1
|
Lima MDS, de Melo EF, Alves KGB, de Sá F, Alves Júnior S. Development of Functionalized Poly(ε-caprolactone)/Hydroxyapatite Scaffolds via Electrospinning 3D for Enhanced Bone Regeneration. ACS OMEGA 2024; 9:45035-45046. [PMID: 39554400 PMCID: PMC11561599 DOI: 10.1021/acsomega.4c05264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024]
Abstract
Functionalized scaffolds based on biodegradable polymers are materials used in bone tissue engineering. This study presents the development of functionalized fibrous scaffolds, fabricated from poly(ε-caprolactone) (PCL) and hydroxyapatite (HA). To produce this material, a short-distance electrospinning (ES) system was developed by adapting a 3D printer. The morphology and chemical properties of the scaffolds were evaluated using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The results confirmed the porous structure and the presence of hydroxyapatite throughout the entire scaffold area. Mechanical tests indicated good elasticity and tensile strength of the scaffolds, favorable for bone regeneration. In vitro tests showed high levels of cell viability. Furthermore, in vivo experiments using a calvarial defect model in rats demonstrated that the PCL/HA scaffold promoted enhanced bone regeneration. Therefore, the PCL/HA scaffold developed through the adapted electrospinning system shows promise for bone repair.
Collapse
Affiliation(s)
- Maria
José da Silva Lima
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Etelino Feijó de Melo
- Instituto
Federal de Educação, Ciência e Tecnologia de
Pernambuco, Vitória
de Santo Antão 55600-000, Pernambuco, Brazil
| | - Kleber G. B. Alves
- Departamento
de Engenharia Mecânica, Universidade
Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Fabrício
Bezerra de Sá
- Departamento
de Morfologia e Fisiologia Animal, Universidade
Federal Rural de Pernambuco, Recife 52171-900, Pernambuco, Brazil
| | - Severino Alves Júnior
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
2
|
Yao Z, Feng X, Wang Z, Zhan Y, Wu X, Xie W, Wang Z, Zhang G. Techniques and applications in 3D bioprinting with chitosan bio-inks for drug delivery: A review. Int J Biol Macromol 2024; 278:134752. [PMID: 39214837 DOI: 10.1016/j.ijbiomac.2024.134752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Three-dimensional bioprinting leverages computer-aided design to construct tissues and organs with specialized bioinks. A notable biomaterial for this purpose is chitosan, a natural polysaccharide sourced from crustacean exoskeletons. Chitosan's biocompatibility, biodegradability, non-toxicity, and ability to promote cell adhesion and proliferation make it an excellent component for bioinks. Initially, the rheological properties of chitosan presented challenges for its use in bioprinting. Enhancements in its printability and stability were achieved by integrating it with other natural or synthetic polymers, facilitating its successful application in bioprinting. Chitosan-based bioinks are particularly promising for controlled drug delivery. Incorporating pharmaceuticals directly into the bioink enables the printed structures to serve as localized, sustained-release systems. This approach offers multiple advantages, including precise drug delivery to targeted disease sites, increased therapeutic efficiency, and reduced systemic side effects. Moreover, bioprinting allows for the customization of drug delivery mechanisms to meet individual patient requirements. Although there have been considerable advancements, the use of chitosan-based bioinks in drug delivery is still an emerging field. This review highlights chitosan's essential role in both systemic and localized drug delivery, underscoring its significance and discussing ongoing trends in its application for pharmaceutical purposes.
Collapse
Affiliation(s)
- Zhaomin Yao
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
| | - Xin Feng
- School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, 130011, China
| | - Zheling Wang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Ying Zhan
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
| | - Xiaodan Wu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
| | - Weiming Xie
- School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, 130011, China
| | - Zhiguo Wang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China.
| | - Guoxu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China.
| |
Collapse
|
3
|
Qi Y, Lv H, Huang Q, Pan G. The Synergetic Effect of 3D Printing and Electrospinning Techniques in the Fabrication of Bone Scaffolds. Ann Biomed Eng 2024; 52:1518-1533. [PMID: 38530536 DOI: 10.1007/s10439-024-03500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The primary goal of bone tissue engineering is to restore and rejuvenate bone defects by using a suitable three-dimensional scaffold, appropriate cells, and growth hormones. Various scaffolding methods are used to fabricate three-dimensional scaffolds, which provide the necessary environment for cell activity and bone formation. Multiple materials may be used to create scaffolds with hierarchical structures that are optimal for cell growth and specialization. This study examines a notion for creating an optimal framework for bone regeneration using a combination of the robocasting method and the electrospinning approach. Research indicates that the integration of these two procedures enhances the benefits of each method and provides a rationale for addressing their shortcomings via this combination. The hybrid approach is anticipated to provide a manufactured scaffold that can effectively replace bone defects while possessing the necessary qualities for bone regeneration.
Collapse
Affiliation(s)
- Yongjie Qi
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Hangying Lv
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Qinghua Huang
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Guangyong Pan
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China.
| |
Collapse
|
4
|
Chen Y, Gan W, Cheng Z, Zhang A, Shi P, Zhang Y. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects. Mater Today Bio 2024; 24:100920. [PMID: 38226013 PMCID: PMC10788623 DOI: 10.1016/j.mtbio.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Bone defects have become a major cause of disability and death. To overcome the limitations of natural bone implants, including donor shortages and immune rejection risks, bone tissue engineering (BTE) scaffolds have emerged as a promising therapy for bone defects. Despite possessing good biocompatibility, these metal, ceramic and polymer-based scaffolds are still challenged by the harsh conditions in bone defect sites. ROS accumulation, bacterial infection, excessive inflammation, compromised blood supply deficiency and tumor recurrence negatively impact bone tissue cells (BTCs) and hinder the osteointegration of BTE scaffolds. Phenolic compounds, derived from plants and fruits, have gained growing application in treating inflammatory, infectious and aging-related diseases due to their antioxidant ability conferred by phenolic hydroxyl groups. The prevalent interactions between phenols and functional groups also facilitate their utilization in fabricating scaffolds. Consequently, phenols are increasingly incorporated into BTE scaffolds to boost therapeutic efficacy in bone defect. This review demonstrated the effects of phenols on BTCs and bone defect microenvironment, summarized the intrinsic mechanisms, presented the advances in phenol-modified BTE scaffolds and analyzed their potential risks in practical applications. Overall, phenol-modified BTE scaffolds hold great potential for repairing bone defects, offering novel patterns for BTE scaffold construction and advancing traumatological medicine.
Collapse
Affiliation(s)
| | | | | | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
5
|
Lavanya K, Balagangadharan K, Chandran SV, Selvamurugan N. Chitosan-coated and thymol-loaded polymeric semi-interpenetrating hydrogels: An effective platform for bioactive molecule delivery and bone regeneration in vivo. BIOMATERIALS ADVANCES 2023; 146:213305. [PMID: 36709630 DOI: 10.1016/j.bioadv.2023.213305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Thymol (2-isopropyl-5-methylphenol; Thy) is a monoterpene phenolic phytocompound with medicinal properties; however, its impact on osteogenesis is yet to be thoroughly investigated. Its distribution is often hampered because of its intricate hydrophobic structure, which reduces its bioavailability. In this study, we synthesized a drug delivery vehicle using semi-interpenetrating polymer network (SIPN) hydrogels containing sodium alginate and poly(2-ethyl-2-oxazoline) (SA/Pox) loaded with Thy at varying concentrations (100, 150, and 200 μM). Subsequently, they were coated with chitosan (CS) to increase bioactivity and for sustained and prolonged release of Thy. Thy-loaded CS-coated SIPN hydrogels (SA/Pox/CS-Thy) were developed using ionic gelation and polyelectrolyte-complexation techniques. The addition of CS to hydrogels enhanced their physicochemical and material properties. These hydrogels were cytofriendly toward mouse mesenchymal stem cells (mMSCs). When mMSCs were cultured on hydrogels, Thy stimulated osteoblastic differentiation, as evidenced by calcium deposits at the cellular level. The expression of RUNX2, a key bone transcriptional factor, and other differentiation biomarkers was significantly enhanced in mMSCs cultured on SA/Pox/CS-Thy hydrogels. Notably, Thy in the SA/Pox/CS hydrogels significantly activated the TGF-β/BMP signaling pathway, which is involved in osteogenesis. A rat tibial bone defect model system revealed that the incorporation of Thy into SA/Pox/CS hydrogels augmented bone regeneration. Thus, sustained and prolonged release of Thy from the SA/Pox/CS hydrogels promoted osteoblast differentiation in vitro and bone formation in vivo. These findings shed light on the effect of Thy bioavailability in fostering osteoblast differentiation and its prospective application in bone rejuvenation.
Collapse
Affiliation(s)
- K Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - S Viji Chandran
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India..
| |
Collapse
|
6
|
Gupta A, Mehta SK, Kumar A, Singh S. Advent of phytobiologics and nano-interventions for bone remodeling: a comprehensive review. Crit Rev Biotechnol 2023; 43:142-169. [PMID: 34957903 DOI: 10.1080/07388551.2021.2010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bone metabolism constitutes the intricate processes of matrix deposition, mineralization, and resorption. Any imbalance in these processes leads to traumatic bone injuries and serious disease conditions. Therefore, bone remodeling plays a crucial role during the regeneration process maintaining the balance between osteoblastogenesis and osteoclastogenesis. Currently, numerous phytobiologics are emerging as the new therapeutics for the treatment of bone-related complications overcoming the synthetic drug-based side effects. They can either target osteoblasts, osteoclasts, or both through different mechanistic pathways for maintaining the bone remodeling process. Although phytobiologics have been widely used since tradition for the treatment of bone fractures recently, the research is accentuated toward the development of osteogenic phytobioactives, constituent-based drug designing models, and efficacious delivery of the phytobioactives. To achieve this, different plant extracts and successful isolation of their phytoconstituents are critical for osteogenic research. Hence, this review emphasizes the phytobioactives based research specifically enlisting the plants and their constituents used so far as bone therapeutics, their respective isolation procedures, and nanotechnological interventions in bone research. Also, the review enlists the vast array of folklore plants and the newly emerging nano-delivery systems in treating bone injuries as the future scope of research in the phytomedicinal orthopedic applications.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Sanjay Kumar Mehta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ashok Kumar
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
7
|
Goudarzi ZM, Soleimani M, Ghasemi-Mobarakeh L, Sajkiewicz P, Sharifianjazi F, Esmaeilkhanian A, Khaksar S. Control of drug release from cotton fabric by nanofibrous mat. Int J Biol Macromol 2022; 217:270-281. [PMID: 35760164 DOI: 10.1016/j.ijbiomac.2022.06.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/05/2022]
Abstract
A drug delivery system (DDSs) was developed in the present study based on textile substrates as drug carriers and electrospun nanofibers as a controller of release rate. Three types of drugs consisting of ciprofloxacin (CIP), clotrimazole (CLO), and benzalkonium chloride (BEN) were loaded into the cover glass (CG) and cotton fabrics (CF1 and CF2) separately. Then, the drug-loaded substrates were coated with polycaprolactone (PCL) and polycaprolactone/gelatin (PCL/Gel) nanofibers with various thicknesses. The morphology and hydrophilicity of the electrospun nanofibers and the release profile of drug-loaded samples were investigated. FTIR, XRD, and in vitro biodegradability analysis were analyzed to characterize the drug delivery system. A morphological study of electrospun fibers showed the mean diameter of the PCL and PCL/Gel nanofibers 127 ± 25 and 178 ± 38 nm, respectively. The drug delivery assay revealed that various factors affect the rate of drug releases, such as the type of drug, the type of drug carrier, and the thickness of the covered nanofibers. The study highlights the ability of drugs to load substrates with coated nanofibers as controlled drug delivery systems. In conclusion, it is shown that the obtained samples are excellent candidates for future wound dressing applications.
Collapse
Affiliation(s)
- Zahra Moazzami Goudarzi
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-106, Poland
| | - Mahnaz Soleimani
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-106, Poland
| | | | | | - Samad Khaksar
- School of Science and Technology, University of Georgia, Tbilisi, Georgia
| |
Collapse
|
8
|
Bozkaya O, Arat E, Gün Gök Z, Yiğitoğlu M, Vargel İ. Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver nanoparticles by mutual electrospinning method. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Cao Y, Shen C, Yang Z, Cai Z, Deng Z, Wu D. Polycaprolactone/polyvinyl pyrrolidone nanofibers developed by solution blow spinning for encapsulation of chlorogenic acid. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Study on the application of nanofibers in food active packaging has been a research hotspot in recent years. In this work, the solution blow spinning (SBS) was applied to rapidly fabricate the polycaprolactone (PCL), polyvinyl pyrrolidone (PVP), and PCL/PVP nanofibrous films to encapsulate chlorogenic acid (CGA). All the films showed uniform and smooth nanofibers, and the FTIR and XRD proved the success of mixed spinning of PCL and PVP. With the increase of PVP content, the thermal stability of the PCL/PVP nanofibrous films improved. The PCL/PVP (4:1) film possessed better mechanical properties than PCL and PVP films because of the stronger fiber-fiber interactions. The addition of PCL endowed the hydrophobic surfaces to the PCL/PVP films, and the PCL/PVP films had better water vapor barrier ability. The PCL/PVP (4:1) film exhibited the best long-term continuous release of CGA during 72 h. The PVP nanofibrous film exhibited no inhibition against S. aureus and E. coli due to the low encapsulation efficiency, but the PCL and PCL/PVP films exhibited good antimicrobial activity. The above results suggested that the nanofibrous films developed by SBS possessed the promising prospects in food packaging.
Collapse
|
10
|
Patel PR, Pandey K, Killi N, Gundloori RVN. Manipulating hydrophobicity of polyester nanofiber mats with egg albumin to enhance cell interactions. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pratikshkumar R. Patel
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Komal Pandey
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
| | - Naresh Killi
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Rathna Venkata Naga Gundloori
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| |
Collapse
|
11
|
Zhang Y, Wang T, Li J, Cui X, Jiang M, Zhang M, Wang X, Zhang W, Liu Z. Bilayer Membrane Composed of Mineralized Collagen and Chitosan Cast Film Coated With Berberine-Loaded PCL/PVP Electrospun Nanofiber Promotes Bone Regeneration. Front Bioeng Biotechnol 2021; 9:684335. [PMID: 34350160 PMCID: PMC8327095 DOI: 10.3389/fbioe.2021.684335] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Bone defects are difficult to repair and reconstruct as bone regeneration remains technically challenging, with exogenous factors required to accelerate this process. Biodegradable synthetic scaffolds are promising materials for stimulating bone tissue repair. In this study, we investigated whether a bilayer membrane that includes mineralized collagen (MC) and chitosan (CS) delivering berberine (BER)-a typical Chinese herbal monomer-could promote bone healing in a rat model. An MC/CS cast film was coated with polycaprolactone (PCL)/polyvinylpyrrolidone (PVP) electrospun nanofibers loaded with BER, yielding the BER@PCL/PVP-MC/CS bilayer membrane. The 3-dimensional structure had nanofibers of uniform diameter and showed good hydrophilicity; the bilayer membrane showed favorable mechanical properties. BER@PCL/PVP-MC/CS enhanced the proliferation and attachment of MC3T3-E1 cells in vitro and induced bone regeneration when implanted into a rat femoral bone defect. These findings provide evidence that BER@PCL/PVP-MC/CS has clinical potential for effective bone repair.
Collapse
Affiliation(s)
- Yuhan Zhang
- Clinical College, Weifang Medical University, Weifang, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
| | - Ting Wang
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Juan Li
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiaoming Cui
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Mingxia Jiang
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Mogen Zhang
- Clinical College, Weifang Medical University, Weifang, China
| | - Xiaoli Wang
- College of Medical Imaging, Weifang Medical University, Weifang, China
| | - Weifen Zhang
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| |
Collapse
|
12
|
Ge Y, Tang J, Ullah A, Ullah S, Sarwar MN, Kim IS. Sabina chinensis leaf extracted and in situ incorporated polycaprolactone/polyvinylpyrrolidone electrospun microfibers for antibacterial application. RSC Adv 2021; 11:18231-18240. [PMID: 35480946 PMCID: PMC9033436 DOI: 10.1039/d1ra01061a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/28/2021] [Indexed: 01/19/2023] Open
Abstract
Sabina chinensis is a valuable reforestation conifer and traditional medicinal plant. In order to retain the physiological and pharmacological activities of the plant and obtain a fibrous material with better antibacterial properties, a mixed solvent of dichloromethane and N,N'-dimethylformamide was used to obtain the leaf extracts, and Sabina chinensis leaf extract (ScLE)-loaded PCL/PVP microfibers were successfully fabricated by electrospinning. The whole preparation process was carried out at room temperature to avoid deterioration of active ingredients. From the antibacterial activity test, it was observed that ScLE-loaded polycaprolactone/polyvinylpyrrolidone (PCL/PVP) microfibers had potential antibacterial activity against both Gram-positive and Gram-negative bacteria stains. The morphological properties of the prepared microfibers were observed by SEM. As the proportion of ScLE increased, the fiber diameter gradually increased and the surface was smooth. The excess ScLE addition caused the formation of beads during electrospinning. Considering different characterization results, 33% (v/v) addition of ScLE to the spinning solution was the optimum ratio. The winding structure obtained by the interaction of components in ScLE with PCL and PVP was confirmed by FTIR, XRD and WCA tests, which indicated that ScLE-loaded microfibers possessed excellent thermal stability, tear resistance and degradation resistance. It is expected that the prepared composite microfibers have potential applications as robust antibacterial meshes and films in the fields of biomedicine and air purification.
Collapse
Affiliation(s)
- Yan Ge
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University Nantong 226019 PR China
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering IFES-Interdisciplinary Cluster for Cutting Edge Research ICCER, Shinshu University Tokida 3-15-1 Ueda Nagano 386-8567 Japan
| | - Jiapeng Tang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University Nantong 226019 PR China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong 226001 PR China
| | - Azeem Ullah
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering IFES-Interdisciplinary Cluster for Cutting Edge Research ICCER, Shinshu University Tokida 3-15-1 Ueda Nagano 386-8567 Japan
| | - Sana Ullah
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering IFES-Interdisciplinary Cluster for Cutting Edge Research ICCER, Shinshu University Tokida 3-15-1 Ueda Nagano 386-8567 Japan
| | - Muhammad Nauman Sarwar
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering IFES-Interdisciplinary Cluster for Cutting Edge Research ICCER, Shinshu University Tokida 3-15-1 Ueda Nagano 386-8567 Japan
| | - Ick-Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering IFES-Interdisciplinary Cluster for Cutting Edge Research ICCER, Shinshu University Tokida 3-15-1 Ueda Nagano 386-8567 Japan
| |
Collapse
|
13
|
Siddiqui N, Kishori B, Rao S, Anjum M, Hemanth V, Das S, Jabbari E. Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review. Mol Biotechnol 2021; 63:363-388. [PMID: 33689142 DOI: 10.1007/s12033-021-00311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 01/17/2023]
Abstract
Regeneration of bone tissue requires novel load bearing, biocompatible materials that support adhesion, spreading, proliferation, differentiation, mineralization, ECM production and maturation of bone-forming cells. Polycaprolactone (PCL) has many advantages as a biomaterial for scaffold production including tuneable biodegradation, relatively high mechanical toughness at physiological temperature. Electrospinning produces nanofibrous porous matrices that mimic many properties of natural tissue extracellular matrix with regard to surface area, porosity and fibre alignment. The biocompatibility and hydrophilicity of PCL nanofibres can be improved by combining PCL with other biomaterials to form composite scaffolds for bone regeneration. This work reviews the most recent research on synthesis, characterization and cellular response to nanofibrous PCL scaffolds and the composites of PCL with other natural and synthetic materials for bone tissue engineering.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India.
| | - Braja Kishori
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Saranya Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Mohammad Anjum
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Venkata Hemanth
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Swati Das
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
14
|
Raj Preeth D, Saravanan S, Shairam M, Selvakumar N, Selestin Raja I, Dhanasekaran A, Vimalraj S, Rajalakshmi S. Bioactive Zinc(II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. Eur J Pharm Sci 2021; 160:105768. [PMID: 33607242 DOI: 10.1016/j.ejps.2021.105768] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/25/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Bone tissue regeneration is augmented by biocompatible nanofiber scaffolds, that supports reliable and enhanced bone formation. Zinc is an essential mineral that is vital for routine skeletal growth and it emerges to be able to improve bone regeneration. Phytochemicals, particularly flavonoids have achieved prominent interest for their therapeutic ability, they have demonstrated promising effects on bone by encouraging osteoblastogenesis, which finally leads to bone formation. In this study, we have synthesized bioactive zinc(II) quercetin complex material and used for nanofibers scaffold fabrication to enhance bone tissue regeneration property. Two derivatives of zinc(II) quercetin complexes [(Zn(quercetin) (H2O)2) (Zn+Q), and Zn(quercetin)(phenanthroline) (Zn+Q(PHt)) have been synthesized and characterized using UV-Visible spectrophotometer and Fourier Transform-IR spectroscopy. The UV-Visible absorption and IR spectra prove the B-ring chelation of the flavonoid quercetin to zinc(II) rather C-ring chelation. The potential ability of the above synthesized metal complexes on osteogenesis and angiogenesis have been studied. Besides the bioactivity of the metal complexes, the control quercetin has also been examined. The chick embryo chorioallantoic membrane (CAM) assay demonstrated that the angiogenic parameters were increased by the (Zn+Q(PHt)) complex. Amongst, (Zn+Q(PHt)) complex showed significant activity and thereby this complex has been further examined for the bone tissue activity by incorporating the complex into a nanofiber through electrospinning method. At the molecular level, Runx2, mRNA and protein, ALP and type 1 collagen mRNAs, and osteoblast-specific microRNA, pre-mir-15b were examined using real time RT-PCR and Western blot assay. Histology studies showed that the (PCL/gelatin/Zn+Q(PHt)) was biocompatibility in-ovo. Overall, the present study showed that quercetin-zinc complex (Zn+Q(PHt)) incorporated into PCL/gelatin nanofiber can act as a pharmacological agent for treating bone associated defects and promote bone regeneration.
Collapse
Affiliation(s)
- Desingh Raj Preeth
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India
| | - Sekaran Saravanan
- Centre for Nanotechnology & Advance Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Manickaraj Shairam
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India
| | | | | | | | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Guindy, Chennai 600 025, India; Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India.
| | - Subramaniyam Rajalakshmi
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India.
| |
Collapse
|
15
|
Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering. Int J Biol Macromol 2020; 164:1960-1972. [DOI: 10.1016/j.ijbiomac.2020.08.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
|
16
|
Ashwin B, Abinaya B, Prasith T, Chandran SV, Yadav LR, Vairamani M, Patil S, Selvamurugan N. 3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering. Int J Biol Macromol 2020; 162:523-532. [DOI: 10.1016/j.ijbiomac.2020.06.157] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/31/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
|
17
|
Ali R, Mehta P, Kyriaki Monou P, Arshad MS, Panteris E, Rasekh M, Singh N, Qutachi O, Wilson P, Tzetzis D, Chang MW, Fatouros DG, Ahmad Z. Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DOE) and quality by design (QbD) approach. Eur J Pharm Biopharm 2020; 156:20-39. [DOI: 10.1016/j.ejpb.2020.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023]
|
18
|
Recent trends in the development of biomass-based polymers from renewable resources and their environmental applications. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Lavanya K, Chandran SV, Balagangadharan K, Selvamurugan N. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110862. [DOI: 10.1016/j.msec.2020.110862] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023]
|
20
|
Franco P, De Marco I. The Use of Poly( N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers (Basel) 2020; 12:E1114. [PMID: 32414187 PMCID: PMC7285361 DOI: 10.3390/polym12051114] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/31/2022] Open
Abstract
Polyvinylpyrrolidone (PVP) is a hydrophilic polymer widely employed as a carrier in the pharmaceutical, biomedical, and nutraceutical fields. Up to now, several PVP-based systems have been developed to deliver different active principles, of both natural and synthetic origin. Various formulations and morphologies have been proposed using PVP, including microparticles and nanoparticles, fibers, hydrogels, tablets, and films. Its versatility and peculiar properties make PVP one of the most suitable and promising polymers for the development of new pharmaceutical forms. This review highlights the role of PVP in drug delivery, focusing on the different morphologies proposed for different polymer/active compound formulations. It also provides detailed information on active principles and used technologies, optimized process parameters, advantages, disadvantages, and final applications.
Collapse
Affiliation(s)
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy;
| |
Collapse
|
21
|
Sruthi R, Balagangadharan K, Selvamurugan N. Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surf B Biointerfaces 2020; 193:111110. [PMID: 32416516 DOI: 10.1016/j.colsurfb.2020.111110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/09/2023]
Abstract
Veratric acid (3,4-dimethoxy benzoic acid) (VA) is a hydrophobic phenolic phytocompound possessing therapeutic potential, but it has not been reported as actuating bone regeneration to date. Furthermore, delivery of hydrophobic compounds is often impeded in the body, thus depreciating their bioavailability. In this study, VA was found to have osteogenic potential and its sustained delivery was facilitated through a nanoparticle-embedded coaxial electrospinning technique. Polycaprolactone/polyvinylpyrrolidone (PCL/PVP) coaxial fibers were electrospun, encasing VA-loaded chitosan nanoparticles (CHS-NP). The fibers showed commendable physiochemical and material properties and were biocompatible with mouse mesenchymal stem cells (mMSCs). When mMSCs were grown on coaxial fibers, VA promoted these cells towards osteoblast differentiation as was reflected by calcium deposits. The mRNA expression of Runx2, an important bone transcriptional regulator, and other differentiation markers such as alkaline phosphatase, collagen type I, and osteocalcin were found to be upregulated in mMSCs grown on the PCL/PVP/CHS-NP-VA fibers. Overall, the study portrays the delivery of the phytocompound, VA, in a sustained manner to promote bone regeneration.
Collapse
Affiliation(s)
- R Sruthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India.
| |
Collapse
|
22
|
Sanjeev G, Sidharthan DS, Pranavkrishna S, Pranavadithya S, Abhinandan R, Akshaya RL, Balagangadharan K, Siddabathuni N, Srinivasan S, Selvamurugan N. An osteoinductive effect of phytol on mouse mesenchymal stem cells (C3H10T1/2) towards osteoblasts. Bioorg Med Chem Lett 2020; 30:127137. [PMID: 32245598 DOI: 10.1016/j.bmcl.2020.127137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 01/11/2023]
Abstract
In recent years, phytochemicals have been widely researched and utilized for the treatment of various medical conditions such as cancer, cardiovascular diseases, age-related problems and are also said to have bone regenerative effects. In this study, phytol (3,7,11,15-tetramethylhexadec-2-en-1-ol), an acyclic unsaturated diterpene alcohol and a secondary metabolite derived from aromatic plants was investigated for its effect on osteogenesis. Phytol was found to be nontoxic in mouse mesenchymal stem cells (C3H10T1/2). At the cellular level, phytol-treatment promoted osteoblast differentiation, as seen by the increased calcium deposits. At the molecular level, phytol-treatment stimulated the expression of Runx2 (a bone-related transcription factor) and other osteogenic marker genes. MicroRNAs (miRNAs) play an essential role in controlling bone metabolism by targeting genes at the post-transcriptional level. Upon phytol-treatment in C3H10T1/2 cells, mir-21a and Smad7 levels were increased and decreased, respectively. It was previously reported that mir-21a targets Smad7 (an antagonist of TGF-beta1 signaling) and thus, protects Runx2 from its degradation. Thus, based on our results, we suggest that phytol-treatment promoted osteoblast differentiation in C3H10T1/2 cells via Runx2 due to downregulation of Smad7 by mir-21a. Henceforth, phytol was identified to bolster osteoblast differentiation, which in turn may be used for bone regeneration.
Collapse
Affiliation(s)
- Ganesh Sanjeev
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - D Saleth Sidharthan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - S Pranavkrishna
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - S Pranavadithya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R Abhinandan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nishitha Siddabathuni
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Swathi Srinivasan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
23
|
Shitole AA, Raut P, Giram P, Rade P, Khandwekar A, Garnaik B, Sharma N. Poly (vinylpyrrolidone)‑iodine engineered poly (ε-caprolactone) nanofibers as potential wound dressing materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110731. [PMID: 32204042 DOI: 10.1016/j.msec.2020.110731] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/08/2023]
Abstract
Facilitating the process of wound healing and effective treatment of wounds remains a serious challenge in healthcare. Wound dressing materials play a major role in the protection of wounds and in accelerating the natural healing process. In the present study, novel core/shell (c/s) nanofibrous mats of poly(vinyl pyrrolidone)‑iodine (PVPI) and polycaprolactone (PCL) were fabricated using a co-axial electrospinning process followed by their surface modification with poly-l-lysine. The developed nanofibrous mats were extensively characterized for their physicochemical properties using various analytical techniques. The core/shell structure of the PVP-I/PCL nanofibers was confirmed using TEM analysis. The PVP-I release studies showed an initial burst phase followed by a sustained release pattern of PVP-I over a period of 30 days. The developed nanofibers exhibited higher BSA and fibrinogen adsorption as compared to pristine PCL. Cytotoxicity studies using MTT assay demonstrated that the PVP-I/PCL (c/s) nanofibers were cytocompatible at optimized PVP-I concentration (3 wt%). The PCL-poly-l-lysine and PVP-I/PCL-poly-l-lysine nanofibers exhibited higher cell viability (24.2% and 21.4% higher at day 7) when compared to uncoated PCL and PVP-I/PCL nanofibers. The PVP-I/PCL nanofibers showed excellent antimicrobial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. The inflammatory response of Mouse RAW 264.7 macrophage cells towards the nanofibers was studied using RT-PCR. It revealed that the pro-inflammatory cytokines (TNF-α and IL-1β) were significantly upregulated on PCL nanofibers, while their expression was comparatively lower on poly-l-lysine coated PCL or PVP-I/PCL(c/s) nanofibers. Overall, the study highlights the ability of poly-l-lysine coated PVP-I/PCL (c/s) nanofibers as potential wound dressing materials effectively facilitating the early stage wound healing and repair process by virtue of their selective modulation of inflammation, cell adhesion and antimicrobial properties.
Collapse
Affiliation(s)
- Ajinkya A Shitole
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India
| | - Piyush Raut
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India
| | - Prabhanjan Giram
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Rade
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anand Khandwekar
- School of Engineering, Ajeenkya DY Patil University (ADYPU), Charholi Budruk, Pune 412105, Maharashtra, India.
| | - Baijayantimala Garnaik
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Neeti Sharma
- School of Engineering, Ajeenkya DY Patil University (ADYPU), Charholi Budruk, Pune 412105, Maharashtra, India.
| |
Collapse
|
24
|
Gomathi K, Akshaya N, Srinaath N, Moorthi A, Selvamurugan N. Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci 2020; 245:117389. [PMID: 32007573 DOI: 10.1016/j.lfs.2020.117389] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/27/2023]
Abstract
Osteogenesis is the process of new bone formation where transcription factors play an important role in controlling cell proliferation and differentiation. Runt-related transcription factor 2 (Runx2), a key transcription factor, regulates the differentiation of mesenchymal stem cells into osteoblasts, which further mature into osteocytes. Runx2 acts as a modulator such that it can either stimulate or inhibit the osteoblast differentiation. A defect/alteration in the expression/activity of this gene may lead to skeletal dysplasia. Runx2 thus serves as the best therapeutic model gene for studying bone and bone-related diseases. In this review, we briefly outline the regulation of Runx2 and its activity at the post-translational levels by the virtue of phosphorylation, acetylation, and ubiquitination in controlling the bone homeostasis.
Collapse
Affiliation(s)
- K Gomathi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Srinaath
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - A Moorthi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
25
|
Osteogenic stimulatory effect of heraclenin purified from bael in mouse mesenchymal stem cells in vitro. Chem Biol Interact 2019; 310:108750. [DOI: 10.1016/j.cbi.2019.108750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022]
|
26
|
Srinaath N, Balagangadharan K, Pooja V, Paarkavi U, Trishla A, Selvamurugan N. Osteogenic potential of zingerone, a phenolic compound in mouse mesenchymal stem cells. Biofactors 2019; 45:575-582. [PMID: 31091349 DOI: 10.1002/biof.1515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/13/2019] [Accepted: 04/27/2019] [Indexed: 12/22/2022]
Abstract
Zingerone, 4-(4-hydroxy-3-methoxyphenyl)-2-butanone (Zg), a phenolic compound isolated from ginger is reported to have anti-inflammatory and antidiabetic properties. However, its role in the promotion of osteogenesis is not known. In this study, we investigated the therapeutic effect of Zg on osteogenesis at the cellular and molecular levels. Zg treatment was nontoxic to mouse mesenchymal stem cells (mMSCs). At the cellular level, it enhanced osteoblast differentiation as evidenced by more calcium deposits. At the molecular level, Zg stimulated the expression of Runx2 (a bone transcription factor) and other marker genes of osteoblast differentiation in mMSCs. Recent studies indicated that microRNAs (miRNAs) regulate bone metabolism, and we identified that Zg treatment in mMSCs upregulated mir-590, a positive regulator of Runx2 by targeting Smad7, an antagonist of TGF-β1 signaling. Thus, the osteogenic potential of Zg would be beneficial for treating bone and bone-related diseases.
Collapse
Affiliation(s)
- Narasimhan Srinaath
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vikraman Pooja
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Udhaykumar Paarkavi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Adhikari Trishla
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
27
|
Ranganathan S, Balagangadharan K, Selvamurugan N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol 2019; 133:354-364. [DOI: 10.1016/j.ijbiomac.2019.04.115] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
|
28
|
Use of electrospinning technique to produce nanofibres for food industries: A perspective from regulations to characterisations. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Wang C, Wang J, Zeng L, Qiao Z, Liu X, Liu H, Zhang J, Ding J. Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules 2019; 24:E834. [PMID: 30813599 PMCID: PMC6429487 DOI: 10.3390/molecules24050834] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 11/17/2022] Open
Abstract
Fiber structures with nanoscale diameters offer many fascinating features, such as excellent mechanical properties and high specific surface areas, making them attractive for many applications. Among a variety of technologies for preparing nanofibers, electrospinning is rapidly evolving into a simple process, which is capable of forming diverse morphologies due to its flexibility, functionality, and simplicity. In such review, more emphasis is put on the construction of polymer nanofiber structures and their potential applications. Other issues of electrospinning device, mechanism, and prospects, are also discussed. Specifically, by carefully regulating the operating condition, modifying needle device, optimizing properties of the polymer solutions, some unique structures of core⁻shell, side-by-side, multilayer, hollow interior, and high porosity can be obtained. Taken together, these well-organized polymer nanofibers can be of great interest in biomedicine, nutrition, bioengineering, pharmaceutics, and healthcare applications.
Collapse
Affiliation(s)
- Chenyu Wang
- Department of Orthopedics, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Korea.
| | - Jun Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Liangdan Zeng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Ziwen Qiao
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiaochen Liu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - He Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|