1
|
Hao Y, Lu C, Xiang Q, Sun A, Su JQ, Chen QL. Unveiling the overlooked microbial niches thriving on building exteriors. ENVIRONMENT INTERNATIONAL 2024; 187:108649. [PMID: 38642506 DOI: 10.1016/j.envint.2024.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Rapid urbanization in the Asia-Pacific region is expected to place two-thirds of its population in concrete-dominated urban landscapes by 2050. While diverse architectural facades define the unique appearance of these urban systems. There remains a significant gap in our understanding of the composition, assembly, and ecological potential of microbial communities on building exteriors. Here, we examined bacterial and protistan communities on building surfaces along an urbanization gradient (urban, suburban and rural regions), investigating their spatial patterns and the driving factors behind their presence. A total of 55 bacterial and protist phyla were identified. The bacterial community was predominantly composed of Proteobacteria (33.7% to 67.5%). The protistan community exhibited a prevalence of Opisthokonta and Archaeplastida (17.5% to 82.1% and 1.8% to 61.2%, respectively). The composition and functionality of bacterial communities exhibited spatial patterns correlated with urbanization. In urban buildings, factors such as facade type, light exposure, and building height had comparatively less impact on bacterial composition compared to suburban and rural areas. The highest bacterial diversity and lowest Weighted Average Community Identity (WACI) were observed on suburban buildings, followed by rural buildings. In contrast, protists did not show spatial distribution characteristics related to facade type, light exposure, building height and urbanization level. The distinct spatial patterns of protists were primarily shaped by community diffusion and the bottom-up regulation exerted by bacterial communities. Together, our findings suggest that building exteriors serve as attachment points for local microbial metacommunities, offering unique habitats where bacteria and protists exhibit independent adaptive strategies closely tied to the overall ecological potential of the community.
Collapse
Affiliation(s)
- Yilong Hao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Changyi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
2
|
Le PH, Linklater DP, Medina AA, MacLaughlin S, Crawford RJ, Ivanova EP. Impact of multiscale surface topography characteristics on Candida albicans biofilm formation: From cell repellence to fungicidal activity. Acta Biomater 2024; 177:20-36. [PMID: 38342192 DOI: 10.1016/j.actbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
While there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate. Pathogenic yeasts account for an increasing proportion of implant-associated infections, since Candida spp. readily form biofilms on medical and dental device surfaces. In addition, these biofilms are highly antifungal-resistant, making it crucial to explore alternative solutions for the prevention of Candida implant-associated infections. One promising approach is to modify the surface properties of the implant, such as the wettability and topography of these substrata, to prevent the initial Candida attachment to the surface. This review summarizes recent research on the effects of surface wettability, roughness, and architecture on Candida spp. attachment to implantable materials. The nanofabrication of material surfaces are highlighted as a potential method for the prevention of Candida spp. attachment and biofilm formation on medical implant materials. Understanding the mechanisms by which Candida spp. attach to surfaces will allow such surfaces to be designed such that the incidence and severity of Candida infections in patients can be significantly reduced. Most importantly, this approach could also substantially reduce the need to use antifungals for the prevention and treatment of these infections, thereby playing a crucial role in minimizing the possibility contributing to instances of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: In this review we provide a systematic analysis of the role that surface characteristics, such as wettability, roughness, topography and architecture, play on the extent of C. albicans cells attachment that will occur on biomaterial surfaces. We show that exploiting bioinspired surfaces could significantly contribute to the prevention of antimicrobial resistance to antifungal and chemical-based preventive measures. By reducing the attachment and growth of C. albicans cells using surface structure approaches, we can decrease the need for antifungals, which are conventionally used to treat such infections.
Collapse
Affiliation(s)
- Phuc H Le
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia
| | - Denver P Linklater
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; Department of Biomedical Engineering, The Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Arturo Aburto Medina
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Shane MacLaughlin
- ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; BlueScope Steel Research, Port Kembla, NSW 2505, Australia
| | - Russell J Crawford
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia.
| |
Collapse
|
3
|
Mahmoudi-Qashqay S, Zamani-Meymian MR, Sadati SJ. Improving antibacterial ability of Ti-Cu thin films with co-sputtering method. Sci Rep 2023; 13:16593. [PMID: 37789153 PMCID: PMC10547835 DOI: 10.1038/s41598-023-43875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Due to the resistance of some bacteria to antibiotics, research in the field of dealing with bacterial infections is necessary. A practical approach utilized in this study involves the preparation of an antibacterial thin film on the surfaces, which can effectively inhibit and reduce biofilm formation and bacterial adherence. In this study, we report the fabrication of bactericidal titanium (Ti) and copper (Cu) surfaces which involves a powerful co-sputtering method. This method provides a situation in which constituent elements are deposited simultaneously to control the composition of the thin film. Prepared samples were examined by energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and contact angle measurements. To evaluate antibacterial behavior, we used two bacterial strains Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Antibacterial activity of the prepared sample was assessed by determining the number of colony-forming units per milliliter (CFU/ml) using a standard viable cell count assay. Results indicated that as the Cu concentration increased, the nanoscale surfaces became rougher, with roughness values rising from 11.85 to 49.65 nm, and the contact angle increased from 40 to 80 degrees, indicating a hydrophilic character. These factors play a significant role in the antibacterial properties of the surface. The Ti-Cu films displayed superior antibacterial ability, with a 99.9% reduction (equivalent to a 5-log reduction) in bacterial viability after 2 h compared to Ti alone against both bacterial strains. Field emission scanning electron microscopy (FE-SEM) images verified that both E. coli and S. aureus cells were physically deformed and damaged the bacterial cell ultrastructure was observed. These findings highlight that adding Cu to Ti can improve the antibacterial ability of the surface while inhibiting bacterial adherence. Therefore, the Ti14-Cu86 sample with the highest percentage of Cu had the best bactericidal rate. Investigation of toxicity of Cu-Ti thin films was conducted the using the MTT assay, which revealed their biocompatibility and absence of cytotoxicity, further confirming their potential as promising biomaterials for various applications.
Collapse
Affiliation(s)
- Samaneh Mahmoudi-Qashqay
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | | | - Seyed Javad Sadati
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
4
|
Sriubas M, Bockute K, Palevicius P, Kaminskas M, Rinkevicius Z, Ragulskis M, Simonyte S, Ruzauskas M, Laukaitis G. Antibacterial Activity of Silver and Gold Particles Formed on Titania Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1190. [PMID: 35407308 PMCID: PMC9000426 DOI: 10.3390/nano12071190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Metal-based nanoparticles with antimicrobial activity are gaining a lot of attention in recent years due to the increased antibiotics resistance. The development and the pathogenesis of oral diseases are usually associated with the formation of bacteria biofilms on the surfaces; therefore, it is crucial to investigate the materials and their properties that would reduce bacterial attachment and biofilm formation. This work provides a systematic investigation of the physical-chemical properties and the antibacterial activity of TiO2 thin films decorated by Ag and Au nanoparticles (NP) against Veillonella parvula and Neisseria sicca species associated with oral diseases. TiO2 thin films were formed using reactive magnetron sputtering by obtaining as-deposited amorphous and crystalline TiO2 thin films after annealing. Au and Ag NP were formed using a two-step process: magnetron sputtering of thin metal films and solid-state dewetting. The surface properties and crystallographic nature of TiO2/NP structures were investigated by SEM, XPS, XRD, and optical microscopy. It was found that the higher thickness of Au and Ag thin films results in the formation of the enlarged NPs and increased distance between them, influencing the antibacterial activity of the formed structures. TiO2 surface with AgNP exhibited higher antibacterial efficiency than Au nanostructured titania surfaces and effectively reduced the concentration of the bacteria. The process of the observation and identification of the presence of bacteria using the deep learning technique was realized.
Collapse
Affiliation(s)
- Mantas Sriubas
- Physics Department, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (M.S.); (M.K.); (G.L.)
| | - Kristina Bockute
- Physics Department, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (M.S.); (M.K.); (G.L.)
| | - Paulius Palevicius
- Department of Mathematical Modeling, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (P.P.); (M.R.)
| | - Marius Kaminskas
- Physics Department, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (M.S.); (M.K.); (G.L.)
| | - Zilvinas Rinkevicius
- Division of Theoretical Chemistry & Biology, KTH Royal Institute of Technology, School of Biotechnology, 109 61 Stockholm, Sweden;
| | - Minvydas Ragulskis
- Department of Mathematical Modeling, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (P.P.); (M.R.)
| | - Sandrita Simonyte
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (S.S.); (M.R.)
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Ave. 15, LT-50162 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (S.S.); (M.R.)
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Giedrius Laukaitis
- Physics Department, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (M.S.); (M.K.); (G.L.)
| |
Collapse
|
5
|
Ratheesh A, Elias L, Aboobakar Shibli SM. Tuning of Electrode Surface for Enhanced Bacterial Adhesion and Reactions: A Review on Recent Approaches. ACS APPLIED BIO MATERIALS 2021; 4:5809-5838. [PMID: 35006924 DOI: 10.1021/acsabm.1c00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The study of bacterial adhesion and its consequences has great significance in different fields such as marine science, renewable energy sectors, soil and plant ecology, food industry, and the biomedical field. Generally, the adverse effects of microbial surface interactions have attained wide visibility. However, herein, we present distinct approaches to highlight the beneficial aspects of microbial surface interactions for various applications rather than deal with the conventional negative aspects or prevention strategies. The surface microbial reactions can be tuned for useful biochemical or bio-electrochemical applications, which are otherwise unattainable through conventional routes. In this context, the present review is a comprehensive approach to highlight the basic principles and signature parameters that are responsible for the useful microbial-electrode interactions. It also proposes various surface tuning strategies, which are useful for tuning the electrode characteristics particularly suitable for the enhanced bacterial adhesion and reactions. The tuning of surface characteristics of electrodes is discussed with a special reference to the Microbial Fuel Cell as an example.
Collapse
Affiliation(s)
- Anjana Ratheesh
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Liju Elias
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India.,Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|
6
|
Jenkins J, Ishak MI, Eales M, Gholinia A, Kulkarni S, Keller TF, May PW, Nobbs AH, Su B. Resolving physical interactions between bacteria and nanotopographies with focused ion beam scanning electron microscopy. iScience 2021; 24:102818. [PMID: 34355148 PMCID: PMC8319809 DOI: 10.1016/j.isci.2021.102818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/04/2021] [Accepted: 07/02/2021] [Indexed: 01/31/2023] Open
Abstract
To robustly assess the antibacterial mechanisms of nanotopographies, it is critical to analyze the bacteria-nanotopography adhesion interface. Here, we utilize focused ion beam milling combined with scanning electron microscopy to generate three-dimensional reconstructions of Staphylococcus aureus or Escherichia coli interacting with nanotopographies. For the first time, 3D morphometric analysis has been exploited to quantify the intrinsic contact area between each nanostructure and the bacterial envelope, providing an objective framework from which to derive the possible antibacterial mechanisms of synthetic nanotopographies. Surfaces with nanostructure densities between 36 and 58 per μm2 and tip diameters between 27 and 50 nm mediated envelope deformation and penetration, while surfaces with higher nanostructure densities (137 per μm2) induced envelope penetration and mechanical rupture, leading to marked reductions in cell volume due to cytosolic leakage. On nanotopographies with densities of 8 per μm2 and tip diameters greater than 100 nm, bacteria predominantly adhered between nanostructures, resulting in cell impedance. Bacteria-nanotopography interactions can be quantified using FIB-SEM Envelope penetration and cell impedance are influenced by nanotopography density Low density nanotopographies (8 per μm2) mediate cell impedance High-density nanotopographies (36–137 per μm2) mediate deformation and penetration
Collapse
Affiliation(s)
- Joshua Jenkins
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Mohd I Ishak
- Bristol Dental School, University of Bristol, Bristol, UK.,Faculty of Engineering Technology, Universiti Malaysia Perlis, Malaysia
| | - Marcus Eales
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Ali Gholinia
- School of Materials Science, University of Manchester, Manchester, UK
| | | | - Thomas F Keller
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany.,Physics Department, University of Hamburg, Hamburg, Germany
| | - Paul W May
- School of Chemistry, University of Bristol, Bristol, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Valdez-Salas B, Beltrán-Partida E, Curiel-Álvarez M, Guerra-Balcázar M, Arjona N. Crystallographic Pattern Mediates Fungal Nanoadhesion Bond Formation on Titanium Nanotubes. ACS OMEGA 2021; 6:15625-15636. [PMID: 34179607 PMCID: PMC8223204 DOI: 10.1021/acsomega.1c00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
The development of nanoadhesion bonds at the cell-material biointerface has been considered as a current prospective mechanism of microbial adhesion and colonization. However, there is a tremendous lack of evidence for the rational design of outstanding antifungal nanoconfigured materials. Therefore, extending our previous insights of evidence, we found that blocking the adhesion and biofilm formation of Candida albicans on NTs requires the inhibition of fungal nanoadhesion bonds. This work reports a concept for understanding the antifungal behavior of the crystallographic phase for anatase (NTs-annealed) and amorphous NTs. Herein, we demonstrated that the crystallographic orientation is a predominant parameter to reduce C. albicans, over the surface roughness and chemistry. We showed that the anatase phase conducted to an invasive phenotype, cellular envelopment insertion, followed by the improved cellular spread. Meanwhile, the amorphous configuration imposed reduced nanoadhesion bonds mainly appreciated over the mouths of the NTs, as revealed by cross sectioning. Moreover, our results showed that under fungal conditions, the experimental materials could reduce the surface energy. This work highlights that the crystallographic pattern predominantly controls the antifungal activity of NTs. The evaluated systems proposed that the NTs-annealed conducted an optimized insertion of fungal cells. Nonetheless, amorphous NTs inhibited the deposition of C. albicans via blocking the insertion and the development of nanoadhesion bonds, without morphology aberrations. The present discoveries can further inspire the rational design of upgraded nanoconfigured surfaces with noteworthy antifungal characteristics for antimicrobial coating technologies.
Collapse
Affiliation(s)
- Benjamín Valdez-Salas
- Laboratorio
de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle
de la Normal, Mexicali, Baja
California C.P. 21280, México
- Laboratorio
de Corrosión y Materiales Avanzados, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle
de la Normal, Mexicali, Baja
California C. P. 21280, México
| | - Ernesto Beltrán-Partida
- Laboratorio
de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle
de la Normal, Mexicali, Baja
California C.P. 21280, México
- Laboratorio
de Corrosión y Materiales Avanzados, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle
de la Normal, Mexicali, Baja
California C. P. 21280, México
| | - Mario Curiel-Álvarez
- Laboratorio
de Corrosión y Materiales Avanzados, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle
de la Normal, Mexicali, Baja
California C. P. 21280, México
| | - Minerva Guerra-Balcázar
- Facultad
de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro, Querétaro C. P.
76010, México
| | - Noé Arjona
- Centro
de Investigación y Desarrollo Tecnológico en Electroquímica
S. C., Querétaro C. P. 76703, México
| |
Collapse
|
8
|
Khalid S, Gao A, Wang G, Chu PK, Wang H. Tuning surface topographies on biomaterials to control bacterial infection. Biomater Sci 2021; 8:6840-6857. [PMID: 32812537 DOI: 10.1039/d0bm00845a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial contamination and subsequent formation of biofilms frequently cause failure of surgical implants and a good understanding of the bacteria-surface interactions is vital to the design and safety of biomaterials. In this review, the physical and chemical factors that are involved in the various stages of implant-associated bacterial infection are described. In particular, topographical modification strategies that have been employed to mitigate bacterial adhesion via topographical mechanisms are summarized and discussed comprehensively. Recent advances have improved our understanding about bacteria-surface interactions and have enabled biomedical engineers and researchers to develop better and more effective antibacterial surfaces. The related interdisciplinary efforts are expected to continue in the quest for next-generation medical devices to attain the ultimate goal of improved clinical outcomes and reduced number of revision surgeries.
Collapse
Affiliation(s)
- Saud Khalid
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | | | | | | | | |
Collapse
|
9
|
Wang L, Wu Y, Cai P, Huang Q. The attachment process and physiological properties of Escherichia coli O157:H7 on quartz. BMC Microbiol 2020; 20:355. [PMID: 33213384 PMCID: PMC7677791 DOI: 10.1186/s12866-020-02043-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 01/24/2023] Open
Abstract
Background Manure application and sewage irrigation release many intestinal pathogens into the soil. After being introduced into the soil matrix, pathogens are commonly found to attach to soil minerals. Although the survival of mineral-associated Escherichia coli O157:H7 has been studied, a comprehensive understanding of the attachment process and physiological properties after attachment is still lacking. Results In this study, planktonic and attached Escherichia coli O157:H7 cells on quartz were investigated using RNA sequencing (RNA-seq) and the isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic method. Based on the transcriptomic and proteomic analyses and gene knockouts, functional two-component system pathways were required for efficient attachment; chemotaxis and the Rcs system were identified to play determinant roles in E. coli O157:H7 attachment on quartz. After attachment, the pyruvate catabolic pathway shifted from the tricarboxylic acid (TCA) cycle toward the fermentative route. The survival rate of attached E. coli O157:H7 increased more than 10-fold under penicillin and vancomycin stress and doubled under alkaline pH and ferric iron stress. Conclusions These results contribute to the understanding of the roles of chemotaxis and the Rcs system in the attachment process of pathogens and indicate that the attachment of pathogens to minerals significantly elevates their resistance to antibiotics and environmental stress, which may pose a potential threat to public health. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02043-8.
Collapse
Affiliation(s)
- Liliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Dauben TJ, Dewald C, Firkowska-Boden I, Helbing C, Peisker H, Roth M, Bossert J, Jandt KD. Quantifying the relationship between surfaces' nano-contact point density and adhesion force of Candida albicans. Colloids Surf B Biointerfaces 2020; 194:111177. [PMID: 32569885 DOI: 10.1016/j.colsurfb.2020.111177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
It has been recently recognized that controlled surface structuring on the nanometer scale is a successful strategy to endow different materials with antimicrobial properties. Despite many studies on bacterial interactions with nanostructured surfaces, a quantitative link between surface topography and bacterial adhesion is still missing. To quantitatively link cell adhesion data with topographical surface parameters, we performed single-cell spectroscopy on chemically identical surfaces with controlled nano-contact point density achieved by immobilization of gold nanoparticles (AuNP) on gold thin films. Such materials surfaces have previously shown antimicrobial (anti-adhesive) efficacy towards Gram-negative Escherichia coli cells. In the current study, the influence of nano-structured surfaces on the surface coverage and adhesion forces of clinically relevant Candida albicans (C. albicans), the fungus primarily associated with implant infections, was investigated to validate their antimicrobial potency against different microbial cells. The adhesion forces of C. albicans cells to nanostructured surfaces showed a decreasing trend with decreasing contact-point density and correlated well with the results of the respective C. albicans cell counts. The surfaces with the lowest contact-point density, 25 AuNP/μm², resulted in an average adhesion force of 5 nN, which was up to 5 times lower compared to control and 61 AuNP/μm² surfaces. Further, detailed analyses of force-distance curves revealed that the work of adhesion, and thus the energy required to remove the C. albicans cell from the surface is up to 10 times lower on 25 AuNP/μm² surfaces compared to unstructured surfaces. These findings show that a controlled tuning of nanostructured surfaces in terms of accessible nano-contact points is crucial to generate surface structures with enhanced antimicrobial properties. The gained knowledge can be further exploited for the design of biomaterials surfaces to prevent adhesion of some most commonly encountered pathogens.
Collapse
Affiliation(s)
- Thomas J Dauben
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Carolin Dewald
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| | - Izabela Firkowska-Boden
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
| | - Christian Helbing
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Henrik Peisker
- Institute for Medical Microbiology and Hygiene, Saarland University Clinic, Kirrberger Straße Building 43, 66421 Homburg, Saar, Germany
| | - Martin Roth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany.
| |
Collapse
|
11
|
Jenkins J, Mantell J, Neal C, Gholinia A, Verkade P, Nobbs AH, Su B. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat Commun 2020; 11:1626. [PMID: 32242015 PMCID: PMC7118135 DOI: 10.1038/s41467-020-15471-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/04/2020] [Indexed: 01/02/2023] Open
Abstract
Some insects, such as dragonflies, have evolved nanoprotrusions on their wings that rupture bacteria on contact. This has inspired the design of antibacterial implant surfaces with insect-wing mimetic nanopillars made of synthetic materials. Here, we characterise the physiological and morphological effects of mimetic titanium nanopillars on bacteria. The nanopillars induce deformation and penetration of the Gram-positive and Gram-negative bacterial cell envelope, but do not rupture or lyse bacteria. They can also inhibit bacterial cell division, and trigger production of reactive oxygen species and increased abundance of oxidative stress proteins. Our results indicate that nanopillars' antibacterial activities may be mediated by oxidative stress, and do not necessarily require bacterial lysis.
Collapse
Affiliation(s)
- J Jenkins
- Bristol Dental School, University of Bristol, Bristol, UK
| | - J Mantell
- School of Biochemistry, University of Bristol, Bristol, UK
| | - C Neal
- School of Biochemistry, University of Bristol, Bristol, UK
| | - A Gholinia
- School of Materials Science, University of Manchester, Manchester, UK
| | - P Verkade
- School of Biochemistry, University of Bristol, Bristol, UK
| | - A H Nobbs
- Bristol Dental School, University of Bristol, Bristol, UK.
| | - B Su
- Bristol Dental School, University of Bristol, Bristol, UK.
| |
Collapse
|
12
|
Luan Y, Liu S, Pihl M, van der Mei HC, Liu J, Hizal F, Choi CH, Chen H, Ren Y, Busscher HJ. Bacterial interactions with nanostructured surfaces. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.10.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|