1
|
Wang K, Shang J, Tao C, Huang M, Wei D, Yang L, Yang J, Fan Q, Ding Q, Zhou M. Advancements in Betulinic Acid-Loaded Nanoformulations for Enhanced Anti-Tumor Therapy. Int J Nanomedicine 2024; 19:14075-14103. [PMID: 39748899 PMCID: PMC11694648 DOI: 10.2147/ijn.s493489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Betulinic acid (BA) is a natural compound obtained from plant extracts and is known for its diverse pharmacological effects, including anti-tumor, antibacterial, anti-inflammatory, antiviral, and anti-atherosclerotic properties. Its potential in anti-tumor therapy has garnered considerable attention, particularly for the treatment of breast, lung, and liver cancers. However, the clinical utility of BA is greatly hindered by its poor water solubility, low bioavailability, and off-target toxicity. To address these issues, researchers have developed various BA-loaded nanoformulations, such as nanoparticles, liposomes, micelles, and nanofibers, aiming to improve its solubility and bioavailability, prolong plasma half-life, and enhance targeting ability, thereby augmenting its anti-cancer efficacy. In preparing this review, we conducted extensive searches in well-known databases, including PubMed, Web of Science, and ScienceDirect, using keywords like "betulinic acid", "nanoparticles", "drug delivery", "tumor", and "cancer", covering the literature from 2014 to 2024. The review provides a comprehensive overview of recent advancements in the application of BA-loaded nano-delivery systems for anti-tumor therapy and offers insights into their future development prospects.
Collapse
Affiliation(s)
- Ke Wang
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jinlu Shang
- Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, People’s Republic of China
| | - Chao Tao
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Mingquan Huang
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Daiqing Wei
- Department of Orthopaedics, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Liuxuan Yang
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jing Yang
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Qingze Fan
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Qian Ding
- Department of Clinical Pharmacy, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, People’s Republic of China
| | - Meiling Zhou
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
2
|
Morparia S, Metha C, Suvarna V. Recent advancements of betulinic acid-based drug delivery systems for cancer therapy (2002-2023). Nat Prod Res 2024:1-21. [PMID: 39385745 DOI: 10.1080/14786419.2024.2412838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Betulinic acid, a compound classified as a pentacyclic triterpenoid, is found in abundance in a variety of medicinal plants and natural substances. Its broad spectrum of biological and medicinal properties, particularly its potent antitumor activity, has gained significant attention in recent years. The anticancer properties of betulinic acid are governed by mitochondrial signalling pathways and it exhibit selectivity for cancerous tissue, leaving non-cancerous cells and normal tissue unharmed. This characteristic is particularly valuable in chemo-resistant cases. Nevertheless, the medicinal potential of betulinic acid is hindered by its poor water solubility and short half-life, leading to sub-optimal effectiveness. This issue is being tackled by a variety of nano-sized drug delivery systems, such as polymeric nanoparticles, magnetic nanoparticles, polymeric conjugates, nanoemulsions, liposomes, nanosuspensions, carbon nanotubes, and cyclodextrin complexes. This article focuses on recent advances in nanoformulations that are tailored to the delivery of betulinic acid with enhanced effectiveness.
Collapse
Affiliation(s)
- Saurabh Morparia
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Chaitanya Metha
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
4
|
Zuo R, Kong L, Pang W, Jiang S. Halofuginone-guided nano-local therapy: Nano-thermosensitive hydrogels for postoperative metastatic canine mammary carcinoma with scar removal. Int J Pharm X 2024; 7:100241. [PMID: 38572023 PMCID: PMC10987322 DOI: 10.1016/j.ijpx.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
In female dogs, the highest morbidity and mortality rates cancer are the result of mammary adenocarcinoma, which presents with metastases in the lung. Other than early surgical removal, however, no special methods are available to treat mammary adenocarcinoma. Because human breast cancer and canine mammary carcinoma share clinical characteristics and heterogeneity, the canine model is a suitable spontaneous tumor model for breast cancer in humans. In this study, the physical swelling method was used to prepare halofuginone-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) polymer micelles nano-thermosensitive hydrogels (HTPM-gel). Furthermore, HTPM-gel was investigated via characterization, morphology, properties such as swelling experiment and in vitro release with reflecting its splendid nature. Moreover, HTPM-gel was further examined its capability to anti-proliferation, anti-migration, and anti-invasion. Ultimately, HTPM-gel was investigated for its in vivo anticancer activity in the post-operative metastatic and angiogenic canine mammary carcinoma. HTPM-gel presented spherical under transmission electron microscope (TEM) and represented grid structure under scanning electron microscope (SEM), with hydrodynamic diameter (HD) of 20.25 ± 2.5 nm and zeta potential (ZP) of 15.10 ± 1.82 mV. Additionally, HTPM-gel own excellent properties comprised of pH-dependent swelling behavior, sustained release behavior. To impede the migration, invasion, and proliferation of CMT-U27 cells, we tested the efficacy of HTPM-gel. Evaluation of in vivo anti-tumor efficacy demonstrates HTPM-gel exhibit a splendid anti-metastasis and anti-angiogenic ability, with exhibiting ideal biocompatibility. Notably, HTPM-gel also inhibited the scar formation in the healing process after surgery. In summary, HTPM-gel exhibited anti-metastasis and anti-angiogenic and scar repair features. According to the results of this study, HTPM-gel has encouraging clinical potential to treat tumors with multifunctional hydrogel.
Collapse
Affiliation(s)
- Runan Zuo
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Lingqing Kong
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wanjun Pang
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| |
Collapse
|
5
|
Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice. ACS NANO 2023; 17:19810-19831. [PMID: 37812732 PMCID: PMC10604101 DOI: 10.1021/acsnano.3c04037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Low tumor delivery efficiency is a critical barrier in cancer nanomedicine. This study reports an updated version of "Nano-Tumor Database", which increases the number of time-dependent concentration data sets for different nanoparticles (NPs) in tumors from the previous version of 376 data sets with 1732 data points from 200 studies to the current version of 534 data sets with 2345 data points from 297 studies published from 2005 to 2021. Additionally, the current database includes 1972 data sets for five major organs (i.e., liver, spleen, lung, heart, and kidney) with a total of 8461 concentration data points. Tumor delivery and organ distribution are calculated using three pharmacokinetic parameters, including delivery efficiency, maximum concentration, and distribution coefficient. The median tumor delivery efficiency is 0.67% injected dose (ID), which is low but is consistent with previous studies. Employing the best regression model for tumor delivery efficiency, we generate hypothetical scenarios with different combinations of NP factors that may lead to a higher delivery efficiency of >3%ID, which requires further experimentation to confirm. In healthy organs, the highest NP accumulation is in the liver (10.69%ID/g), followed by the spleen 6.93%ID/g and the kidney 3.22%ID/g. Our perspective on how to facilitate NP design and clinical translation is presented. This study reports a substantially expanded "Nano-Tumor Database" and several statistical models that may help nanomedicine design in the future.
Collapse
Affiliation(s)
- Qiran Chen
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Long Yuan
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Wei-Chun Chou
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Yi-Hsien Cheng
- Department
of Anatomy and Physiology, Kansas State
University, Manhattan, Kansas 66506, United States
- Institute
of Computational Comparative Medicine, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Department
of Biostatistics College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32608, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State, Kansas
State University, Manhattan, Kansas 66506, United States
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jim E. Riviere
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
- 1
Data Consortium, Kansas State University, Olathe, Kansas 66061, United States
| | - Zhoumeng Lin
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
6
|
Dincer B, Yildiztekin G, Cinar I. Unlocking Synergistic Potential: Agomelatine Enhances the Chemotherapeutic Effect of Paclitaxel in Breast Cancer Cell Through MT1 Melatonin Receptors and ER-alpha Axis. Chem Biodivers 2023; 20:e202301093. [PMID: 37690997 DOI: 10.1002/cbdv.202301093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/12/2023]
Abstract
This study investigates the potential of agomelatine (AGO), a synthetic melatoninergic drug, in combination with paclitaxel (PTX) for the treatment of breast cancer. The effects of AGO, PTX and melatonin (MTN) on breast cancer cell viability were investigated, focusing on the role of MT1 receptors. Cell viability and gene expression were analyzed in MCF-7 and MDA-MB-231 breast cancer cell experiments. The results show that AGO has cytotoxic effects on breast cancer cells similar to MTN. Combining AGO and MTN with PTX showed synergistic effects in MCF-7 cells. The study also reveals differences in the molecular mechanisms of breast cancer between estrogen-positive MCF-7 cells and estrogen-negative MDA-MB-231 cells. Combination with AGO and PTX affects apoptosis-associated proteins in both cell types. The findings suggest that AGO, combined with PTX, may be a promising adjuvant therapy for breast cancer and highlight the importance of MTN receptors in its mechanism of action.
Collapse
Affiliation(s)
- Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, 55100, Turkey
| | - Gizem Yildiztekin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| | - Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, 37150, Turkey
| |
Collapse
|
7
|
Mu H, Sun Y, Yuan B, Wang Y. Betulinic acid in the treatment of breast cancer: Application and mechanism progress. Fitoterapia 2023; 169:105617. [PMID: 37479118 DOI: 10.1016/j.fitote.2023.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound, which can be obtained by separation, chemical synthesis and biotransformation. BA has excellent biological activities, especially its role in the treatment of breast cancer deserves attention. Its mechanisms mainly include inducing mitochondrial oxidative stress, regulating specific protein (Sp) transcription factors, inhibiting breast cancer metastasis, inhibiting glucose metabolism and NF-κB pathway. In addition, BA can also increase the sensitivity of breast cancer cells to other chemotherapy drugs such as paclitaxel and reduce its toxic side effects. This article reviews the application and possible mechanism of BA in the treatment of breast cancer.
Collapse
Affiliation(s)
- Huijuan Mu
- Department of Drug Clinical Trials, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yuli Sun
- Department of Hepatobiliary Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Bo Yuan
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ying Wang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
8
|
Fu S, Yang X. Recent advances in natural small molecules as drug delivery systems. J Mater Chem B 2023; 11:4584-4599. [PMID: 37084077 DOI: 10.1039/d3tb00070b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Drug delivery systems (DDSs) are a multidisciplinary approach toward the effective delivery of drugs to their target sites. Natural small molecule (NSM) compounds with anticancer activity, self-assembly and co-assembly functions show great potential for application as novel DDSs in the biomedical field. NSMs are widely sourced, have many modification sites, and readily form hydrogen bonds, π-π interactions, van der Waals interactions, and other non-covalent bonds in solvents, resulting in ordered structures. Moreover, their good biocompatibility and bioactivity allow compositions based on these compounds to be used in life science applications such as tissue engineering, drug delivery and cell imaging, showing the potential medical value of NSMs as DDSs. In this review, we summarise the role, assembly principles and applications of natural products such as triterpenoids, diterpenoids, sterols, alkaloids and polysaccharides in the construction of small molecule systems, which are expected to provide an important reference for the development of more active natural nanomaterials and the study of single or multi-component interactions.
Collapse
Affiliation(s)
- Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, No. 188 Jihuayuan South Road, Yubei District, Chongqing, 401135, China
| |
Collapse
|
9
|
Gautam S, Marwaha D, Singh N, Rai N, Sharma M, Tiwari P, Urandur S, Shukla RP, Banala VT, Mishra PR. Self-Assembled Redox-Sensitive Polymeric Nanostructures Facilitate the Intracellular Delivery of Paclitaxel for Improved Breast Cancer Therapy. Mol Pharm 2023; 20:1914-1932. [PMID: 36848489 DOI: 10.1021/acs.molpharmaceut.2c00673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A two-tier approach has been proposed for targeted and synergistic combination therapy against metastatic breast cancer. First, it comprises the development of a paclitaxel (PX)-loaded redox-sensitive self-assembled micellar system using betulinic acid-disulfide-d-α-tocopheryl poly(ethylene glycol) succinate (BA-Cys-T) through carbonyl diimidazole (CDI) coupling chemistry. Second, hyaluronic acid is anchored to TPGS (HA-Cys-T) chemically through a cystamine spacer to achieve CD44 receptor-mediated targeting. We have established that there is significant synergy between PX and BA with a combination index of 0.27 at a molar ratio of 1:5. An integrated system comprising both BA-Cys-T and HA-Cys-T (PX/BA-Cys-T-HA) exhibited significantly higher uptake than PX/BA-Cys-T, indicating preferential CD44-mediated uptake along with the rapid release of drugs in response to higher glutathione concentrations. Significantly higher apoptosis (42.89%) was observed with PX/BA-Cys-T-HA than those with BA-Cys-T (12.78%) and PX/BA-Cys-T (33.38%). In addition, PX/BA-Cys-T-HA showed remarkable enhancement in the cell cycle arrest, improved depolarization of the mitochondrial membrane potential, and induced excessive generation of ROS when tested in the MDA-MB-231 cell line. An in vivo administration of targeted micelles showed improved pharmacokinetic parameters and significant tumor growth inhibition in 4T1-induced tumor-bearing BALB/c mice. Overall, the study indicates a potential role of PX/BA-Cys-T-HA in achieving both temporal and spatial targeting against metastatic breast cancer.
Collapse
Affiliation(s)
- Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India.,Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, UP, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Venkatesh Teja Banala
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India.,Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
10
|
Li B, Shao H, Gao L, Li H, Sheng H, Zhu L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv 2022; 29:2130-2161. [PMID: 35815678 PMCID: PMC9275501 DOI: 10.1080/10717544.2022.2094498] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy drugs have been used for a long time in the treatment of cancer, but serious side effects are caused by the inability of the drug to be solely delivered to the tumor when treating cancer with chemotherapy. Natural products have attracted more and more attention due to the antitumor effect in multiple ways, abundant resources and less side effects. Therefore, the combination of natural active ingredients and chemotherapy drugs may be an effective antitumor strategy, which can inhibit the growth of tumor and multidrug resistance, reduce side effects of chemotherapy drugs. Nano-drug co-delivery system (NDCDS) can play an important role in the combination of natural active ingredients and chemotherapy drugs. This review provides a comprehensive summary of the research status and application prospect of nano-delivery strategies for the combination of natural active ingredients and chemotherapy drugs, aiming to provide a basis for the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Aswathy M, Vijayan A, Daimary UD, Girisa S, Radhakrishnan KV, Kunnumakkara AB. Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. J Biochem Mol Toxicol 2022; 36:e23206. [PMID: 36124371 DOI: 10.1002/jbt.23206] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Natural products serve as the single most productive source for the discovery of drugs and pharmaceutical leads. Among the various chemicals derived from microbes, plants, and animals, phytochemicals have emerged as potential candidates for the development of anticancer drugs due to their structural diversities, complexities, and pleiotropic effects. Herein, we discuss betulinic acid (BA), a ubiquitously distributed lupane structured pentacyclic triterpenoid, scrutinized as a promising natural agent for the prevention, suppression, and management of various human malignancies. Ease of availability, common occurrences, cell-specific cytotoxicity, and astonishing selectivity are the important factors that contribute to the development of BA as an anticancer agent. The current review delineates the mechanistic framework of BA-mediated cancer suppression through the modulation of multiple signaling pathways and also summarizes the key outcomes of BA in preclinical investigations.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Uzini D Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Kokkuvayil V Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
12
|
Additive Interactions between Betulinic Acid and Two Taxanes in In Vitro Tests against Four Human Malignant Melanoma Cell Lines. Int J Mol Sci 2022; 23:ijms23179641. [PMID: 36077036 PMCID: PMC9456196 DOI: 10.3390/ijms23179641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/02/2023] Open
Abstract
The incidence of melanoma is steadily increasing worldwide. Melanoma is the most lethal skin cancer, and new therapeutic methods are being sought. Our research aimed to investigate the cytotoxic and antiproliferative effects of betulinic acid in vitro, used alone and in combination with taxanes (paclitaxel, docetaxel) in four melanoma cell lines. Isobolographic analysis allowed us to assess the interactions between these compounds. Betulinic acid had no cytotoxic effect on normal human keratinocyte HaCaT cells; the amount of LDH released by them was significantly lower compared to melanoma cell lines. The present study shows that betulinic acid significantly inhibits the growth of melanoma cell lines in vitro. The IC50 values of betulinic acid ranged from 2.21 µM to 15.94 µM against the four melanoma lines. Co-treatment of betulinic acid with paclitaxel or docetaxel generated desirable drug–drug interactions, such as an additive and additive with a tendency to synergy interactions.
Collapse
|
13
|
Jabeen N, Sohail M, Shah SA, Mahmood A, Khan S, Kashif MUR, Khaliq T. Silymarin nanocrystals-laden chondroitin sulphate-based thermoreversible hydrogels; A promising approach for bioavailability enhancement. Int J Biol Macromol 2022; 218:456-472. [PMID: 35872320 DOI: 10.1016/j.ijbiomac.2022.07.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
Hydrogels has gained tremendous interest as a controlled release drug delivery. However, currently it is a big challenge to attain high drug-loading as well as stable and sustained release of hydrophobic drugs. The poor aqueous solubility and low bioavailability of many drugs have driven the need for research in new formulations. This manuscript hypothesized that incorporation of nanocrystals of hydrophobic drug, such as silymarin into thermoreversible hydrogel could be a solution to these problems. Herein, we prepared nanocrystals of silymarin by antisolvent precipitation technique and characterized for morphology, particle size, polydispersity index (PDI) and zeta potential. Moreover, physical cross-linking of hydrogel formulations based on chondroitin sulphate (CS), kappa-Carrageenan (κ-Cr) and Pluronic® F127 was confirmed by Fourier transformed infrared spectroscopy (FT-IR). The hydrogel gelation time and temperature of optimized hydrogel was 14 ± 3.2 s and 34 ± 0.6 °C, respectively. The release data revealed controlled release of silymarin up to 48 h and in-vivo pharmacokinetic profiling was done in rabbits and further analyzed by high-performance liquid chromatography (HPLC). It is believed that the nanocrystals loaded thermoreversible injectable hydrogel system fabricated in this study provides high drug loading as well as controlled and stable release of hydrophobic drug for extended period.
Collapse
Affiliation(s)
- Nazish Jabeen
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan.
| | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Superior University, Lahore, Punjab-Pakistan
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan
| | | | - Touba Khaliq
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| |
Collapse
|
14
|
Tian Z, Zhao Y, Mai Y, Qiao F, Guo J, Dong L, Niu Y, Gou G, Yang J. Nanocrystals with different stabilizers overcome the mucus and epithelial barriers for oral delivery of multicomponent Bufadienolides. Int J Pharm 2022; 616:121522. [DOI: 10.1016/j.ijpharm.2022.121522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
|
15
|
Qi X, Gao C, Yin C, Fan J, Wu X, Guo C. Improved anticancer activity of betulinic acid on breast cancer through a grafted copolymer-based micelles system. Drug Deliv 2021; 28:1962-1971. [PMID: 34565273 PMCID: PMC8475105 DOI: 10.1080/10717544.2021.1979125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Betulinic acid (3β-Hydroxy-20(29)-lupaene-28-oic acid, BA) has excellent anti-cancer activity but poor solubility and low bioavailability. To improve the antitumor activity of BA, a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (PVCL-PVA-PEG) graft copolymer (Soluplus) encapsulated BA micelle (Soluplus-BA) was fabricated. The Soluplus-BA micelles presented a mean size of 54.77 ± 1.26 nm and a polydispersity index (PDI) of 0.083. The MTT assay results showed that Soluplus-BA micelles increased the inhibitory effect of BA on MDA-MB-231 cells, mainly due to the enhanced accumulation of reactive oxygen species (ROS) and the destruction of mitochondrial membrane potential (MMP). Soluplus-BA micelles induced the DNA double-strand breaks (DSBs) as the γH2AX foci increased. Moreover, Soluplus-BA also inhibited the tube formation and migration of human umbilical vein endothelial cells (HUVECs), and inhibited the neovascularization of the chicken chorioallantoic membrane (CAM). This angiogenesis inhibitory effect may be accomplished by regulating the HIF-1/VEGF-FAK signaling pathway. The in vivo study confirmed the improved anti-tumor effect of Soluplus-BA and its inhibitory effect on angiogenesis, demonstrating the possibility of Soluplus-BA as an effective anti-breast cancer drug delivery system.
Collapse
Affiliation(s)
- Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Cong Gao
- Affiliated Hospital of Shandong Academy of Medical Sciences, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chuanjin Yin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Xie Y, Ma C, Yang X, Wang J, Long G, Zhou J. Phytonanomaterials as therapeutic agents and drug delivery carriers. Adv Drug Deliv Rev 2021; 176:113868. [PMID: 34303754 PMCID: PMC8482412 DOI: 10.1016/j.addr.2021.113868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/12/2021] [Accepted: 07/11/2021] [Indexed: 11/21/2022]
Abstract
Medicinal plants have been a major resource for drug discovery. Emerging evidence shows that in addition to pharmacologically active components, medicinal plants also contain phytochemical nanomaterials, or phytonanomaterials, which form nanoparticles for drug delivery. In this review, we examine the evidence supporting the existence of phytonanomaterials. Next, we review identification, isolation, and classification of phytonanomaterials, characteristics of phytonanomaterial-derived nanoparticles, and molecular mechanisms of phytonanomaterial assembly. We will then summarize the current progress in exploring phytonanomaterial-derived NPs as therapeutic agents and drug delivery carriers for disease treatment. Last, we will provide perspectives on future discovery and applications of phytonanomaterials.
Collapse
Affiliation(s)
- Ying Xie
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Chao Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jiacheng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Gretchen Long
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
17
|
Sawanny R, Pramanik S, Agarwal U. Role of Phytochemicals in the Treatment of Breast Cancer: Natural Swords Battling Cancer Cells. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666210106123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most common type of malignancy among ladies (around 30% of
newly diagnosed patients every year). To date, various modern treatment modalities for breast cancer,
such as radiotherapy, surgical method, hormonal therapy, and chemotherapeutic drug utilisation,
are available. However, adverse drug reactions, therapeutic resistance, metastasis, or cancer reoccurrence
chances remain the primary causes of mortality for breast cancer patients. To overcome
all the potential drawbacks, we need to investigate novel techniques and strategies that are not considered
previously to treat breast cancer effectively with safety and efficacy. For centuries, we
utilise phytochemicals to treat various diseases because of their safety, low-cost, and least or no
side effects. Recently, naturally produced phytochemicals gain immense attention as potential
breast cancer therapeutics because of their ideal characteristics; for instance, they operate via modulating
molecular pathways associated with cancer growth and progression. The primary mechanism
involves inhibition of cell proliferation, angiogenesis, migration, invasion, increasing anti-oxidant
status, initiation of the arrest of the cell cycle, and apoptosis. Remedial viability gets effectively enhanced
when phytochemicals work as adjuvants with chemotherapeutic drugs. This comprehensive
review revolves around the latest chemopreventive, chemotherapeutic, and chemoprotective treatments
with their molecular mechanisms to treat breast cancer by utilising phytochemicals such as
vinca alkaloids, resveratrol, curcumin, paclitaxel, silibinin, quercetin, genistein, and epigallocatechin
gallate. The authors wish to extend the field of phytochemical study for its scientific validity
and its druggability.
Collapse
Affiliation(s)
- Rajni Sawanny
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201306, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600036, India
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Delhi, Grand Trunk Road, Phagwara, Punjab-144001, India
| |
Collapse
|
18
|
Zhao Y, Fu T, Meng G, Qiao F, Hou Y, Liu Y, Yang J. Characterization of Cepharanthin Nanosuspensions and Evaluation of Their In Vitro Activity for the HepG2 Hepatocellular Carcinoma Cell Line. Anticancer Agents Med Chem 2021; 20:2293-2303. [PMID: 32748761 DOI: 10.2174/1871520620999200730170844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Conventional cancer therapeutics has enormous toxicity and severe side effects that generate multi-drug resistance. Therefore, an urgent need exists for new alternative therapeutic agents for cancer treatment. Cepharanthin (CEP) has anti-cancer potential but has poor aqueous solubility, which limits its clinical use. Nanosuspensions (NS) are attractive as insoluble drug delivery systems. OBJECTIVES In this study, we used D-alpha Tocopherol acid Polyethylene Glycol Succinate (TPGS), Polyvinylpyrrolidone (PVP) VA64, and Croscamellose Sodium (CCS) as stabilizers to produce TPGS-CEP-NS, PVP VA64-CEP-NS, and CCS-CEP-NS by wet-milling technology, and then characterized the NS and evaluated their functional activities in vitro. METHODS CEP Nanosuspensions (CEP-NS) were prepared by the wet-milling method. The prepared NS were characterized by particle size distribution, zeta potential, morphology, surface properties, and molecular interactions. The NS were evaluated for their effects on HepG2 cells in vitro. The evaluations included assessment of cellular cytotoxicity, cellular apoptosis, NS uptake by cells, and mitochondrial membrane potential changes. RESULTS CEP-NS showed an appropriate particle size and were physically stable. All CEP-NS exhibited HepG2 enhanced anti-proliferative effects by reducing cell viability, enhanced cellular uptake, induced cellular apoptosis, and mitochondrial membrane potential loss. CONCLUSIONS CEP-NS may be effective therapeutic agents for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| | - Tingting Fu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| | - Gaoke Meng
- Department of Gastroenterology, the General Hospital of Ningxia Medical University, No.804 Shengli South Street, Yinchuan, 750004, China
| | - Fangxia Qiao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, China
| |
Collapse
|
19
|
Farooq MA, Jabeen A, Wang B. Formulation, optimization, and characterization of whey protein isolate nanocrystals for celecoxib delivery. J Microencapsul 2021; 38:314-323. [PMID: 33896352 DOI: 10.1080/02652048.2021.1915398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Current study aimed to improve the solubility and release profile of the celecoxib for cancer application. However, the low water solubility of celecoxib limited its application for cancer chemotherapy. Hence, new drug delivery-based approaches are compulsory for the efficient delivery of hydrophobic celecoxib for chemotherapy. METHODS The celecoxib-loaded nanocrystals were prepared by anti-solvent precipitation-ultrasonication technique, and the formulation was optimised through various process parameters. RESULTS The optimised formulation had an average particle diameter of 171.09 ± 6.23 nm, with a PDI of 0.123 ± 0.009 and high ZP -27.3 ± 0.2 mV. The optimised formulation was stable, had higher entrapment efficiency 97.26 ± 1.12%. The conformational changes in the denatured protein solution were detected through fluorescence spectroscopy. The transmission electron microscopy investigation showed rod-shaped nanocrystals morphology, and no chemical interactions were observed in optimised formulation through FTIR. The DSC and PXRD analysis exhibited an amorphous state of the freeze-dried formulation drug. Also, optimised nanocrystals enhance drug solubility around 26.01-fold, 15.51-fold and 19.08-fold in purified water, pH 6.8 and pH 7.4, and accomplish sustained drug delivery, respectively. CONCLUSION It can be concluded that biopolymer-coated celecoxib nanocrystals might be potential drug delivery of hydrophobic molecules for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Amna Jabeen
- Faculty of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore, Pakistan
| | - Bo Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
20
|
Ao H, Li Y, Li H, Wang Y, Han M, Guo Y, Shi R, Yue F, Wang X. Preparation of hydroxy genkwanin nanosuspensions and their enhanced antitumor efficacy against breast cancer. Drug Deliv 2021; 27:816-824. [PMID: 32489130 PMCID: PMC8216440 DOI: 10.1080/10717544.2020.1770372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hydroxy genkwanin (HGK), a flavonoid compound from natural resources, showed good inhibition against the growth of breast tumor cells. However, the poor solubility restricted the further study and the in vivo drug delivery of HGK. We prepared HGK nanosuspensions by antisolvent precipitation method and investigated their characterization, stability, hemolysis probability, release behavior in vitro, antitumor activity in vitro and in vivo, and preliminary safety through acute toxicity experiments. The resultant HGK nanosuspensions (HGK-NSps) showed an average diameter of (261.1 ± 4.8 nm), a narrow particle size distribution (PDI of 0.12 ± 0.01), spherical morphology, high drug-loading content (39.9 ± 2.3%, w/w), and good stability in various physiological media. HGK-NSps was safe for intravenous injection at low concentration and HGK was slowly released from the obtained nanosuspensions. HGK-NSps showed stronger cytotoxicity than free HGK against many tumor cells in vitro. Especially against MCF-7 cells, the IC50 value was decreased to 1.0 μg/mL, 5-fold lower than the HGK solution. In the in vivo antitumor activity study HGK-NSps (40 mg/kg) displayed a similar therapeutic effect to that of the paclitaxel injection (8 mg/kg). The preliminary acute toxicity test showed that even at the highest dose of 360 mg/kg (iv), HGK-NSps had 100% of mice survival and all the mice were in a good state, suggesting a maximum tolerated dose more than 360 mg/kg. The effective antitumor effect and good tolerance showed HGK-NSps were likely to become a safe and effective antitumor drug for the treatment of breast cancer in the future.
Collapse
Affiliation(s)
- Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | - Haowen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yian Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | - Feng Yue
- Guangdong Jiabo Pharmaceutical Co., Ltd., Guangdong, People's Republic of China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| |
Collapse
|
21
|
Zuo R, Zhang J, Song X, Hu S, Gao X, Wang J, Ji H, Ji C, Peng L, Si H, Li G, Fang K, Zhang J, Jiang S, Guo D. Encapsulating Halofuginone Hydrobromide in TPGS Polymeric Micelles Enhances Efficacy Against Triple-Negative Breast Cancer Cells. Int J Nanomedicine 2021; 16:1587-1600. [PMID: 33664573 PMCID: PMC7924253 DOI: 10.2147/ijn.s289096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Halofuginone hydrobromide (HF) is a synthetic analogue of the naturally occurring quinazolinone alkaloid febrifugine, which has potential therapeutic effects against breast cancer, however, its poor water solubility greatly limits its pharmaceutical application. D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) is a water-soluble derivative of vitamin E, which can self-assemble to form polymeric micelles (PMs) for encapsulating insoluble anti-tumor drugs, thereby effectively enhancing their anti-cancer effects. METHODS HF-loaded TPGS PMs (HTPMs) were manufactured using a thin-film hydration technique, followed by a series of characterizations, including the hydrodynamic diameter (HD), zeta potential (ZP), stability, drug loading (DL), encapsulation efficiency (EE), and in vitro drug release. The anti-cancer effects and potential mechanism of HTPMs were investigated in the breast cell lines MDA-MB-231 and MCF-7, and normal breast epithelial cell line Eph-ev. The breast cancer-bearing BALB/c nude mouse model was successfully established by subcutaneous injection of MDA-MB-231 cells and used to evaluate the in vivo therapeutic effect and safety of the HTPMs. RESULTS The optimized HTPMs had an HD of 17.8±0.5 nm and ZP of 14.40±0.1 mV. These PMs exhibited DL of 12.94 ± 0.46% and EE of 90.6 ± 0.85%, along with excellent storage stability, dilution tolerance and sustained drug release in pH-dependent manner within 24 h compared to free HF. Additionally, the HTPMs had stronger inhibitory effects than free HF and paclitaxel against MDA-MB-231 triple-negative breast cancer cells, and little toxicity in normal breast epithelial Eph-ev cells. The HTPMs induced cell cycle arrest and apoptosis of MDA-MB-231 by disrupting the mitochondrial membrane potential and enhancing reactive oxygen species formation. Evaluation of in vivo anti-tumor efficacy demonstrated that HTPMs exerted a stronger tumor inhibition rate (68.17%) than free HF, and exhibited excellent biocompatibility. CONCLUSION The findings from this study indicate that HTPMs holds great clinical potential for treating triple-negative breast cancer.
Collapse
Affiliation(s)
- Runan Zuo
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Jingjing Zhang
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Xinhao Song
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Shiheng Hu
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Xiuge Gao
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Junqi Wang
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Hui Ji
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Chunlei Ji
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Lin Peng
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, People’s Republic of China
| | - Gonghe Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, People’s Republic of China
| | - Kun Fang
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Junren Zhang
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Shanxiang Jiang
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Dawei Guo
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| |
Collapse
|
22
|
Impacts of particle size on the cytotoxicity, cellular internalization, pharmacokinetics and biodistribution of betulinic acid nanosuspensions in combined chemotherapy. Int J Pharm 2020; 588:119799. [PMID: 32828973 DOI: 10.1016/j.ijpharm.2020.119799] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
To evaluate the effect of particle size on the cellular internalization, tissue distribution, and bioavailability of betulinic acid nanosuspensions (BA/NSs) and further investigate the combined effect of BA/NSs and Taxol® on breast cancer, BA/NSs with different particle sizes (160 nm, 400 nm, and 700 nm) were prepared by an efficient universal green technology. The use of BA/NS (160 nm) was more likely to increase the BA release rate and enhance bioavailability compared with the use of larger size particles. BA/NSs were internalized by 4T1 cells in different ways, including clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis. For the 4T1 orthotopic tumor model, BA/NS (160 nm) showed a tendency to accumulate at a higher level in tumor tissue. Moreover, combination therapy with BA/NSs and Taxol® showed remarkable potential to enhance antitumor activity in vitro and in vivo. The cytotoxicity and apoptotic ability of the different preparations decreased in the following order: BA/NS (160 nm) + Taxol®, BA/NS (400 nm) + Taxol®, and BA/NS (700 nm) + Taxol®. The tumor inhibition rates of BA/NSs (160 nm, 400 nm, and 700 nm) combined with Taxol® were 2.35-, 1.74- and 1.12-fold higher than that of free BA, respectively. The combined chemotherapy showed good safety, indicating that it had the effect of enhancing treatment and reducing toxicity.
Collapse
|
23
|
Lan Y, Liang Q, Sun Y, Cao A, Liu L, Yu S, Zhou L, Liu J, Zhu R, Liu Y. Codelivered Chemotherapeutic Doxorubicin via a Dual-Functional Immunostimulatory Polymeric Prodrug for Breast Cancer Immunochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31904-31921. [PMID: 32551517 DOI: 10.1021/acsami.0c06120] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Immunochemotherapy is viewed as a promising approach for cancer therapy via combination treatment with immune-modulating drugs and chemotherapeutic drugs. A novel dual-functional immunostimulatory polymeric prodrug carrier PEG2k-Fmoc-1-MT was developed for simultaneously delivering 1-methyl tryptophan (1-MT) of an indoleamine 2,3-dioxygenase (IDO) inhibitor and chemotherapeutic doxorubicin (DOX) for breast cancer immunochemotherapy. DOX/PEG2k-Fmoc-1-MT micelles were more effective in cell proliferation inhibition and apoptosis induction in 4T1 cells. PEG2k-Fmoc-1-MT prodrug micelles presented enhanced inhibition ability of IDO with decreased kynurenine production and increased the proliferation in dose-dependent manners of effector CD4+ and CD8+ T cells. DOX/PEG2k-Fmoc-1-MT micelles exhibited prolonged blood circulation time and superior accumulation of DOX and 1-MT in tumors compared to that of DOX and 1-MT solutions. A significantly enhanced immune response of the DOX/PEG2k-Fmoc-1-MT micelles was observed with the decreasing tryptophan/kynurenine ratio in blood and tumor tissue, promoting effector CD4+ and CD8+ T cells while reducing regulatory T cell (Tregs) expression. Meanwhile, the coreleased DOX-triggered immunogenic cell death action combined with the cleaved 1-MT promoted the related cytokine secretion of tumor necrosis factor-α, interleukin-2, and interferon-γ, further facilitating the T cell-mediated immune responses. More importantly, the DOX-loaded micelles led to a significantly improved inhibition on tumor growth and prolonged animal survival rate in a 4T1 murine breast cancer model. In conclusion, DOX codelivered by a PEG2k-Fmoc-1-MT immunostimulatory polymeric prodrug showed a maximum immunochemotherapy efficacy against breast cancer.
Collapse
Affiliation(s)
- Yang Lan
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yue Sun
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Aichen Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Lu Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Shuangyu Yu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Rongyue Zhu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ningxia Medical University, Yinchuan 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
24
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
25
|
Guo J, Gu X, Mai Y, Zhao Y, Gou G, Yang J. Preparation and characterisation of tetrandrine nanosuspensions and in vitro estimate antitumour activity on A549 lung cancer cell line. J Microencapsul 2020; 37:384-393. [PMID: 32349635 DOI: 10.1080/02652048.2020.1761905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aim: The aim of this study was to improve solubility and antitumour ability in vitro of tetrandrine (Tet) via preparing nanosuspensions (NSs).Methods: The Tet-NSs were prepared by wet media milling. The Tet-CCS-NS was prepared with croscarmellose sodium (CCS) as single stabiliser. The Tet-HACC-TPGS-NS was manufactured with D-α-tocopheryl polyethylene glycol 1,000 succinate (TPGS) and hydroponically trimethyl ammonium chloride chitosan (HACC) as combined stabilisers. Physicochemical properties of the NSs such as particle size, surface morphologies, crystallinity and molecular interactions were investigated. In addition, the in vitro dissolution and antitumour activities using A549 human lung cancer cells were evaluated.Results: The mean particle sizes and Zeta potential of freshly prepared Tet-CCS-NS, Tet-HACC-TPGS-NS were 469.1 ± 14nm and 157.3 ± 5nm, -29.4 ± 0.26 mV and 23.3 ± 0.36 mV, respectively. In comparison to pure Tet, the cumulative dissolution of Tet-NSs were increased by 4 ∼ 5 times in 2 h. In vitro antitumour studies on Tet- NSs in A549 cells, the cell survival rate of the Tet-NSs at high concentration (30-50µg/ml) were less than 10% within 48 h. Meanwhile, Tet-NSs were revealed to induce A549 cells apoptosis and promote cell uptake.Conclusion: The present study has proved that the Tet-NSs can increase Tet solubility as well as improve Tet antitumour activity in vitro.
Collapse
Affiliation(s)
- Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| | - Xiangshuai Gu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| | - Yaping Mai
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| | - Yue Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| | - Guojing Gou
- Medical Chemistry Department, School of Basic Medical, Ningxia Medical University, Yinchuan, China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| |
Collapse
|
26
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020. [DOI: 10.3389/fphar.2020.00451
expr 967555229 + 995954239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
27
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020; 11:451. [PMID: 32390834 PMCID: PMC7193898 DOI: 10.3389/fphar.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Considerable pharmacological studies have demonstrated that the extracts and ingredients from different parts (seeds, peels, pulps, and flowers) of Litchi exhibited anticancer effects by affecting the proliferation, apoptosis, autophagy, metastasis, chemotherapy and radiotherapy sensitivity, stemness, metabolism, angiogenesis, and immunity via multiple targeting. However, there is no systematical analysis on the interaction network of “multiple ingredients-multiple targets-multiple pathways” anticancer effects of Litchi. In this study, we summarized the confirmed anticancer ingredients and molecular targets of Litchi based on published articles and applied network pharmacology approach to explore the complex mechanisms underlying these effects from a perspective of system biology. The top ingredients, top targets, and top pathways of each anticancer function were identified using network pharmacology approach. Further intersecting analyses showed that Epigallocatechin gallate (EGCG), Gallic acid, Kaempferol, Luteolin, and Betulinic acid were the top ingredients which might be the key ingredients exerting anticancer function of Litchi, while BAX, BCL2, CASP3, and AKT1 were the top targets which might be the main targets underling the anticancer mechanisms of these top ingredients. These results provided references for further understanding and exploration of Litchi as therapeutics in cancer as well as the application of “Component Formula” based on Litchi’s effective ingredients.
Collapse
Affiliation(s)
- Sisi Cao
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yaoyao Han
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Qiaofeng Li
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Yanjiang Chen
- Department of Surgery, University of Melbourne, Parkville, VIC, Australia
| | - Dan Zhu
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
28
|
Farooq MA, Xu L, Aquib M, Ahsan A, Baig MMFA, Wang B. Denatured food protein-coated nanosuspension: A promising approach for anticancer delivery of hydrophobic drug. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Babadi D, Dadashzadeh S, Osouli M, Daryabari MS, Haeri A. Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes. J Control Release 2020; 321:669-709. [PMID: 32112856 DOI: 10.1016/j.jconrel.2020.02.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The therapeutic efficacy of orally administered drugs is often restricted by their inherent limited oral bioavailability. Low water solubility, limited permeability through the intestinal barrier, instability in harsh environment of the gastrointestinal (GI) tract and being substrate of the efflux pumps and the cytochrome P450 (CYP) can impair oral drug bioavailability resulting in erratic and variable plasma drug profile. As more drugs with low membrane permeability are developed, new interest is growing to enhance their intestinal permeability and bioavailability. A wide variety of nanosystems have been developed to improve drug transport and absorption. Sufficient evidence exists to suggest that nanoparticles are able to increase the transepithelial transport of drug molecules. However, key questions remained unanswered. What types of nanoparticles are more efficient? What are preclinical (or clinical) achievements of each type of nanoformulation in terms of pharmacokinetic (PK) parameters? Addressing this issue in this paper, we have reviewed the current literature regarding permeability enhancement, permeability assessment methods and changes in PK parameters following administration of various nanoformulations. Although permeability enhancement by various nanoformulations holds great promise for oral drug delivery, many challenges still need to be addressed before development of more clinically successful nanoproducts.
Collapse
Affiliation(s)
- Delaram Babadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahraz Osouli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Farooq MA, Li L, Parveen A, Wang B. Globular protein stabilized nanoparticles for delivery of disulfiram: fabrication, characterization, in vitro toxicity, and cellular uptake. RSC Adv 2020; 10:133-144. [PMID: 35492513 PMCID: PMC9047253 DOI: 10.1039/c9ra09468g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/16/2019] [Indexed: 12/04/2022] Open
Abstract
Disulfiram (DSF), an FDA-approved anti-alcoholic drug, has recently shown that it possesses anti-cancer effects. However, DSF is hydrophobic in nature with less stability. Therefore, new approaches are required for the effective delivery of DSF to treat cancers. Herein, we prepared DSF loaded soy protein isolate (SPI) nanosuspension (Ns) for enhancing the anti-cancer delivery of DSF. The optimized DSF-SPI-Ns had an average particle size of 164.28 ± 2.07 nm with a narrow size distribution of 0.217 ± 0.035 and zeta potential around −22.30 ± 2.11 mV, respectively. The highest drug loading and entrapment efficiency achieved was 5.516 ± 1.98%, and 91.61 ± 1.15%, respectively. The surface morphology of Ns was revealed by TEM, and the FTIR DSC, PXRD, and TGA were used for physicochemical characterization. Further, fluorescence spectroscopy and molecular docking studies were carried out to understand the interactions between (SPI and DSF) and binding sites of DSF on the surface of SPI, respectively. In vitro release studies showed a sustained release pattern and followed a Fickian diffusion release from the Ns. The in vitro cytotoxicity of SPI indicated the excellent biocompatibility, and DSF-SPI-Ns were found to be more cytotoxic compared to the free DSF solution. Moreover, the cellular uptake studies also indicated the effective delivery of the formulation to the cancer cells. Results of the current study suggested that the SPI coated Ns might be a promising drug delivery system for hydrophobic DSF, and the potential application of SPI as a coating/stabilizing agent for the delivery of hydrophobic/hydrophilic cancer therapeutics. Disulfiram (DSF), an FDA-approved anti-alcoholic drug, has recently shown that it possesses anti-cancer effects.![]()
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- PR China
| | - Lei Li
- The First Peoples Hospital of Xuzhou
- Xuzhou
- China
| | - Amna Parveen
- College of Pharmacy
- Gachon University
- Incheon 406-799
- Republic of Korea
| | - Bo Wang
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- PR China
| |
Collapse
|
31
|
Yan C, Liang N, Li Q, Yan P, Sun S. Biotin and arginine modified hydroxypropyl-β-cyclodextrin nanoparticles as novel drug delivery systems for paclitaxel. Carbohydr Polym 2019; 216:129-139. [DOI: 10.1016/j.carbpol.2019.04.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
|
32
|
Eftekhari RB, Maghsoudnia N, Samimi S, Zamzami A, Dorkoosh FA. Co-Delivery Nanosystems for Cancer Treatment: A Review. Pharm Nanotechnol 2019; 7:90-112. [PMID: 30907329 DOI: 10.2174/2211738507666190321112237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Massive data available on cancer therapy more than ever lead our mind to the general concept that there is no perfect treatment for cancer. Indeed, the biological complexity of this disease is too excessive to be treated by a single therapeutic approach. Current delivery systems containing a specific drug or gene have their particular opportunities and restrictions. It is worth noting that a considerable number of studies suggest that single- drug delivery systems result in insufficient suppression of cancer growth. Therefore, one of the main ideas of co-delivery system designing is to enhance the intended response or to achieve the synergistic/combined effect compared to the single drug strategy. This review focuses on various strategies for co-delivery of therapeutic agents in the treatment of cancer. The primary approaches within the script are categorized into co-delivery of conventional chemotherapeutics, gene-based molecules, and plant-derived materials. Each one is explained in examples with the recent researches. In the end, a brief summary is provided to conclude the gist of the review.
Collapse
Affiliation(s)
- Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Maghsoudnia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Samimi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zamzami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|