1
|
Maparu AK, Singh P, Rai B, Sharma A, Sivakumar S. PDMS nanoparticles-decorated PDMS substrate promotes adhesion, proliferation and differentiation of skin cells. J Colloid Interface Sci 2024; 659:629-638. [PMID: 38198940 DOI: 10.1016/j.jcis.2023.12.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Polydimethylsiloxane (PDMS) is known to be a common substrate for various cell culture-based applications. However, native PDMS is not very conducive for cell culture and hence, surface modification via cell adhesion moieties is generally needed to make it suitable especially for long-term cell culture. To address this issue, we propose to coat PDMS nanoparticles (NPs) on the surface of PDMS film to improve adhesion, proliferation and differentiation of skin cells. The proposed modification strategy introduces necessary nanotopography without altering the surface chemical properties of PDMS. Due to resemblance in the mechanical properties of PDMS with skin, PDMS NPs can recreate the native extracellular nanoenvironment of skin on the PDMS surface and provide anchoring sites for skin cells to adhere and grow. Human keratinocytes, representing 95% of the epidermal skin cells maintained their characteristic well-spread morphology with the formation of interconnected cell-sheets on this coated PDMS surface. Moreover, our in vitro immunofluorescence studies confirmed expression of distinctive epidermal protein markers on the coated surface indicating close resemblance with the native skin epidermis. Conclusively, our findings suggest that introducing nanotopography via PDMS NPs can be an effective strategy for emulating the native cellular functions of keratinocytes on PDMS based cell culture devices.
Collapse
Affiliation(s)
- Auhin Kumar Maparu
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India; Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Prerana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India; Material Science Programme, Thematic Unit of Excellence on Soft Nanofabrication, Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
2
|
Ren J, Duan F. Recent progress in experiments for sessile droplet wetting on structured surfaces. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Nguyen DHK, Bazaka O, Bazaka K, Crawford RJ, Ivanova EP. Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies. Trends Biotechnol 2020; 38:558-571. [PMID: 32302580 DOI: 10.1016/j.tibtech.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Microbial contamination of polymer surfaces has become a significant challenge in domestic, industrial, and biomedical applications. Recent progress in our understanding of how topographical features of different length scales can be used to effectively and selectively control the attachment and proliferation of different cell types has provided an alternative strategy for imparting antibacterial activity to these surfaces. Among the well-recognized engineered models of antibacterial surface topographies, self-organized wrinkles have shown particular promise with respect to their antimicrobial characteristics. Here, we critically review the mechanisms by which wrinkles form on the surface of different types of polymer material and how they interact with various biomolecules and cell types. We also discuss the feasibility of using this antimicrobial strategy in real-life biomedical applications.
Collapse
Affiliation(s)
- Duy H K Nguyen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Olha Bazaka
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Kateryna Bazaka
- Research School of Electrical Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra ACT 2600, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia.
| |
Collapse
|
4
|
Tomba C, Petithory T, Pedron R, Airoudj A, Di Meglio I, Roux A, Luchnikov V. Laser-Assisted Strain Engineering of Thin Elastomer Films to Form Variable Wavy Substrates for Cell Culture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900162. [PMID: 30951243 DOI: 10.1002/smll.201900162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Endothelial and epithelial cells usually grow on a curved environment, at the surface of organs, which many techniques have tried to reproduce. Here a simple method is proposed to control curvature of the substrate. Prestrained thin elastomer films are treated by infrared laser irradiation in order to rigidify the surface of the film. Wrinkled morphologies are produced upon stress relaxation for irradiation doses above a critical value. Wrinkle wavelength and depth are controlled by the prestrain, the laser power, and the speed at which the laser scans the film surface. Stretching of elastomer substrates with a "sand clock"-width profile enables the generation of a stress gradient, which results in patterns of wrinkles with a depth gradient. Thus, different combinations of topography changes on the same substrate can be generated. The wavelength and the depth of the wrinkles, which have the characteristic values within a range of several tens of µm, can be dynamically regulated by the substrate reversible stretching. It is shown that these anisotropic features are efficient substrates to control polarization of cell shapes and orientation of their migration. With this approach a flexible tool is provided for a wide range of applications in cell biophysics studies.
Collapse
Affiliation(s)
- Caterina Tomba
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211, Geneva, Switzerland
| | - Tatiana Petithory
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100, Mulhouse, France
| | - Riccardo Pedron
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100, Mulhouse, France
- Faculty of Pharmacy, University of Strasbourg, CNRS UMR 7199Laboratoire de conception et application de molécules bioactives (CAMB), équipe de Pharmacie Biogalénique, 74 Route du Rhin, 67401, Ilkirch Cedex, France
| | - Aissam Airoudj
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100, Mulhouse, France
| | - Ilaria Di Meglio
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211, Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211, Geneva, Switzerland
- National Center of Competence in Research Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, CH-1211, Geneva, Switzerland
| | - Valeriy Luchnikov
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, 15, Rue Jean Starcky, F-68100, Mulhouse, France
| |
Collapse
|