
19
|
Lin W, Ma G, Yuan Z, Qian H, Xu L, Sidransky E, Chen S. Development of Zwitterionic Polypeptide Nanoformulation with High Doxorubicin Loading Content for Targeted Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1273-1283. [PMID: 29933695 DOI: 10.1021/acs.langmuir.8b00851] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Much attention has been drawn to targeted nanodrug delivery systems due to their high therapeutic efficacy in cancer treatment. In this work, doxorubicin (DOX) was incorporated into a zwitterionic arginyl-glycyl-aspartic acid (RGD)-conjugated polypeptide by an emulsion solvent evaporation technique with high drug loading content (45%) and high drug loading efficiency (95%). This zwitterionic nanoformulation showed excellent colloidal stability at high dilution and in serum. The pH-induced disintegration and enzyme-induced degradation of the nanoformulation were confirmed by dynamic light scattering and gel permeation chromatography. Efficient internalization of DOX in the cells and high antitumor activity in vitro was observed. Compared with the free drug, this nanoformulation showed higher accumulation in tumor and lower systemic toxicity in vivo. The DOX-loaded zwitterionic RGD-conjugated polypeptide vesicles show potential application for targeted drug delivery in the clinic.
Collapse
Affiliation(s)
- Weifeng Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Guanglong Ma
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhefan Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Haofeng Qian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Liangbo Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Elie Sidransky
- Department of Materials Science and Engineering, A. James Clark School of Engineering , University of Maryland , College Park , Maryland 20740 , United States
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210046 , China
| |
Collapse
|
20
|
SHIRAISHI K, ISHIHARA K, YUSA SI. Exothermic Behavior of Cyanine Dye-Containing Polymer Micelle Irradiated by Near Infrared (NIR) in Water. KOBUNSHI RONBUNSHU 2019. [DOI: 10.1295/koron.2018-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Submicron amino acid particles reinforced 100% keratin biomedical films with enhanced wet properties via interfacial strengthening. Colloids Surf B Biointerfaces 2019; 177:33-40. [PMID: 30708309 DOI: 10.1016/j.colsurfb.2019.01.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/21/2023]
Abstract
Keratin films with wet stability and strength suitable for biomedical applications were developed via reinforcement with submicron cysteine particles for improved interfaces. Keratin products regenerated from wool or human hair were widely investigated as wound dressing and tissue engineering scaffolds for their satisfactory biomedical properties. However, regenerated keratin scaffolds usually did not have good mechanical properties, and also could not stand humid or wet biological environment due to poor moisture stability. Reinforcements for keratin materials were usually polysaccharides or synthetic polymers, and thus usually had non-ideal interfacial properties due to limited compatibility. In this research, submicron cystine particles were employed to reinforce keratin films for their high compatibility with keratin and bio-safety. Transition of primary and secondary structures of keratin due to matrix-reinforcement interaction was analyzed. The keratin films showed unprecedented pliancy, good tensile properties under humid conditions and biocompatibility, and thus had good potential for biomedical engineering applications.
Collapse
|
22
|
Amphiphilic core-shell nanoparticles: Synthesis, biophysical properties, and applications. Colloids Surf B Biointerfaces 2018; 172:68-81. [DOI: 10.1016/j.colsurfb.2018.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/04/2018] [Accepted: 08/12/2018] [Indexed: 11/18/2022]
|
23
|
Dual Acting Polymeric Nano-Aggregates for Liver Cancer Therapy. Pharmaceutics 2018; 10:pharmaceutics10020063. [PMID: 29861445 PMCID: PMC6027472 DOI: 10.3390/pharmaceutics10020063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 11/17/2022] Open
Abstract
Liver cancer treatments are often hindered by poor drug physicochemical properties, hence there is a need for improvement in order to increase patient survival and outlook. Combination therapies have been studied in order to evaluate whether increased overall efficacy can be achieved. This study reports the combined treatment of liver cancer cells with a combination treatment of chemotherapeutic agent paclitaxel and pro-apoptotic protein cytochrome C. In order to administer both agents in a single formulation, a poly(allylamine)-based amphiphile has been fabricated with the incorporation of a hybrid iron oxide-gold nanoparticle into its structure. Here, the insoluble paclitaxel becomes incorporated into the hydrophobic core of the self-assemblies formed in an aqueous environment (256 nm), while the cytochrome C attaches irreversibly onto the hybrid nanoparticle surface via gold-thiol dative covalent binding. The self-assemblies were capable of solubilising up to 0.698 mg/mL of paclitaxel (700-fold improvement) with 0.012 mg/mL of cytochrome C also attached onto the hybrid iron oxide-gold nanoparticles (HNPs) within the hydrophobic core. The formulation was tested on a panel of liver cancer cells and cytotoxicity was measured. The findings suggested that indeed a significant improvement in combined therapy (33-fold) was observed when compared with free drug, which was double the enhancement observed after polymer encapsulation without the cytochrome C in hepatocellular carcinoma (Huh-7D12) cells. Most excitingly, the polymeric nanoparticles did result in improved cellular toxicity in human endothelian liver cancer (SK-hep1) cells, which proved completely resistant to the free drug.
Collapse
|