1
|
Teixeira FF, Portes AVR, Marques TEM, H. Isayama Y, de Freitas FAN, Santana FC, Mendes da Rocha A, Moraes TFS, Andrade LM, Versiani AF, Martins EN, Cotta EA, Rodrigues WN, Nagem RAP, da Fonseca F, Furtado CA, C. Ramirez J. Advanced Computational Techniques for Plasmonic Metasurfaces in the Detection of Neglected Infectious Diseases. Anal Chem 2025; 97:6813-6825. [PMID: 40146682 PMCID: PMC11983362 DOI: 10.1021/acs.analchem.4c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 03/29/2025]
Abstract
This tutorial delves into the integration of plasmonic metasurfaces as cutting-edge tools for creating highly sensitive diagnostic assays tailored to neglected infectious diseases. Plasmonic metasurfaces provide a transformative approach to diagnostics by addressing common limitations of traditional methods, including slow results and high costs. This tutorial explores their application in advancing sensitive and cost-effective solutions for neglected infectious diseases. This manuscript covers the complete cycle of developing optimized, AI-driven plasmonic metasurfaces, from biofunctionalization strategies and advanced fabrication techniques to addressing scalability, regulatory challenges, and point-of-care accessibility in resource-limited settings.
Collapse
Affiliation(s)
- Felipe
M. F. Teixeira
- Departamento
de Engenharia Eletrônica, Universidade
Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa
de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ary V. R. Portes
- Departamento
de Engenharia Eletrônica, Universidade
Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa
de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Talles E. M. Marques
- Departamento
de Engenharia Eletrônica, Universidade
Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa
de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Yuri H. Isayama
- Departamento
de Física, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
- LCPNano, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Brazil
| | - Felipe A. N. de Freitas
- Departamento
de Engenharia Eletrônica, Universidade
Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa
de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Fabiano C. Santana
- Departamento
de Física, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Aline Mendes da Rocha
- Departamento
de Bioquímica e Imunologia, Universidade
Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Thais F. S. Moraes
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Lidia M. Andrade
- Departamento
de Física, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
- Departamento
de Morfologia, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Brazil
| | - Alice F. Versiani
- Centro de
Desenvolvimento da Tecnologia Nuclear, Belo Horizonte 31270-901, Brazil
| | | | - Eduardo A. Cotta
- Departamento
de Física, Universidade Federal do
Amazonas, Manaus 69067-005, Brazil
| | - Wagner N. Rodrigues
- Departamento
de Física, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ronaldo A. P. Nagem
- Departamento
de Bioquímica e Imunologia, Universidade
Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Flávio
G. da Fonseca
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Clascidia A. Furtado
- Centro de
Desenvolvimento da Tecnologia Nuclear, Belo Horizonte 31270-901, Brazil
| | - Jhonattan C. Ramirez
- Departamento
de Engenharia Eletrônica, Universidade
Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa
de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
2
|
Cao L, Ren Y, Ling N, Ye Q, Wu Y, Zhao X, Gu Q, Wu S, Zhang Y, Wei X, Ye Y, Wu Q. An ultrasensitive smartphone-assisted bicolor-ratiometric fluorescence sensing platform based on a "noise purifier" for point-of-care testing of pathogenic bacteria in food. Food Chem 2024; 446:138805. [PMID: 38422639 DOI: 10.1016/j.foodchem.2024.138805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Non-specific binding in fluorescence resonance energy transfer (FRET) remains a challenge in foodborne pathogen detection, resulting in interference of high background signals. Herein, we innovatively reported a dual-mode FRET sensor based on a "noise purifier" for the ultrasensitive quantification of Escherichia coli O157:H7 in food. An efficient FRET system was constructed with polymyxin B-modified nitrogen-sulfur co-doped graphene quantum dots (N, S-GQDs@PMB) as donors and aptamer-modified yellow carbon dots (Y-CDs@Apt) as acceptors. Magnetic multi-walled carbon nanotubes (Fe@MWCNTs) were employed as a "noise purifier" to reduce the interference of the fluorescence background. Under the background purification mode, the sensitivity of the dual-mode signals of the FRET sensor has increased by an order of magnitude. Additionally, smartphone-assisted colorimetric analysis enabled point-of-care detection of E. coli O157:H7 in real samples. The developed sensing platform based on a "noise purifier" provides a promising method for ultrasensitive on-site testing of trace pathogenic bacteria in various foodstuffs.
Collapse
Affiliation(s)
- Lulu Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Ren
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinyu Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Qingping Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
3
|
Ferreira Dantas GDP, Nascimento Martins EMD, Gomides LS, Chequer FMD, Burbano RR, Furtado CA, Santos AP, Tagliati CA. Pyrene-polyethylene glycol-modified multi-walled carbon nanotubes: Genotoxicity in V79-4 fibroblast cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503463. [PMID: 35483786 DOI: 10.1016/j.mrgentox.2022.503463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The genotoxicity of pyrene-polyethylene glycol-modified multi-walled carbon nanotubes (MWCNT-PyPEG), engineered as a nanoplatform for bioapplication, was evaluated. Toxicity was assessed in hamster lung fibroblast cells (V79-4). MTT and Cell Titer Blue methods were used to evaluate cell viability. Genotoxicity was measured by the comet assay and the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, and fluorescence in situ hybridization (FISH) was used to test induction of structural chromosome aberrations (clastogenic activity) and/or numerical chromosome changes (aneuploidogenic activity). Exogenous metabolic activation enzymes were used in the CBMN-Cyt and FISH tests. Only with metabolic activation, the hybrids caused chromosomal damage, by both clastogenic and aneugenic processes.
Collapse
Affiliation(s)
- Graziela de Paula Ferreira Dantas
- ToxLab, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | | | - Lívia Santos Gomides
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Farah Maria Drumond Chequer
- Laboratório de Análises Toxicológicas, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu (UFSJ-CCO), Divinópolis, MG, Brazil
| | - Rommel Rodríguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Clascídia Aparecida Furtado
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Adelina Pinheiro Santos
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Carlos Alberto Tagliati
- ToxLab, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Lin B, Liu H, Huang C, Xiao X, Pedersen-Bjergaard S, Shen X. Versatile Integration of Liquid-Phase Microextraction and Fluorescent Aptamer Beacons: A Synergistic Effect for Bioanalysis. Anal Chem 2021; 93:14323-14333. [PMID: 34648282 DOI: 10.1021/acs.analchem.1c03600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescent aptamer beacons (FABs) are a major category of biosensors widely used in environmental analysis. However, due to their low compatibility, it is difficult to use the common FABs for biological samples. To overcome this challenge, construction of FABs with complex structures to adapt the nature of biological samples is currently in progress in this field. Unlike previous works, we moved our range of vision from the FAB itself to the biological sample. Inspired by this idea, in this work, flat membrane-based liquid-phase microextraction (FM-LPME) with sufficient sample cleanup and preconcentration capacities was integrated with FABs. With the merits of both FM-LPME and FABs, the integrated LPME-FAB system displayed a clear synergistic enhancement for target analysis. Specifically, LPME in the LPME-FAB system provided purified and enriched Hg2+ for the FAB recognition, while the FAB recognition event promoted the extraction efficiency of LPME. Due to superior performances, the LPME-FAB system achieved highly sensitive analysis of Hg2+ in urine samples with a detection limit of 27 nM and accuracies in the range of 98-113%. To the best of our knowledge, this is the first time that an integrated LPME-FAB system was constructed for target analysis in biological samples. We believe that this study will provide a new insight into the next generation of biosensors, where the integration of sample preparation with detection probes is as important as the design of complex probes in the field of bioanalysis.
Collapse
Affiliation(s)
- Bin Lin
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Huajing Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Stig Pedersen-Bjergaard
- School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern 0316, Oslo, Norway.,Faculty of Health and Medical Sciences, School of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Xiantao Shen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| |
Collapse
|
5
|
Yang T, Wang Z, Song Y, Yang X, Chen S, Fu S, Qin X, Zhang W, Man C, Jiang Y. A novel smartphone-based colorimetric aptasensor for on-site detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2021; 104:8506-8516. [PMID: 34053767 DOI: 10.3168/jds.2020-19905] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/16/2021] [Indexed: 01/25/2023]
Abstract
Effective testing tools for Escherichia coli O157:H7 can prevent outbreaks of foodborne illness. In this paper, a smartphone-based colorimetric aptasensor was developed using functionalized gold nanoparticles (GNP) and multi-walled carbon nanotubes (MWCNT) for monitoring E. coli O157:H7 in milk. The maximum absorption peak of GNP bonded with aptamer (Apt) generated evident transformation from 518 to 524 nm. The excess GNP-Apt was removed by functionalized MWCNT magnetized with carbonyl iron powder (CIP) and hybridized with a DNA probe, whereas the GNP-Apt immobilized on E. coli O157:H7 remained in the system. In the presence of a high-salt solution, the GNP-Apt that captured E. coli O157:H7 remained red, but the free GNP-Apt aggregated and appeared blue. The chromogenic results were analyzed by a smartphone-based colorimetric device that was fabricated using acrylic plates, a light-emitting diode, and a mobile power pack. To our knowledge, this was the first attempt to use a smartphone-based colorimetric aptasensor employing the capture of GNP-Apt coupled with separation of MWCNT@CIP probe to detect E. coli O157:H7. The aptasensor exhibited good reproducibility and no cross-reaction for other bacteria. A concentration of 8.43 × 103 cfu/mL of E. coli O157:H7 could be tested in pure culture, and 5.24 × 102 cfu/mL of E. coli O157:H7 could be detected in artificially contaminated milk after 1 h of incubation. Therefore, the smartphone-based colorimetric aptasensor was an efficient tool for the detection of E. coli O157:H7 in milk.
Collapse
Affiliation(s)
- Tao Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Zhenghui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Yang Song
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Sihan Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
6
|
Yang T, Yang X, Guo X, Fu S, Zheng J, Chen S, Qin X, Wang Z, Zhang D, Man C, Jiang Y. A novel fluorometric aptasensor based on carbon nanocomposite for sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2020; 103:7879-7889. [PMID: 32600757 DOI: 10.3168/jds.2020-18344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Escherichia coli O157:H7 is an extremely serious foodborne pathogen accounting for a vast number of hospitalizations. In this system, a simple, rapid, and safe compound method was developed based on carbonyl iron powder (CIP) and multiwalled carbon nanotubes (MWCNT). Then, the CIP@MWCNT-based aptasensor was constructed by strong π-stacking between nanocomposite and aptamer, single-strand DNA, causing fluorescent quenching of the dye-labeled aptamer. The restoration of dye fluorescence could be achieved when aptamer came off the surface of the CIP@MWCNT nanocomposite due to the presence of target bacteria. To the best of our knowledge, this fabrication of magnetic carbon nanotubes without irritating and corrosive reagents is described for the first time. The sensing platform was also an improvement on the conventional formation of the aptasensor between carbon materials and DNA aptamer. The nanocomposite was verified by diverse characterization of zeta potential, Fourier-transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray analysis. The CIP@MWCNT-based aptasensor was an effective nanoplatform for quantitative detection of E. coli O157:H7, and was measured to have high specificity, good reproducibility, and strong stability. The aptasensor's capacity to quantify E. coli O157:H7 was as low as 7.15 × 103 cfu/mL in pure culture. The detection limit of E. coli O157:H7 was 3.15 × 102 cfu/mL in contaminated milk after 1 h of pre-incubation. Hence, the developed assay is a new possibility for effective synthesis of nanocomposites and sensitive tests of foodborne pathogens in the dairy industry.
Collapse
Affiliation(s)
- Tao Yang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xinyan Yang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xiaojie Guo
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Jiapeng Zheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Sihan Chen
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xue Qin
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Zhenghui Wang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Dongyan Zhang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
7
|
Interfacing DNA with nanoparticles: Surface science and its applications in biosensing. Int J Biol Macromol 2020; 151:757-780. [DOI: 10.1016/j.ijbiomac.2020.02.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
|
8
|
Pimentel LS, Turini CA, Santos PS, Morais MAD, Souza AG, Barbosa MB, Martins EMDN, Coutinho LB, Furtado CA, Ladeira LO, Martins JR, Goulart LR, Faria PCBD. Balanced Th1/Th2 immune response induced by MSP1a functional motif coupled to multiwalled carbon nanotubes as anti-anaplasmosis vaccine in murine model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102137. [PMID: 31857182 DOI: 10.1016/j.nano.2019.102137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Anaplasmosis is one of the most prevalent tick-borne diseases of cattle caused by Anaplasma marginale. MSP1a surface protein has been shown to be involved in eliciting immunity to infected cattle. Carbon nanotubes (CNTs) has been increasingly highlighted due to their needle like structure, which contain multiple attachment sites for biomolecules and may interact with or cross biological membranes, increasing antigen availability to immune system. Here, we have successfully designed a nanocomplex of a synthetic peptide noncovalently attached to multiwalled CNT (MWCNT). Peptide comprising the core motif of the MSP1a was efficiently adsorb onto the nanoparticle surface. The MWCNT-Am1 nanocomplex exhibited high stability and good dispersibility and in vivo immunization showed high levels of IgG1 and IgG2a, followed by increased expression of pro-inflammatory and anti-inflammatory cytokines. This is a proof-of-concept of a nanovaccine that was able to generate a strong immune response compared to the common antigen-adjuvant vaccine without the nanoparticles.
Collapse
Affiliation(s)
- Leticia Santos Pimentel
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Carolina Alvarenga Turini
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Paula Souza Santos
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Abilio de Morais
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Aline Gomes Souza
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Botelho Barbosa
- Laboratory of Chemistry of Carbon Nanostructures, Nuclear Technology Development Center, CDTN, Belo Horizonte, MG, Brazil
| | | | | | - Clascídia Aparecida Furtado
- Laboratory of Chemistry of Carbon Nanostructures, Nuclear Technology Development Center, CDTN, Belo Horizonte, MG, Brazil
| | - Luiz Orlando Ladeira
- Laboratory of Nanomaterials, Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Ricardo Martins
- Laboratory of Parasitology, Institute of Veterinary Research Desidério Finamor, Eldorado do Sul, RS, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | |
Collapse
|
9
|
Andrade LM, Martins EMN, Versiani AF, Reis DS, da Fonseca FG, Souza IPD, Paniago RM, Pereira-Maia E, Ladeira LO. The physicochemical and biological characterization of a 24-month-stored nanocomplex based on gold nanoparticles conjugated with cetuximab demonstrated long-term stability, EGFR affinity and cancer cell death due to apoptosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110203. [PMID: 31761220 DOI: 10.1016/j.msec.2019.110203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/25/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Nanotechnology is one of the most promising tools for future diagnosis and therapy. Thus, we have produced gold nanoparticles coated with cetuximab at a dose-range from 5 μg up to 200 μg, and prolonged stable nanocomplexes were obtained. The nanocomplexes were characterized by UV-Vis, zeta potential, TEM, fluorometry, infrared regions, XPS and atomic absorption spectrometry. For biological characterization the A431 cell line was used. Cellular uptake, target affinity and cell death were assessed using ICP-OES, immunocytochemistry and flow cytometry, respectively. The immobilization of cetuximab on the AuNPs surfaces was confirmed. The nanocomplex with 24 months of manufacturing promoted efficient EGFR binding and induced tumour cell death due to apoptosis. Significant (p < 0.05) cell death was achieved using relatively low cetuximab concentration for AuNPs coating compared to the antibody alone. Therefore, our results provided robust physicochemical and biological characterization data corroborating the cetuximab-bioconjugate AuNPs as a feasible nanocomplex for biomedical applications.
Collapse
Affiliation(s)
- Lidia M Andrade
- Departamento de Física, Nanobiomedical Research Group. Universidade Federal de Minas Gerais, Brazil.
| | - Estefânia M N Martins
- Departamento de Física, Nanobiomedical Research Group. Universidade Federal de Minas Gerais, Brazil; Centro de Desenvolvimento da Tecnologia Nuclear, Brazil
| | - Alice F Versiani
- Departamento de Física, Nanobiomedical Research Group. Universidade Federal de Minas Gerais, Brazil; Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, Brazil
| | - Daniela S Reis
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil
| | | | - Ivina P de Souza
- Departamento de Química, Universidade Federal de Minas Gerais, Brazil; Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Brazil
| | - Roberto M Paniago
- Departamento de Física, Nanobiomedical Research Group. Universidade Federal de Minas Gerais, Brazil
| | | | - Luiz O Ladeira
- Departamento de Física, Nanobiomedical Research Group. Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
10
|
Gallay PA, Rubianes MD, Gutierrez FA, Rivas GA. Avidin and Glucose Oxidase‐non‐covalently Functionalized Multi‐walled Carbon Nanotubes: A New Analytical Tool for Building a Bienzymatic Glucose Biosensor. ELECTROANAL 2019. [DOI: 10.1002/elan.201900202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pablo A. Gallay
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias QuímicasUniversidad Nacional de Córdoba, Ciudad Universitaria 5000 Córdoba Argentina
| | - María D. Rubianes
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias QuímicasUniversidad Nacional de Córdoba, Ciudad Universitaria 5000 Córdoba Argentina
| | - Fabiana A. Gutierrez
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias QuímicasUniversidad Nacional de Córdoba, Ciudad Universitaria 5000 Córdoba Argentina
| | - Gustavo A. Rivas
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias QuímicasUniversidad Nacional de Córdoba, Ciudad Universitaria 5000 Córdoba Argentina
| |
Collapse
|