1
|
Lotfi R, Dolatyar B, Zandi N, Tamjid E, Pourjavadi A, Simchi A. Electrically conductive and photocurable MXene-modulated hydrogel conduits for peripheral nerve regeneration: In vitro and in vivo studies. BIOMATERIALS ADVANCES 2025; 170:214197. [PMID: 39889368 DOI: 10.1016/j.bioadv.2025.214197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
Electroconductive biomaterials, as advanced nerve guidance conduits (NGCs), have shown great promise to accelerate the rate of peripheral nerve repair and regeneration (PNR) but remain among the greatest challenges in regenerative medicine because of frail recovery. Herein, we introduce injectable nanocomposite nerve conduits based on gelatin methacrylate (GelMa) and MXene nanosheets (MX) for PNR. Microstructural studies determine that the addition of MX increases the mean pore size of GelMa NH from 5.8 ± 1.2 μm to 8.4 ± 1.6 μm for the hydrogel containing 0.25 mg/mL MX, for example, leading to higher swelling and degradation rates. The highest electrical conductivity (∼910 μS/cm) is attained for the GelMa-based nanocomposite composed MX with the concentration of 0.125 mg/mL, for the reason that at higher concentrations, agglomeration of the MXs happens. In vitro investigations, including metabolic activity and live-dead assessments by PC12 cells, reveal the biocompatibility of developed nanocomposite hydrogels (NHs) containing different concentrations of MX nanosheets in the range of 0.025-0.25 mg/mL. Implantation of GelMa-MX conduits in a rat model of peripheral nerve injury (PNI) leads to the impressive recovery of the injured sciatic nerve's sensory, motor, and sensory-motor function. Electrophysiological analysis also indicates a significant increase in compound muscle action potential and nerve conduction velocity with a decrease in terminal latency in animals implanted with GelMa-MX conduits compared to control groups (animals implanted with GelMa and animals without implantation). Moreover, histological analysis exhibits a notable absence of fibrous connective tissue in the regenerated nerve fibers with a substantial increase in more organized myelinated axons. Our results demonstrate that GelMa-MX conduits promote regeneration of the injured sciatic nerve and could be promising for peripheral nerve tissue engineering.
Collapse
Affiliation(s)
- Roya Lotfi
- Institute for Convergence Science & Technology and Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran.
| | - Banafsheh Dolatyar
- Developmental Biology Lab., School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Nooshin Zandi
- Institute for Convergence Science & Technology and Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran.
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran; Advanced Ceramics, University of Bremen, 28352 Bremen, Germany.
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| | - Abdolreza Simchi
- Institute for Convergence Science & Technology and Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; Fraunhofer Institute for Manufacturing Technology and Advanced Materials, 28359 Bremen, Germany.
| |
Collapse
|
2
|
Kižys K, Pirštelis D, Morkvėnaitė-Vilkončienė I. Effect of Gold Nanoparticles in Microbial Fuel Cells Based on Polypyrrole-Modified Saccharomyces cerevisiae. BIOSENSORS 2024; 14:572. [PMID: 39727837 DOI: 10.3390/bios14120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Microbial fuel cells (MFCs) are a candidate for green energy sources due to microbes' ability to generate charge in their metabolic processes. The main problem in MFCs is slow charge transfer between microorganisms and electrodes. Several methods to improve charge transfer have been used until now: modification of microorganisms by conductive polymers, use of lipophilic mediators, and conductive nanomaterials. We created an MFC with a graphite anode, covering it with 9,10-phenatrenequinone and polypyrrole-modified Saccharomyces cerevisiae with and without 10 nm sphere gold nanoparticles. The MFC was evaluated using cyclic voltammetry and power density measurements. The peak current from cyclic voltammetry measurements increased from 3.76 mA/cm2 to 5.01 mA/cm2 with bare and polypyrrole-modified yeast, respectively. The MFC with polypyrrole- and nanoparticle-modified yeast reached a maximum power density of 150 mW/m2 in PBS with 20 mM Fe(III) and 20 mM glucose, using a load of 10 kΩ. The same MFC with the same load in wastewater reached 179.2 mW/m2. These results suggest that this MFC configuration can be used to improve charge transfer.
Collapse
Affiliation(s)
- Kasparas Kižys
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| | - Domas Pirštelis
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| |
Collapse
|
3
|
Sood Y, Singh K, Mudila H, Lokhande P, Singh L, Kumar D, Kumar A, Mubarak NM, Dehghani MH. Insights into properties, synthesis and emerging applications of polypyrrole-based composites, and future prospective: A review. Heliyon 2024; 10:e33643. [PMID: 39027581 PMCID: PMC11255519 DOI: 10.1016/j.heliyon.2024.e33643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Recent advancements in polymer science and engineering underscore the importance of creating sophisticated soft materials characterized by well-defined structures and adaptable properties to meet the demands of emerging applications. The primary objective of polymeric composite technology is to enhance the functional utility of materials for high-end purposes. Both the inherent qualities of the materials and the intricacies of the synthesis process play pivotal roles in advancing their properties and expanding their potential applications. Polypyrrole (PPy)-based composites, owing to their distinctive properties, hold great appeal for a variety of applications. Despite the limitations of PPy in its pure form, these constraints can be effectively overcome through hybridization with other materials. This comprehensive review thoroughly explores the existing literature on PPy and PPy-based composites, providing in-depth insights into their synthesis, properties, and applications. Special attention is given to the advantages of intrinsically conducting polymers (ICPs) and PPy in comparison to other ICPs. The impact of doping anions, additives, and oxidants on the properties of PPy is also thoroughly examined. By delving into these aspects, this overview aims to inspire researchers to delve into the realm of PPy-based composites, encouraging them to explore new avenues for flexible technology applications.
Collapse
Affiliation(s)
- Yuvika Sood
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kartika Singh
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Harish Mudila
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - P.E. Lokhande
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago, 7810003, Chile
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, Himachal Pradesh, 175001, India
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Anil Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Dzedzickis A, Rožėnė J, Bučinskas V, Viržonis D, Morkvėnaitė-Vilkončienė I. Characteristics and Functionality of Cantilevers and Scanners in Atomic Force Microscopy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6379. [PMID: 37834515 PMCID: PMC10573440 DOI: 10.3390/ma16196379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this paper, we provide a systematic review of atomic force microscopy (AFM), a fast-developing technique that embraces scanners, controllers, and cantilevers. The main objectives of this review are to analyze the available technical solutions of AFM, including the limitations and problems. The main questions the review addresses are the problems of working in contact, noncontact, and tapping AFM modes. We do not include applications of AFM but rather the design of different parts and operation modes. Since the main part of AFM is the cantilever, we focused on its operation and design. Information from scientific articles published over the last 5 years is provided. Many articles in this period disclose minor amendments in the mechanical system but suggest innovative AFM control and imaging algorithms. Some of them are based on artificial intelligence. During operation, control of cantilever dynamic characteristics can be achieved by magnetic field, electrostatic, or aerodynamic forces.
Collapse
Affiliation(s)
- Andrius Dzedzickis
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, Plytines 25, 10105 Vilnius, Lithuania
| | | | | | | | - Inga Morkvėnaitė-Vilkončienė
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, Plytines 25, 10105 Vilnius, Lithuania
| |
Collapse
|
5
|
Jain A, Nabeel AN, Bhagwat S, Kumar R, Sharma S, Kozak D, Hunjet A, Kumar A, Singh R. Fabrication of polypyrrole gas sensor for detection of NH 3 using an oxidizing agent and pyrrole combinations: Studies and characterizations. Heliyon 2023; 9:e17611. [PMID: 37455973 PMCID: PMC10338976 DOI: 10.1016/j.heliyon.2023.e17611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
The organic polymer known as Polypyrrole (Ppy) is synthesized when pyrrole monomers are polymerized. Excellent thermal stability, superior electrical conductivity, and environmental stability are all characteristics of Polypyrrole. Chemical oxidative polymerization was used to synthesize Ppy using Ferric chloride (FeCl3) as an oxidizing agent and surfactant CTAB in aqueous solution. Oxidant (FeCl3) to pyrrole varied in different molar ratios (2, 3, 4 and 5). It was found that increasing this ratio up to 4 increases PPy's conductivity. XRD, FTIR, and SEM were used to characterize Ppy. The conductive nature of Ppy was studied by I-V characteristics. The best conductive polymer is studied for the NH3 gas response.
Collapse
Affiliation(s)
- Alok Jain
- School of Physical Sciences, Lovely Professional University, Phagwara-144411, India
| | - Ansari Novman Nabeel
- Research Scholar, School of Physical Sciences, Lovely Professional University, Phagwara-144411, India
| | - Sunita Bhagwat
- Department of Physics, Abasaheb Garware College, Savitribai Phule University, Pune-411004, India
| | - Rajeev Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara-144411, India
| | - Shubham Sharma
- Deptt. of Mechanical Engg., University Centre for Research and Development (UCRD), Chandigarh University, Mohali, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266520, China
- Department of Manufacturing Engineering and Materials Science, Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland
| | - Drazan Kozak
- University of Slavonski Brod, Mechanical Engineering Faculty in Slavonski Brod, Trg Ivane Brlić-Mažuranić 2, HR-35000 Slavonski Brod, Croatia
| | - Anica Hunjet
- University Center Varaždin, University North 104. Brigade 3, HR-42 000 Varaždin, Croatia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Rajesh Singh
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche C.P. 24560, Mexico
| |
Collapse
|
6
|
Wu D, Lei J, Zhang Z, Huang F, Buljan M, Yu G. Polymerization in living organisms. Chem Soc Rev 2023; 52:2911-2945. [PMID: 36987988 DOI: 10.1039/d2cs00759b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Vital biomacromolecules, such as RNA, DNA, polysaccharides and proteins, are synthesized inside cells via the polymerization of small biomolecules to support and multiply life. The study of polymerization reactions in living organisms is an emerging field in which the high diversity and efficiency of chemistry as well as the flexibility and ingeniousness of physiological environment are incisively and vividly embodied. Efforts have been made to design and develop in situ intra/extracellular polymerization reactions. Many important research areas, including cell surface engineering, biocompatible polymerization, cell behavior regulation, living cell imaging, targeted bacteriostasis and precise tumor therapy, have witnessed the elegant demeanour of polymerization reactions in living organisms. In this review, recent advances in polymerization in living organisms are summarized and presented according to different polymerization methods. The inspiration from biomacromolecule synthesis in nature highlights the feasibility and uniqueness of triggering living polymerization for cell-based biological applications. A series of examples of polymerization reactions in living organisms are discussed, along with their designs, mechanisms of action, and corresponding applications. The current challenges and prospects in this lifeful field are also proposed.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| | - Marija Buljan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
7
|
Kižys K, Zinovičius A, Jakštys B, Bružaitė I, Balčiūnas E, Petrulevičienė M, Ramanavičius A, Morkvėnaitė-Vilkončienė I. Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles. BIOSENSORS 2023; 13:221. [PMID: 36831987 PMCID: PMC9954062 DOI: 10.3390/bios13020221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This review focuses on the development of microbial biofuel cells to demonstrate how similar principles apply to the development of bioelectronic devices. The low specificity of microorganism-based amperometric biosensors can be exploited in designing microbial biofuel cells, enabling them to consume a broader range of chemical fuels. Charge transfer efficiency is among the most challenging and critical issues while developing biofuel cells. Nanomaterials and particular redox mediators are exploited to facilitate charge transfer between biomaterials and biofuel cell electrodes. The application of conductive polymers (CPs) can improve the efficiency of biofuel cells while CPs are well-suitable for the immobilization of enzymes, and in some specific circumstances, CPs can facilitate charge transfer. Moreover, biocompatibility is an important issue during the development of implantable biofuel cells. Therefore, biocompatibility-related aspects of conducting polymers with microorganisms are discussed in this review. Ways to modify cell-wall/membrane and to improve charge transfer efficiency and suitability for biofuel cell design are outlined.
Collapse
Affiliation(s)
- Kasparas Kižys
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Antanas Zinovičius
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Mechanics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Baltramiejus Jakštys
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44248 Kaunas, Lithuania
| | - Ingrida Bružaitė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Evaldas Balčiūnas
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Milda Petrulevičienė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Arūnas Ramanavičius
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Chemistry and Geosciences, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Inga Morkvėnaitė-Vilkončienė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Mechanics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
8
|
Moradian JM, Mi JL, Dai X, Sun GF, Du J, Ye XM, Yong YC. Yeast-induced formation of graphene hydrogels anode for efficient xylose-fueled microbial fuel cells. CHEMOSPHERE 2022; 291:132963. [PMID: 34800508 DOI: 10.1016/j.chemosphere.2021.132963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are of great interest due to their capability to directly convert organic compounds to electric energy. In particular, MFCs technology showed great potential to directly harness the energy from xylose in the form of bioelectricity and biohydrogen simultaneously. Herein, we report a yeast strain of Cystobasidium slooffiae JSUX1 enabled the reduction and assembly of graphene oxide (GO) nanosheets into three-dimensional reduced GO (3D rGO) hydrogels on the surface of carbon felt (CF) anode. The autonomously self-modified 3D rGO hydrogel anode entitled the yeast-based MFCs with two times enhancement on bioelectricity and biohydrogen production from xylose. Further analysis demonstrated that the 3D rGO hydrogel attracted more yeast cells and reduced the interfacial charge transfer resistance, which was the underlying mechanism for the improvement of MFCs performance. This work offers a new strategy to reinforce the performance of yeast-based MFCs and provides a new opportunity to efficiently harvest energy from xylose.
Collapse
Affiliation(s)
- Jamile Mohammadi Moradian
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Institute for Advanced Materials, School of Materials Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Jian-Li Mi
- Institute for Advanced Materials, School of Materials Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xinyan Dai
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Guo-Feng Sun
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Du
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiao-Mei Ye
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
9
|
Zinovicius A, Rozene J, Merkelis T, Bruzaite I, Ramanavicius A, Morkvenaite-Vilkonciene I. Evaluation of a Yeast-Polypyrrole Biocomposite Used in Microbial Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22010327. [PMID: 35009869 PMCID: PMC8749611 DOI: 10.3390/s22010327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 05/31/2023]
Abstract
Electrically conductive polymers are promising materials for charge transfer from living cells to the anodes of electrochemical biosensors and biofuel cells. The modification of living cells by polypyrrole (PPy) causes shortened cell lifespan, burdens the replication process, and diminishes renewability in the long term. In this paper, the viability and morphology non-modified, inactivated, and PPy-modified yeasts were evaluated. The results displayed a reduction in cell size, an incremental increase in roughness parameters, and the formation of small structural clusters of polymers on the yeast cells with the increase in the pyrrole concentration used for modification. Yeast modified with the lowest pyrrole concentration showed minimal change; thus, a microbial fuel cell (MFC) was designed using yeast modified by a solution containing 0.05 M pyrrole and compared with the characteristics of an MFC based on non-modified yeast. The maximal generated power of the modified system was 47.12 mW/m2, which is 8.32 mW/m2 higher than that of the system based on non-modified yeast. The open-circuit potentials of the non-modified and PPy-modified yeast-based cells were 335 mV and 390 mV, respectively. Even though applying a PPy layer to yeast increases the charge-transfer efficiency towards the electrode, the damage done to the cells due to modification with a higher concentration of PPy diminishes the amount of charge transferred, as the current density drops by 846 μA/cm2. This decrease suggests that modification by PPy may have a cytotoxic effect that greatly hinders the metabolic activity of yeast.
Collapse
Affiliation(s)
- Antanas Zinovicius
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
| | - Juste Rozene
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
| | - Timas Merkelis
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
| | - Ingrida Bruzaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| | - Inga Morkvenaite-Vilkonciene
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, 10257 Vilnius, Lithuania
| |
Collapse
|
10
|
Sustainable Syntheses and Sources of Nanomaterials for Microbial Fuel/Electrolysis Cell Applications: An Overview of Recent Progress. Processes (Basel) 2021. [DOI: 10.3390/pr9071221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of microbial fuel cells (MFCs) is quickly spreading in the fields of bioenergy generation and wastewater treatment, as well as in the biosynthesis of valuable compounds for microbial electrolysis cells (MECs). MFCs and MECs have not been able to penetrate the market as economic feasibility is lost when their performances are boosted by nanomaterials. The nanoparticles used to realize or decorate the components (electrodes or the membrane) have expensive processing, purification, and raw resource costs. In recent decades, many studies have approached the problem of finding green synthesis routes and cheap sources for the most common nanoparticles employed in MFCs and MECs. These nanoparticles are essentially made of carbon, noble metals, and non-noble metals, together with a few other few doping elements. In this review, the most recent findings regarding the sustainable preparation of nanoparticles, in terms of syntheses and sources, are collected, commented, and proposed for applications in MFC and MEC devices. The use of naturally occurring, recycled, and alternative raw materials for nanoparticle synthesis is showcased in detail here. Several examples of how these naturally derived or sustainable nanoparticles have been employed in microbial devices are also examined. The results demonstrate that this approach is valuable and could represent a solid alternative to the expensive use of commercial nanoparticles.
Collapse
|
11
|
Zhang S, Wang L, Wu L, Li Z, Yang B, Hou Y, Lei L, Cheng S, He Q. Deciphering Single-Bacterium Adhesion Behavior Modulated by Extracellular Electron Transfer. NANO LETTERS 2021; 21:5105-5115. [PMID: 34086465 DOI: 10.1021/acs.nanolett.1c01062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For bacterial adhesion and biofilm formation, a thorough understanding of the mechanism and effective modulating is lacking due to the complex extracellular electron transfer (EET) at bacteria-surface interfaces. Here, we explore the adhesion behavior of a model electroactive bacteria under various metabolic conditions by an integrated electrochemical single-cell force microscopy system. A nonlinear model between bacterial adhesion force and electric field intensity is established, which provides a theoretical foundation for precise tuning of bacterial adhesion strength by the surface potential and the direction and flux of electron flow. In particular, based on quantitative analyses with equivalent charge distribution modeling and wormlike chain numerical simulations, it is demonstrated that the chain conformation and unfolding events of outer membrane appendages are dominantly impacted by the dynamic bacterial EET processes. This reveals how the anisotropy of bacterial conductive structure can translate into the desired adhesion behavior in different scenarios.
Collapse
Affiliation(s)
- Shuomeng Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Lei Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University, Quzhou, Quzhou 32400, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Bin Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University, Quzhou, Quzhou 32400, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University, Quzhou, Quzhou 32400, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University, Quzhou, Quzhou 32400, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Shaoan Cheng
- College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, China
| |
Collapse
|
12
|
Chang D, Hirate T, Uehara C, Maruyama H, Uozumi N, Arai F. Evaluating Young's Modulus of Single Yeast Cells Based on Compression Using an Atomic Force Microscope with a Flat Tip. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:392-399. [PMID: 33446296 DOI: 10.1017/s1431927620024903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this research, atomic force microscopy (AFM) with a flat tip cantilever is utilized to measure Young's modulus of a whole yeast cell (Saccharomyces cerevisiae BY4741). The results acquired from AFM are similar to those obtained using a microfluidic chip compression system. The mechanical properties of single yeast cells are important parameters which can be examined using AFM. Conventional studies apply AFM with a sharp cantilever tip to indent the cell and measure the force-indentation curve, from which Young's modulus can be calculated. However, sharp tips introduce problems because the shape variation can lead to a different result and cannot represent the stiffness of the whole cell. It can lead to a lack of broader meaning when evaluating Young's modulus of yeast cells. In this report, we confirm the differences in results obtained when measuring the compression of a poly(dimethylsiloxane) bead using a commercial sharp tip versus a unique flat tip. The flat tip effectively avoids tip-derived errors, so we use this method to compress whole yeast cells and generate a force–deformation curve. We believe our proposed method is effective for evaluating Young's modulus of whole yeast cells.
Collapse
Affiliation(s)
- Di Chang
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Room 108, Aerospace Mechanical Engineering Research Building, Furo-cho, Chikusa-ku, Nagoya, Aichi464-8603, Japan
| | - Takahiro Hirate
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Room 108, Aerospace Mechanical Engineering Research Building, Furo-cho, Chikusa-ku, Nagoya, Aichi464-8603, Japan
| | - Chihiro Uehara
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai980-8579, Japan
| | - Hisataka Maruyama
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Room 108, Aerospace Mechanical Engineering Research Building, Furo-cho, Chikusa-ku, Nagoya, Aichi464-8603, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai980-8579, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Room 108, Aerospace Mechanical Engineering Research Building, Furo-cho, Chikusa-ku, Nagoya, Aichi464-8603, Japan
- Department of Mechanical Engineering, The University of Tokyo, Tokyo113-8654, Japan
| |
Collapse
|
13
|
Andriukonis E, Celiesiute-Germaniene R, Ramanavicius S, Viter R, Ramanavicius A. From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2021; 21:2442. [PMID: 33916302 PMCID: PMC8038125 DOI: 10.3390/s21072442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
This review focuses on the overview of microbial amperometric biosensors and microbial biofuel cells (MFC) and shows how very similar principles are applied for the design of both types of these bioelectronics-based devices. Most microorganism-based amperometric biosensors show poor specificity, but this drawback can be exploited in the design of microbial biofuel cells because this enables them to consume wider range of chemical fuels. The efficiency of the charge transfer is among the most challenging and critical issues during the development of any kind of biofuel cell. In most cases, particular redox mediators and nanomaterials are applied for the facilitation of charge transfer from applied biomaterials towards biofuel cell electrodes. Some improvements in charge transfer efficiency can be achieved by the application of conducting polymers (CPs), which can be used for the immobilization of enzymes and in some particular cases even for the facilitation of charge transfer. In this review, charge transfer pathways and mechanisms, which are suitable for the design of biosensors and in biofuel cells, are discussed. Modification methods of the cell-wall/membrane by conducting polymers in order to enhance charge transfer efficiency of microorganisms, which can be potentially applied in the design of microbial biofuel cells, are outlined. The biocompatibility-related aspects of conducting polymers with microorganisms are summarized.
Collapse
Affiliation(s)
- Eivydas Andriukonis
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Raimonda Celiesiute-Germaniene
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Laboratory of Bioelectrics, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Simonas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Center for Collective Use of Scientific Equipment, Sumy State University, 40018 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| |
Collapse
|
14
|
Ramanavicius S, Ramanavicius A. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:371. [PMID: 33540587 PMCID: PMC7912793 DOI: 10.3390/nano11020371] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
Charge transfer (CT) is a very important issue in the design of biosensors and biofuel cells. Some nanomaterials can be applied to facilitate the CT in these bioelectronics-based devices. In this review, we overview some CT mechanisms and/or pathways that are the most frequently established between redox enzymes and electrodes. Facilitation of indirect CT by the application of some nanomaterials is frequently applied in electrochemical enzymatic biosensors and biofuel cells. More sophisticated and still rather rarely observed is direct charge transfer (DCT), which is often addressed as direct electron transfer (DET), therefore, DCT/DET is also targeted and discussed in this review. The application of conducting polymers (CPs) for the immobilization of enzymes and facilitation of charge transfer during the design of biosensors and biofuel cells are overviewed. Significant attention is paid to various ways of synthesis and application of conducting polymers such as polyaniline, polypyrrole, polythiophene poly(3,4-ethylenedioxythiophene). Some DCT/DET mechanisms in CP-based sensors and biosensors are discussed, taking into account that not only charge transfer via electrons, but also charge transfer via holes can play a crucial role in the design of bioelectronics-based devices. Biocompatibility aspects of CPs, which provides important advantages essential for implantable bioelectronics, are discussed.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
15
|
Qi R, Zhao H, Zhou X, Liu J, Dai N, Zeng Y, Zhang E, Lv F, Huang Y, Liu L, Wang Y, Wang S. In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bio‐Palladium Catalysis for Modulating Biological Functions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruilian Qi
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Zhao
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xin Zhou
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jian Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Nan Dai
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yue Zeng
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Endong Zhang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
16
|
Qi R, Zhao H, Zhou X, Liu J, Dai N, Zeng Y, Zhang E, Lv F, Huang Y, Liu L, Wang Y, Wang S. In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bio‐Palladium Catalysis for Modulating Biological Functions. Angew Chem Int Ed Engl 2021; 60:5759-5765. [DOI: 10.1002/anie.202015247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Ruilian Qi
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Zhao
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xin Zhou
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jian Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Nan Dai
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yue Zeng
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Endong Zhang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
17
|
Samukaite-Bubniene U, Valiūnienė A, Bucinskas V, Genys P, Ratautaite V, Ramanaviciene A, Aksun E, Tereshchenko A, Zeybek B, Ramanavicius A. Towards supercapacitors: Cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy based evaluation of polypyrrole electrochemically deposited on the pencil graphite electrode. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125750] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Ramanavicius S, Ramanavicius A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers (Basel) 2020; 13:E49. [PMID: 33375584 PMCID: PMC7795957 DOI: 10.3390/polym13010049] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
Fast and sensitive determination of biologically active compounds is very important in biomedical diagnostics, the food and beverage industry, and environmental analysis. In this review, the most promising directions in analytical application of conducting polymers (CPs) are outlined. Up to now polyaniline, polypyrrole, polythiophene, and poly(3,4-ethylenedioxythiophene) are the most frequently used CPs in the design of sensors and biosensors; therefore, in this review, main attention is paid to these conducting polymers. The most popular polymerization methods applied for the formation of conducting polymer layers are discussed. The applicability of polypyrrole-based functional layers in the design of electrochemical biosensors and biofuel cells is highlighted. Some signal transduction mechanisms in CP-based sensors and biosensors are discussed. Biocompatibility-related aspects of some conducting polymers are overviewed and some insights into the application of CP-based coatings for the design of implantable sensors and biofuel cells are addressed. New trends and perspectives in the development of sensors based on CPs and their composites with other materials are discussed.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
19
|
Ramanavicius S, Ramanavicius A. Progress and Insights in the Application of MXenes as New 2D Nano-Materials Suitable for Biosensors and Biofuel Cell Design. Int J Mol Sci 2020; 21:E9224. [PMID: 33287304 PMCID: PMC7730251 DOI: 10.3390/ijms21239224] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 01/25/2023] Open
Abstract
Recent progress in the application of new 2D-materials-MXenes-in the design of biosensors, biofuel cells and bioelectronics is overviewed and some advances in this area are foreseen. Recent developments in the formation of a relatively new class of 2D metallically conducting MXenes opens a new avenue for the design of conducting composites with metallic conductivity and advanced sensing properties. Advantageous properties of MXenes suitable for biosensing applications are discussed. Frontiers and new insights in the area of application of MXenes in sensorics, biosensorics and in the design of some wearable electronic devices are outlined. Some disadvantages and challenges in the application of MXene based structures are critically discussed.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
- Institute of Chemistry, Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Institute of Chemistry, Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
20
|
Kaneko M, Ishihara K, Nakanishi S. Redox-Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001849. [PMID: 32734709 DOI: 10.1002/smll.202001849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrochemical systems in which metabolic electrons in living microbes have been extracted to or injected from an extracellular electrical circuit have attracted considerable attention as environmentally-friendly energy conversion systems. Since general microbes cannot exchange electrons with extracellular solids, electron mediators are needed to connect living cells to an extracellular electrode. Although hydrophobic small molecules that can penetrate cell membranes are commonly used as electron mediators, they cannot be dissolved at high concentrations in aqueous media. The use of hydrophobic mediators in combination with small hydrophilic redox molecules can substantially increase the efficiency of the extracellular electron transfer process, but this method has side effects, in some cases, such as cytotoxicity and environmental pollution. In this Review, recently-developed redox-active polymers are highlighted as a new type of electron mediator that has less cytotoxicity than many conventional electron mediators. Owing to the design flexibility of polymer structures, important parameters that affect electron transport properties, such as redox potential, the balance of hydrophobicity and hydrophilicity, and electron conductivity, can be systematically regulated.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Graduate School of Engineering Science Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
21
|
Towards Microorganism-Based Biofuel Cells: The Viability of Saccharomyces cerevisiae Modified by Multiwalled Carbon Nanotubes. NANOMATERIALS 2020; 10:nano10050954. [PMID: 32429594 PMCID: PMC7279342 DOI: 10.3390/nano10050954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
This research aimed to evaluate the toxic effect of multi-walled carbon nanotubes (MW-CNTs) on yeast cells in order to apply MW-CNTs for possible improvement of the efficiency of microbial biofuel cells. The SEM and XRD analysis suggested that here used MW-CNTs are in the range of 10–25 nm in diameter and their structure was confirmed by Raman spectroscopy. In this study, we evaluated the viability of the yeast Saccharomyces cerevisiae cells, affected by MW-CNTs, by cell count, culture optical density and atomic force microscopy. The yeast cells were exposed towards MW-CNTs (of 2, 50, 100 μg/mL concentrations in water-based solution) for 24 h. A mathematical model was applied for the evaluation of relative growth and relative death rates of yeast cells. We calculated that both of the rates are two times higher in the case if yeasts were treated by 50, 100 μg/mL of MW-CNTs containing solution, comparing to that treated by 0 and 2 μg/mL c of MW-CNTs containing solution. It was determined that the MW-CNTs have some observable effect upon the incubation of the yeast cells. The viability of yeast has decreased together with MW-CNTs concentration only after 5 h of the treatment. Therefore, we predict that the MW-CNTs can be applied for the modification of yeast cells in order to improve electrical charge transfer through the yeast cell membrane and/or the cell wall.
Collapse
|
22
|
Bennett MR, Gurnani P, Hill PJ, Alexander C, Rawson FJ. Iron-Catalysed Radical Polymerisation by Living Bacteria. Angew Chem Int Ed Engl 2020; 59:4750-4755. [PMID: 31894618 DOI: 10.1002/anie.201915084] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 11/08/2022]
Abstract
The ability to harness cellular redox processes for abiotic synthesis might allow the preparation of engineered hybrid living systems. Towards this goal we describe a new bacteria-mediated iron-catalysed reversible deactivation radical polymerisation (RDRP), with a range of metal-chelating agents and monomers that can be used under ambient conditions with a bacterial redox initiation step to generate polymers. Cupriavidus metallidurans, Escherichia coli, and Clostridium sporogenes species were chosen for their redox enzyme systems and evaluated for their ability to induce polymer formation. Parameters including cell and catalyst concentration, initiator species, and monomer type were investigated. Water-soluble synthetic polymers were produced in the presence of the bacteria with full preservation of cell viability. This method provides a means by which bacterial redox systems can be exploited to generate "unnatural" polymers in the presence of "host" cells, thus setting up the possibility of making natural-synthetic hybrid structures and conjugates.
Collapse
Affiliation(s)
- Mechelle R Bennett
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG72RD, UK
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Phil J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG72RD, UK
| |
Collapse
|
23
|
Bennett MR, Gurnani P, Hill PJ, Alexander C, Rawson FJ. Iron‐Catalysed Radical Polymerisation by Living Bacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mechelle R. Bennett
- Division of Regenerative Medicine and Cellular TherapiesSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG72RD UK
| | - Pratik Gurnani
- Division of Molecular Therapeutics and FormulationSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG7 2RD UK
| | - Phil J. Hill
- Division of Microbiology, Brewing and BiotechnologySchool of BiosciencesUniversity of Nottingham Sutton Bonington Campus Nottingham LE12 5RD UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and FormulationSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG7 2RD UK
| | - Frankie J. Rawson
- Division of Regenerative Medicine and Cellular TherapiesSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG72RD UK
| |
Collapse
|
24
|
Goss JW, Volle CB. Using Atomic Force Microscopy To Illuminate the Biophysical Properties of Microbes. ACS APPLIED BIO MATERIALS 2019; 3:143-155. [PMID: 32851362 DOI: 10.1021/acsabm.9b00973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its invention in 1986, atomic force microscopy (AFM) has grown from a system designed for imaging inorganic surfaces to a tool used to probe the biophysical properties of living cells and tissues. AFM is a scanning probe technique and uses a pyramidal tip attached to a flexible cantilever to scan across a surface, producing a highly detailed image. While many research articles include AFM images, fewer include force-distance curves, from which several biophysical properties can be determined. In a single force-distance curve, the cantilever is lowered and raised from the surface, while the forces between the tip and the surface are monitored. Modern AFM has a wide variety of applications, but this review will focus on exploring the mechanobiology of microbes, which we believe is of particular interest to those studying biomaterials. We briefly discuss experimental design as well as different ways of extracting meaningful values related to cell surface elasticity, cell stiffness, and cell adhesion from force-distance curves. We also highlight both classic and recent experiments using AFM to illuminate microbial biophysical properties.
Collapse
Affiliation(s)
- John W Goss
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Catherine B Volle
- Departments of Biology and Chemistry, Cornell College, Mount Vernon, Iowa 52314, United States
| |
Collapse
|
25
|
Saito M, Ishiki K, Nguyen DQ, Shiigi H. A Microbial Platform Based on Conducting Polymers for Evaluating Metabolic Activity. Anal Chem 2019; 91:12793-12798. [DOI: 10.1021/acs.analchem.9b02350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Maki Saito
- Department of Applied Chemistry, Osaka Prefecture University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Kengo Ishiki
- Department of Applied Chemistry, Osaka Prefecture University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Dung Q. Nguyen
- Department of Applied Chemistry, Osaka Prefecture University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
26
|
Sherman HG, Hicks JM, Jain A, Titman JJ, Alexander C, Stolnik S, Rawson FJ. Mammalian-Cell-Driven Polymerisation of Pyrrole. Chembiochem 2019; 20:1008-1013. [PMID: 30570811 DOI: 10.1002/cbic.201800630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/18/2018] [Indexed: 02/06/2023]
Abstract
A model cancer cell line was used to initiate polymerisation of pyrrole to form the conducting material polypyrrole. The polymerisation was shown to occur through the action of cytosolic exudates rather than that of the membrane redox sites that normally control the oxidation state of iron as ferricyanide or ferrocyanide. The data demonstrate for the first time that mammalian cells can be used to initiate synthesis of conducting polymers and suggest a possible route to detection of cell damage and/or transcellular processes through in situ and amplifiable signal generation.
Collapse
Affiliation(s)
- Harry G Sherman
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jacqueline M Hicks
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Akhil Jain
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jeremy J Titman
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Snow Stolnik
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Frankie J Rawson
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
27
|
Apetrei RM, Cârâc G, Bahrim G, Camurlu P. Sensitivity enhancement for microbial biosensors through cell Self-Coating with polypyrrole. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1525548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Roxana-Mihaela Apetrei
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galati, Domnească Street, 47, Galati, RO-800008, Romania
| | - Geta Cârâc
- Faculty of Science and Environment, “Dunărea de Jos” University of Galati, Domnească Street, 47, Galati, RO-800008, Romania
| | - Gabriela Bahrim
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galati, Domnească Street, 47, Galati, RO-800008, Romania
| | - Pinar Camurlu
- Department of Chemistry, Akdeniz University, Antalya, 07058, Turkey
| |
Collapse
|